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Abstract
In this work we propose an accelerated algorithm that combines various techniques,
such as inertial proximal algorithms, Tseng’s splitting algorithm, and more, for solving
the common variational inclusion problem in real Hilbert spaces. We establish a
strong convergence theorem of the algorithm under standard and suitable
assumptions and illustrate the applicability and advantages of the new scheme for
signal recovering problem arising in compressed sensing.
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1 Introduction
Let H be a real Hilbert space such that 〈·, ·〉 and ‖ · ‖ are the inner product and the induced
norm, respectively. We are interested in the variational inclusion problem (VIP) which is
to find ū ∈H such that

0 ∈ (F + G)ū, (1.1)

where F : H → H is a single-valued mapping and G : H → 2H is a multivalued mapping.
The solution set of VIP (1.1) is denoted by (F + G)–1(0). These VIPs (1.1) include as partic-
ular cases many mathematical problems, such as variational inequalities, split feasibility
problem, convex minimization problem, and linear inverse problem, which can be ap-
plied in many ways, such as machine learning, statistical modeling, image processing, and
signal recovery, see in [5–7, 21]. Many splitting algorithms have been introduced and im-
proved to find a solution of VIP (1.1); one of the famous splitting algorithms is the forward-
backward splitting algorithm, see in [14] for more details. It is well known that VIP (1.1)
is equivalent to the following fixed point equation ū = JG

γ (I – γ F)ū, where JG
γ is the re-

solvent operator of G defined by JG
γ = (I + γ G)–1 such that γ > 0. The following naturally
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introduced forward-backward splitting algorithm has been proposed in [1]:

uk+1 = JG
γk

(I – γkF)uk , γk > 0, k ≥ 0. (1.2)

In 2015, Donoghue and Candès [19] showed that the forward-backward splitting algo-
rithm (1.2), which is reduced to the proximal gradient algorithm for convex optimization
problems, may get a lot of iterations when F is the gradient of a convex and differential
function. Finding a process to speed up the convergence of algorithms is very important.
Before that, in 1964, the inertial extrapolation technique, which is called the heavy ball
method, was introduced by Polyak [20] to speed up the convergence of iterative algo-
rithms. Later on, the inertial extrapolation has been used for VIPs (1.1) and improved
by many mathematicians, see in [2, 15, 18]. The inertial proximal algorithm is the one of
using the inertial technique with the forward-backward algorithm. The following inertial
proximal algorithm has been proposed by Moudafi and Oliny [17]:

rk = uk + ξk(uk – uk–1),

uk+1 = JG
γk

(
rk – γkF(uk)

)
, k ≥ 0, (1.3)

where {γk} is a positive real sequence. Based on the condition generated in terms of the
sequence {uk} and parameter ξk under a cocoercivity condition F with respect to the so-
lution set, the weak convergence of the iterative sequence was established. For obtaining
the strong convergence, Cholamjiak et al. [4] introduced Halpern-type forward-backward
splitting algorithm (HTFBSA) involving the inertial technique in a Hilbert space. This al-
gorithm was generated by a fixed element w ∈H and

rk = uk + ξk(uk – uk–1),

uk+1 = akw + (1 – ak – bk)rk + bkJG
γk

(
rk – γkF(rk)

)
, k ≥ 1, (1.4)

where {ak} and {bk} are sequences in [0, 1]. After that, Yambangwai et al. [27] extended the
HTFBSA to the following modified viscosity inertial forward-backward splitting algorithm
(MVIFBSA):

rk = uk + ξk(uk – uk–1),

uk+1 = akϕ(rk) + (1 – ak – bk)rk + bkJG
γk

(
rk – γkF(rk)

)
, k ≥ 1, (1.5)

where ϕ is a ρ-contractive on H.
Other developments and modifying of the forward-backward splitting algorithm have

been introduced to speed up the algorithm’s convergence. A well-known modified
forward-backward algorithm is Tseng’s splitting algorithm [24]. This algorithm uses
an adaptive line-search rule with parameter γk and converges weakly in a real Hilbert
space. Recently, Gibali and Thong [8] presented two additional extensions of the forward-
backward splitting algorithm; these modifications, presented next, are inspired by Mann
and viscosity techniques.

Strong convergence of the above two algorithms is established under Lipschitz continu-
ity and monotonicity of the operator F .
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Algorithm 1 Mann Tseng type algorithm (MTTA)
Initialization: Given {ak}, {bk} ⊂ (0, 1), λ ∈ (0, 1), and γ1 > 0. Let u1 ∈H and set k := 1.
Iterative steps: Construct {uk} by using the following steps:
Step 1. Compute

sk = JG
γk

(I – γkF)uk . (1.6)

If uk = sk , then stop and sk is a solution of (1.1). Otherwise
Step 2. Compute

tk = sk – γk(Fsk – Fuk) (1.7)

and

uk+1 = (1 – ak – bk)uk + bktk .

Update

γk+1 =

⎧
⎨

⎩
min{λ ‖uk –sk‖

‖Fuk –Fsk‖ ,γk} if Fuk 	= Fsk ;

γk otherwise.
(1.8)

Replace k by k + 1 and then go to Step 1.

Algorithm 2 Viscosity Tseng type algorithm (VTTA)
Initialization: Given {ak} ⊂ (0, 1), λ ∈ (0, 1), and γ1 > 0. Let u1 ∈H and set k := 1.
Iterative steps: Construct {uk} by using the following steps:
Step 1. Compute sk according to (1.6).
If uk = sk , then stop and sk is a solution of (1.1). Otherwise
Step 2. Compute tk according to (1.7) and

uk+1 = akϕ(uk) + (1 – ak)tk ,

where ϕ is a ρ-contractive on H. Update γk+1 according to (1.8).
Replace k by k + 1 and then go to Step 1.

While all the above introduction is focused on a single variational inclusion problem
(1.1), many real-world problems require to find a solution that fulfils several constraints.
These constraints can be reformulated via a nonlinear functional model, and thus in this
work we wish to focus on the common variational inclusion problem (CVIP). The CVIP
consists of finding a point ū ∈H such that

0 ∈ (Fi + Gi)ū, (1.9)

where Fi : H → H are single-valued mappings and Gi : H → 2H are multivalued map-
pings for all i = 1, 2, . . . , K . We assume that the solution set of the problem system (1.9)
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is nonempty. Recently, Yambangwai et al. [26] studied an image restoration problem in
which several blurred filters were considered, and the mathematical model used there is
the common variational inclusion problem. A parallel inertial forward-backward splitting
algorithm for solving this problem was introduced and analyzed. Some results of the paral-
lel algorithm for solving the common variational inclusion problem and associated issues
have been reported, see [3, 9–13, 23].

Inspired by the above works, we focus on the common variational inclusion problem and
present a new modified Tseng’s splitting algorithm for solving it with strong converges in
real Hilbert spaces.

The paper is organized as follows. We first recall some basic definitions and results in
Sect. 2. The new algorithms and their analysis are introduced in Sect. 3. In Sect. 4 we con-
sider as an application a signal recovery problem with several blurred filters, and compare
and illustrate computational advantages of the method. Final remarks and conclusions are
given in Sect. 5.

2 Preliminaries
In what follows, recall that H is a real Hilbert space. Let C be a nonempty, closed, and
convex subset of H. We denote by ⇀ and → weak and strong convergence, respectively.
We next collect some necessary definitions and lemmas for proving our main results.

Definition 2.1 Let G : H → 2H be a multivalued mapping. Then G is said to be
(i) monotone if for all (x, u), (y, v) ∈ graph(G) (the graph of mapping G)

〈u – v, x – y〉 ≥ 0,

(ii) maximal monotone if there is no proper monotone extension of graph(G).

Lemma 2.2 ([25]) Let {ak} and {ck} be nonnegative sequences of real numbers such that
∑∞

k=1 ck < ∞, and let {bk} be a sequence of real numbers such that lim supk→∞ bk ≤ 0. If
there exists k0 ∈N such that, for any k ≥ k0,

ak+1 ≤ (1 – δk)ak + δkbk + ck ,

where {δk} is a sequence in (0, 1) such that
∑∞

k=1 δk = ∞, then limk→∞ ak = 0.

Lemma 2.3 ([16]) Let {	k} be a sequence of real numbers such that there exists a sub-
sequence {	kj}j≥0 of {	k} satisfying 	kj < 	kj+1 for all j ≥ 0. Define a sequence of integers
{ψ(k)}k≥k∗ by

ψ(k) := max{n ≤ k : 	n < 	n+1}. (2.1)

Then {ψ(k)}k≥k∗ is a nondecreasing sequence such that limk→∞ ψ(k) = ∞, and for all k ≥
k∗, we have that 	ψ(k) ≤ 	ψ(k)+1 and 	k ≤ 	ψ(k)+1.

3 Main result
In this section we present our new parallel inertial Tseng type algorithm (PITTA) for solv-
ing (1.9). For the convergence analysis of the proposed method, we assume the following
assumptions for all i = 1, 2, . . . , K .
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Assumption 1 H is a real Hilbert space, Fi : H → H is an Li-Lipschitz continuous and
monotone mapping and Gi : H → 2H is a maximal monotone operator.

Assumption 2 � :=
⋂K

i=1(Fi + Gi)–1(0) is nonempty.

Assumption 3 {ξk} ⊂ [0, ξ ), {bn} ⊂ (b∗, b′) ⊂ (0, 1 – an) for some ξ > 0, b∗ > 0, b′ > 0, and
{an} ⊂ (0, 1) satisfies limk→∞ ak = 0 and

∑∞
k=1 an = ∞.

Assumption 4 ϕ : H →H is a ρ-contractive mapping.

Next the algorithm is presented.

Lemma 3.1 Assume that Assumptions 1–4 hold, then any sequence {γ i
k} in Algorithm

PITTA is nonincreasing and converges to γi such that min{γ i
1, λi

Li
} ≤ γi for all i = 1, 2, . . . , K .

Proof See [8, Lemma 5]. �

Algorithm 3 Parallel inertial Tseng type algorithm (PITTA)
Initialization: Given λi ∈ (0, 1) and γ i

1 > 0 for all i = 1, 2, . . . , K . Select arbitrary elements
u0, u1 ∈H and set k := 1.
Iterative Steps: Construct {uk} by using the following steps:
Step 1. Set rk = uk + ξk(uk – uk–1) and compute, for all i = 1, 2, . . . , K ,

si
k = JGi

γ i
k

(
I – γ i

kFi
)
rk .

If rk = si
k for all i = 1, 2, . . . , K , then stop and rk ∈ �. Otherwise

Step 2. Compute, for all i = 1, 2, . . . , K ,

ti
k = si

k – γ i
k
(
Fisi

k – Firk
)

and

t̄k := tik
k , ik = argmax

{∥∥ti
k – rk

∥∥ : i = 1, 2, . . . , K
}

.

Step 3. Compute

uk+1 = akϕ(uk) + (1 – ak – bk)uk + bkt̄k

and update, for all i = 1, 2, . . . , K ,

γ i
k+1 =

⎧
⎨

⎩

min{λi
‖rk –si

k‖
‖Firk –Fisi

k‖ ,γ i
k} if Firk 	= Fisi

k ;

γ i
k otherwise.

Replace k by k + 1 and then repeat Step 1.
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Lemma 3.2 Let u ∈ �. Then under Assumptions 1–4, we have, for all i = 1, 2, . . . , K ,

∥
∥ti

k – u
∥
∥2 ≤ ‖rk – u‖2 –

[
1 –

(
�i

k
)2]∥∥rk – si

k
∥
∥2 (3.1)

and

∥
∥ti

k – si
k
∥
∥ ≤ �i

k
∥
∥rk – si

k
∥
∥, (3.2)

where �i
k = λi

γ i
k

γ i
k+1

.

Proof In the same manner as [8, Lemma 6], we obtain that inequalities (3.1) and (3.2)
hold. �

Lemma 3.3 Suppose that limk→∞ ‖rk – si
k‖ = 0 for all i = 1, 2, . . . , K . If there exists a weakly

convergent subsequence {rkj} of {rk}, then under Assumptions 1–4, we have that the limit of
{rkj} belongs to �.

Proof The proof is similar to the proof of [8, Lemma 7]. �

With the above results we are now ready for the main convergence theorem.

Theorem 3.4 Suppose that limk→∞ ξk
ak

‖uk – uk–1‖ = 0, then under Assumptions 1–4, we
have uk → μ as k → ∞, where μ = P� ◦ ϕ(μ).

Proof First, since limk→∞[1 – (�i
k)2] = 1 –λ2

i > 0, one can find mi ∈N such that 1 – (�i
k)2 > 0

for all k ≥ k0, where k0 = maxi=1,2,...,K mi. Let u ∈ �, from (3.1), we get

∥∥ti
k – u

∥∥ ≤ ‖rk – u‖ (3.3)

for all k ≥ k0. Next, we divide the proof into the following claims.

Claim 1 {uk} is a bounded sequence.

By the sequence { ξk
ak

‖uk – uk–1‖} converges to 0, we have that there exists a constant
M∗ ≥ 0 such that, for all k ∈N,

ξk

ak
‖uk – uk–1‖ ≤ M∗. (3.4)

From the definition of rk and combining (3.3) and (3.4), we obtain, for all k ≥ k0,

∥∥ti
k – u

∥∥ ≤ ‖rk – u‖ =
∥∥uk + ξk(uk – uk–1) – u

∥∥

≤ ‖uk – u‖ +
ξk

ak
‖uk – uk–1‖ak

≤ ‖uk – u‖ + akM∗.
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From the definition of i, we get, for all k ≥ k0,

‖t̄k – u‖ ≤ ‖rk – u‖ (3.5)

and

‖t̄k – u‖ ≤ ‖uk – u‖ + akM∗. (3.6)

By Assumption 4 and using (3.6), the following relation is obtained for all k ≥ k0:

‖uk+1 – u‖ =
∥∥ak

(
ϕ(uk) – u

)
+ (1 – ak – bk)(uk – u) + bk(t̄k – u)

∥∥

≤ ak
∥∥ϕ(uk) – u

∥∥ + (1 – ak – bk)‖uk – u‖ + bk‖t̄k – u‖
≤ ak

∥
∥ϕ(uk) – ϕ(u)

∥
∥ + ak

∥
∥ϕ(u) – u

∥
∥ + (1 – ak)‖uk – u‖ + akbkM∗

≤ [
1 – ak(1 – ρ)

]‖uk – u‖ + ak
(∥∥ϕ(u) – u

∥
∥ + M∗

)

=
[
1 – ak(1 – ρ)

]‖uk – u‖ + ak(1 – ρ)
‖ϕ(u) – u‖ + M∗

1 – ρ

≤ max

{
‖uk – u‖,

‖ϕ(u) – u‖ + M∗
1 – ρ

}
.

This leads to a conclusion that ‖uk+1 – u‖ ≤ max{‖uk0 – u‖, ‖ϕ(u)–u‖+M∗
1–ρ

} for any k ≥ k0.
Consequently, the sequence {uk} is bounded. In addition, {ϕ(uk)} is also bounded. Since
� is a closed and convex set, P� ◦ ϕ is a ρ-contractive mapping. Now, we can uniquely
find μ ∈ � with μ = P� ◦ ϕ(μ) due to the Banach fixed point theorem. We also get that,
for any u ∈ �,

〈
ϕ(μ) – μ, u – μ

〉 ≤ 0. (3.7)

Now, for each k ∈N, set 	k := ‖uk – μ‖2.

Claim 2 There is M0 > 0 such that

bk(1 – ak – bk)‖uk – t̄k‖2 ≤ 	k – 	k+1 + ak
(∥∥ϕ(uk) – μ

∥∥2 + M0
)

for all k ≥ k0.

Applying (3.6), we have, for all k ≥ k0,

‖t̄k – μ‖2 ≤ (‖uk – μ‖ + akM∗
)2

= 	k + ak
(
2M∗‖uk – μ‖ + akM2

∗
)

≤ 	k + akM0 (3.8)

for some M0 > 0. For any k ≥ k0, it follows from the assumption on ϕ and (3.8) that

	k+1 =
∥∥ak

(
ϕ(uk) – μ

)
+ (1 – ak – bk)(uk – μ) + bk(t̄k – μ)

∥∥2
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≤ ak
∥∥ϕ(uk) – μ

∥∥2 + (1 – ak – bk)	k + bk‖t̄k – μ‖2 – bk(1 – ak – bk)‖uk – t̄k‖2

≤ ak
∥∥ϕ(uk) – μ

∥∥2 + (1 – ak)	k + akbkM0 – bk(1 – ak – bk)‖uk – t̄k‖2

≤ 	k + ak
(∥∥ϕ(uk) – μ

∥
∥2 + M0

)
– bk(1 – ak – bk)‖uk – t̄k‖2.

Therefore, Claim 2 is obtained.

Claim 3 There is M̄ > 0 such that

	k+1 ≤ [
1 – ak(1 – ρ)

]
	k + ak(1 – ρ)

[
3M̄

1 – ρ
· ξk

ak
‖uk – uk–1‖

]

+ ak(1 – ρ)
[

2M̄
1 – ρ

‖uk – t̄k‖ +
2

1 – ρ

〈
ϕ(μ) – μ, uk+1 – μ

〉]

for all k ≥ k0.

Indeed, setting ck = (1 – bk)uk + bkt̄k . From inequality (3.5) and the definition of rk , we
have

‖ck – μ‖ ≤ (1 – bk)‖uk – μ‖ + bk‖t̄k – μ‖
≤ (1 – bk)‖uk – μ‖ + bk‖rk – μ‖
≤ ‖uk – μ‖ + bkξk‖uk – uk–1‖ (3.9)

and

‖uk – ck‖ = bk‖uk – t̄k‖ (3.10)

for all k ≥ k0. Hence, from the assumption on ϕ, and (3.2), (3.9), and (3.10), we obtain, for
all k ≥ k0,

	k+1 =
∥∥(1 – ak)(ck – μ) + ak

(
ϕ(uk) – ϕ(μ)

)
– ak(uk – ck) – ak

(
μ – ϕ(μ)

)∥∥2

≤ ∥
∥(1 – ak)(ck – μ) + ak

(
ϕ(uk) – ϕ(μ)

)∥∥2 – 2ak
〈
uk – ck + μ – ϕ(μ), uk+1 – μ

〉

≤ (1 – ak)‖ck – μ‖2 + ak
∥
∥ϕ(uk) – ϕ(μ)

∥
∥2 + 2ak〈ck – uk , uk+1 – μ〉

+ 2ak
〈
ϕ(μ) – μ, uk+1 – μ

〉

≤ (1 – ak)
(‖uk – μ‖ + bkξk‖uk – uk–1‖

)2 + akρ
2	k + 2ak‖ck – uk‖‖uk+1 – μ‖

+ 2ak
〈
ϕ(μ) – μ, uk+1 – μ

〉

≤ (1 – ak)	k + 2ξk‖uk – μ‖‖uk – uk–1‖ + ξ 2
k |‖uk – uk–1‖2 + akρ	k

+ 2akbk‖uk – t̄k‖‖uk+1 – μ‖ + 2ak
〈
ϕ(μ) – μ, uk+1 – μ

〉

≤ [
1 – ak(1 – ρ)

]
	k + ξk‖uk – uk–1‖

(
2‖uk – μ‖ + ξ‖uk – uk–1‖

)

+ 2akbk‖uk – t̄k‖‖uk+1 – μ‖ + 2ak
〈
ϕ(μ) – μ, uk+1 – μ

〉

≤ [
1 – ak(1 – ρ)

]
	k + 3M̄ξk‖uk – uk–1‖ + 2M̄akbk‖uk – t̄k‖
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+ 2ak
〈
ϕ(μ) – μ, uk+1 – μ

〉

≤ [
1 – ak(1 – ρ)

]
	k + ak(1 – ρ)

[
3M̄

1 – ρ
· ξk

ak
‖uk – uk–1‖

]

+ ak(1 – ρ)
[

2M̄
1 – ρ

‖uk – t̄k‖ +
2

1 – ρ

〈
ϕ(μ) – μ, uk+1 – μ

〉]

for M̄ := supn∈N{‖uk – μ‖, ξ‖uk – uk–1‖} > 0. Recall that our task is to show that uk → μ,
which is now equivalent to showing that 	k → 0 as k → ∞.

Claim 4 	k → 0 as k → ∞.

The proof is divided into the following two cases.
Case a. We can find N ∈N satisfying that, for all k ≥ N , the inequality 	k+1 ≤ 	k holds.

Since each term 	k is nonnegative, it is convergent. Due to the fact that limk→∞ ak = 0 and
limk→∞ bk ∈ (0, 1), and by Claim 2,

lim
k→∞

‖uk – t̄k‖ = 0. (3.11)

Indeed, we immediately get

lim
k→∞

‖uk – rk‖ = lim
k→∞

ξk

ak
‖uk – uk–1‖ak = 0. (3.12)

In addition, from the definition of t̄k and by using the triangle inequality, the following
inequalities are obtained:

∥
∥ti

k – rk
∥
∥ ≤ ‖t̄k – rk‖ ≤ ‖t̄k – uk‖ + ‖uk – rk‖

and

∥
∥rk – si

k
∥
∥ ≤ ∥

∥rk – ti
k
∥
∥ +

∥
∥ti

k – si
k
∥
∥

for all i = 1, 2, . . . , K . It follows from inequality (3.2) that

(
1 – �i

k
)∥∥rk – si

k
∥
∥ ≤ ‖t̄k – uk‖ + ‖uk – rk‖

for all i = 1, 2, . . . , K . Since limk→∞[1 – (�i
k)2] = 1 – λ2

i > 0, (3.11) and (3.12),

lim
k→∞

∥
∥rk – si

k
∥
∥ = 0 (3.13)

for all i = 1, 2, . . . , K . Note that, for each k ∈N,

‖uk+1 – uk‖ ≤ ‖uk+1 – t̄k‖ + ‖t̄k – uk‖
≤ ak

∥
∥ϕ(uk) – uk

∥
∥ + (2 – bk)‖uk – t̄k‖. (3.14)

Consequently, since limk→∞ ak = 0 and by (3.14), limk→∞ ‖uk+1 – uk‖ = 0. Next observe
that, for the reason that {uk} is bounded, there is w ∈ H such that ukj ⇀ w as j → ∞ for
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some subsequence {ukj} of {uk}. By (3.12), we get rkj ⇀ w as j → ∞. Then Lemma 3.3
together with (3.13) implies that w ∈ �. From (3.7), it is straightforward to show that

lim sup
k→∞

〈
ϕ(μ) – μ, uk – μ

〉
= lim

k→∞
〈
ϕ(μ) – μ, ukj – μ

〉
=

〈
ϕ(μ) – μ, w – μ

〉 ≤ 0.

Since limk→∞ ‖uk+1 – uk‖ = 0, the following result is obtained:

lim sup
k→∞

〈
ϕ(μ) – μ, uk+1 – μ

〉 ≤ lim sup
n→∞

〈
ϕ(μ) – μ, uk+1 – uk

〉
+ lim sup

n→∞

〈
ϕ(μ) – μ, uk – μ

〉

≤ 0.

Applying Lemma 2.2 to the inequality from Claim 3, we can conclude that limk→∞ 	k = 0.
Case b. We can find kn ∈N satisfying that kn ≥ n and 	kn < 	kn+1 for all n ∈N. According

to Lemma 2.3, the inequality 	ψ(k) ≤ 	ψ(k)+1 is obtained, where ψ : N → N is defined by
(2.1), and k ≥ k∗ for some k∗ ∈N. This implies, by Claim 2, for all k ≥ max{k0, k∗}, that

bψ(k)(1 – aψ(k) – bψ(k))‖uψ(k) – t̄ψ(k)‖2

≤ 	ψ(k) – 	ψ(k)+1 + aψ(k)
(∥∥ϕ(uψ(k)) – μ

∥∥2 + M0
)
.

Similar to Case a, since ak → 0 as k → ∞, we obtain

lim
k→∞

‖uψ(k) – t̄ψ(k)‖ = 0.

Furthermore, an argument similar to the one used in Case a shows that

lim sup
k→∞

〈
ϕ(μ) – μ, uψ(k)+1 – μ

〉 ≤ 0. (3.15)

Finally, from the inequality 	ψ(k) ≤ 	ψ(k)+1 and by Claim 3, for all k ≥ max{k0, k∗}, we
obtain

	ψ(k)+1 ≤ [
1 – aψ(k)(1 – ρ)

]
	ψ(k)+1 + aψ(k)(1 – ρ)

[
3M̄

1 – ρ
· ξψ(k)

aψ(k)
‖uψ(k) – uψ(k)–1‖

]

+ aψ(k)(1 – ρ)
[

2M̄
1 – ρ

‖uψ(k) – t̄ψ(k)‖ +
2

1 – ρ

〈
ϕ(μ) – μ, uψ(k)+1 – μ

〉
]

.

Some simple calculations yield

	ψ(k)+1 ≤ 3M̄
1 – ρ

· ξψ(k)

aψ(k)
‖uψ(k) – uψ(k)–1‖ +

2M̄
1 – ρ

‖uψ(k) – t̄ψ(k)‖

+
2

1 – ρ

〈
ϕ(μ) – μ, uψ(k)+1 – μ

〉
. (3.16)

From this it follows that lim supk→∞ 	ψ(k)+1 ≤ 0. Thus, limk→∞ 	ψ(k)+1 = 0. In addition, by
Lemma 2.3,

lim
k→∞

	k ≤ lim
k→∞

	ψ(k)+1 = 0.

Hence, we can conclude that uk converges strongly to μ. �
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4 Numerical illustrations
In this section we consider a signal recovery problem in compressed sensing that involves
several blurring filters. The classical problem involving a single filter is phrased as follows:

b = Hx + ε, (4.1)

where x ∈ R
N is the original signal, b ∈ R

M is the observed signal with noise ε, and H ∈
R

M×N (M < N ) is a filter matrix. Clearly solving system (4.1) is equivalent to solving the
following regularized least squares problem:

min
x∈RN

1
2
‖Hx – b‖2

2 + η‖x‖1, (4.2)

where η > 0 is a parameter. Next, let g(x) = 1
2‖Hx – b‖2

2 and h(x) = η‖x‖1, then ∇g(x) =
Ht(Hx–b) is monotone and ‖H‖2

2-Lipschitz continuous. Besides, ∂h(x), the subdifferential
of h at x, is maximal monotone, see [22]. In addition, from Proposition 3.1(iii) of [5],

x is a solution to problem (4.2) ⇔ 0 ∈ ∇g(x) + ∂h(x) ⇔ x = proxηh(I – η∇g)(x)
for any η > 0, where proxηh(x) = arg minu∈RN {h(u) + 1

2η
‖x – u‖2}.

Here we consider the following model for the signal recovering problem consisting of
various filters:

min
x∈RN

1
2
‖H1x – b1‖2

2 + η1‖x‖1,

min
x∈RN

1
2
‖H2x – b2‖2

2 + η2‖x‖1,

min
x∈RN

1
2
‖H3x – b3‖2

2 + η3‖x‖1, (4.3)

...

min
x∈RN

1
2
‖HK x – bK‖2

2 + ηK‖x‖1,

where, for all i = 1, 2, 3, . . . , K , Hi is a filter matrix, bi is an observed signal, and ηi > 0.
Problem (4.3) can be seen as problem (1.9) through the following settings: H = R

N , Fi(·) =
∇( 1

2‖Hi(·) – bi‖2
2), and Gi(·) = ∂(ηi‖ · ‖1) for all i = 1, 2, 3, . . . , K .

For the experiments in this section, we choose the signal size to be N = 1024 and M =
512, and the original signal x is generated by the uniform distribution in [–2, 2] with m
nonzero elements. We use the mean-squared error to measure the restoration accuracy
defined as follows: MSEk = 1

N ‖uk – x‖2
2 < 5 × 10–5 and suppose

ξk =

⎧
⎨

⎩
min{ξ̄k , 1

4 } if uk 	= uk–1,
1
4 otherwise

for all k ∈N. In the first part, we solve problem (4.2) by considering different components
within PITTA (Algorithm 3) where K = 1: λ1,γ 1

1 ,ϕ(·), ξ̄k , bk , and ak . Let H be the Gaussian
matrix generated by the MATLAB routine randn(M, N), the observation b be generated by
white Gaussian noise with signal-to-noise ratio SNR=40 and η = 1. Given that the initial
points u0, u1 are generated by commend randn(N , 1).
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Table 1 Numerical results of λ1

λ1 0.5 0.7 0.9 0.95 0.99

No. of iter. 19,213 15,373 12,642 12,038 13,232
Elapsed time (s) 12.5727 10.5476 8.7374 8.3056 9.0985

Table 2 Numerical results of γ 1
1

γ 1
1 10 5 1 0.1 0.01

No. of iter. 14,636 9189 6096 5719 5566
Elapsed time (s) 10.4622 6.9668 4.3429 4.0706 3.9709

Table 3 Numerical results of ϕ(·)
ϕ(·) 1

10 (·) 1
2 sin(·) 1

10 sin(·) 1
2 cos(·) 1

10 cos(·)
No. of iter. 4712 4864 4574 4591 4506
Elapsed time (s) 4.1631 3.7430 3.5067 3.5412 3.4410

Table 4 Numerical results of ξ̄k

ξ̄k No. of iter. Elapsed time (s)

0 4072 4.9433
1

(k+1)2‖uk–uk–1‖ 4080 4.3624
1

(k+1)2‖uk–uk–1‖2+(k+1)2 4072 3.1511
1

(k+1)1.1‖uk–uk–1‖2+(k+1)2 4073 3.1753
1

(k+1)1.1‖uk–uk–1‖ 3925 3.0562

Table 5 Numerical results of bk

bk No. of iter. Elapsed time (s)
1
2 (1 – ak ) 4293 4.5991
7
10 (1 – ak) 3099 2.5936
9
10 (1 – ak) 2421 2.2488
95
100 (1 – ak) 2295 1.9456
99
100 (1 – ak) 2201 1.8822

Case 1. We compare the performance of the algorithm with different parameters λ1 by
setting γ 1

1 = 7.55,ϕ(·) = 1
2 (·), ξ̄k = 1

‖uk –uk–1‖4+(k+1)4 , ak = 1
10(k+1) , and bk = 1

2 (1 – ak). Then the
results are presented in Table 1.

Case 2. We compare the performance of the algorithm with different parameters γ 1
1 by

setting λ1 = 0.95, and select ϕ(·), ξ̄k , ak , and bk are the same as in Case 1. Then the results
are presented in Table 2.

Case 3. We compare the performance of the algorithm with different mappings ϕ(·) by
setting λ1 = 0.95, γ 1

1 = 0.01, and select ξ̄k , ak , and bk are the same as in Case 1. Then the
results are presented in Table 3.

Case 4. We compare the performance of the algorithm with different parameters ξ̄k by
setting λ1 = 0.95, γ 1

1 = 0.01, ϕ(·) = 1
10 cos(·), and select ak and bk are the same as in Case 1.

Then the results are presented in Table 4.
Case 5. We compare the performance of the algorithm with different parameters bk by

setting λ1 = 0.95, γ 1
1 = 0.01, ϕ(·) = 1

10 cos(·), ξ̄k = 1
(k+1)1.1‖uk –uk–1‖ , and select ak as in Case 1.

Then the results are presented in Table 5.
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Table 6 Numerical results of ak

ak No. of iter. Elapsed time (s)
1

k+1 1610 1.2904
1

k+1000 1929 1.5377
10
k+1 9650 7.6941

1
10(k+1) 1771 1.4143

1
100(k+1) 2918 3.1259

Table 7 Numerical comparison of five algorithms

m nonzero elements

m = 20 m = 40 m = 60 m = 80 m = 100

MTTA Elapsed time (s) 1.8664 2.2307 4.0934 4.0526 7.7653
No. of iter. 1957 2851 4725 5269 8970

VTTA Elapsed time (s) 1.7425 2.2868 3.7257 4.3852 7.8369
No. of iter. 2109 2922 4759 5291 9100

HTFBSA Elapsed time (s) 5.1177 5.5682 7.4075 7.3936 10.0403
No. of iter. 13,658 14,136 19,379 19,207 23,863

MVIFBSA Elapsed time (s) 1.5619 2.2659 3.7905 4.2519 7.5121
No. of iter. 3727 5229 8635 9680 17,044

PITTA Elapsed time (s) 1.6738 2.2040 3.6526 4.0617 7.3839
No. of iter. 1944 2719 4523 5032 8893

Figure 1 From top to bottom: the original signal, the measurement, and the reconstructed signals by the five
algorithms in Table 7 form = 100

Case 6. We compare the performance of the algorithm with different parameters ak by
setting λ1 = 0.95, γ 1

1 = 0.01, ϕ(·) = 1
10 cos(·), ξ̄k = 1

(k+1)1.1‖uk –uk–1‖ , and bk = 99
100 (1 – ak). Then

the results are presented in Table 6.
We noticed that in all the above six cases, selecting ak = 1

k+1 for all k ∈ N and setting
bk , ξ̄k ,λ1,γ 1

1 , and ϕ(·) as in Case 6 yield the best results.
In the next experiment, we wish to compare the performance of MTTA (Algorithm 1),

VTTA (Algorithm 2), HTFBSA, MVIFBSA, and PITTA for solving problem (4.2) with one
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Figure 2 The mean-squared error versus the number of iterations form = 100

Table 8 Numerical results of PITTA

Inputting m nonzero elements

m = 20 m = 40 m = 60 m = 80 m = 100

H1 Elapsed time (s) 1.5507 2.6985 3.7521 7.5174 8.4918
No. of iter. 1799 2970 4336 8629 9932

H2 Elapsed time (s) 1.4325 4.4381 3.6034 5.9576 8.7588
No. of iter. 1791 3112 4597 6907 10,175

H3 Elapsed time (s) 1.5883 2.3403 3.5121 6.9216 7.5436
No. of iter. 2026 2996 4406 8751 8389

H1,H2 Elapsed time (s) 1.1125 1.6056 2.0113 2.9192 3.4436
No. of iter. 616 890 1124 1563 1888

H1,H3 Elapsed time (s) 1.9713 1.6221 2.1273 2.8935 3.2136
No. of iter. 625 917 1192 1611 1722

H2,H3 Elapsed time (s) 1.8236 1.5904 1.9945 2.6373 3.2237
No. of iter. 670 892 1127 1478 1753

H1,H2,H3 Elapsed time (s) 1.2404 1.6589 2.0204 2.9801 3.2592
No. of iter. 417 623 766 1004 1187

Table 9 Numerical comparison of two algorithms

m nonzero elements

m = 16 m = 32 m = 64 m = 128

PMHA Elapsed time (s) 1.1742 1.2011 1.5303 1.5309
No. of iter. 1696 1700 1928 2111

PITTA Elapsed time (s) 0.6402 0.8081 1.3495 2.3308
No. of iter. 379 464 790 1399

filter, that is, K = 1. We suppose that H , b,η, u0, and u1 are the same as in the first part and
select ak = 1

k+1 for all k ∈ N. We set bk , ξ̄k ,λ1,γ 1
1 , and ϕ(·) are the same as in Case 6. For



Suparatulatorn et al. Advances in Difference Equations        (2021) 2021:492 Page 15 of 19

Figure 3 From top to bottom: the original signal and the measurement by using H1, H2, and H3, respectively,
withm = 100

Figure 4 From top to bottom: the reconstructed signals by using each input form = 100

MTTA and VTTA, let λ1 = 0.95 and γ 1
1 = 0.01. Define w by using randn(N , 1) for HTFBSA.

Further, for any k ∈ N, we select γk = 1
2‖H‖2

2
for HTFBSA and MVIFBSA. The results are

presented in Table 7 and Figs. 1 and 2.
Based on the above results, we can see that our proposed algorithm is less time consum-

ing and requires lower number of iterations than the other four algorithms.
The final experiment considers PITTA for solving (4.3) with multiple inputs Hi, and then

we compare it with the parallel monotone hybrid algorithm (PMHA) of Suantai et al. [23].
Gaussian matrices are generated by the MATLAB routine randn(M, N). The observation bi
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Figure 5 The mean-squared error versus the number of iterations form = 100

Figure 6 From top to bottom: the original signal and the measurement by using H1, H2, and H3, respectively,
withm = 128

is generated by white Gaussian noise with signal-to-noise ratio SNR=40, ηi = 1, λi = 0.95,
and γ i

1 = 0.01 for all i = 1, 2, 3. Select ak = 1
k+1 and set u0, u1, ϕ(·), bk and ξ̄k are the same

as in Case 6 for all k ∈ N. Further, for any k ∈ N and all i = 1, 2, 3, we select αi
k = 0.75 and
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Figure 7 From top to bottom: the reconstructed signals by the two algorithms in Table 9 form = 128

Figure 8 The mean-squared error versus the number of iterations form = 128

Si(·) = prox ‖·‖1
‖Hi‖2

2

(I – 1
‖Hi‖2

2
Fi)(·) for PMHA. The results are presented in Tables 8, 9 and

Figs. 3–8.
From the above one can observe that incorporating all three Gaussian matrices (H1, H2,

and H3) into PITTA is more effective with respect to time and number of iterations than
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involving only one or two of them. PITTA also requires lower number of iterations than
PMHA.

5 Discussion
In this work we study the common variational inclusion problem (CVIP) and propose an
inertial Tseng’s splitting algorithm for solving it. A parallel iterative method is presented,
and under standard assumption we establish its strong convergence in real Hilbert spaces.
An intensive numerical investigation with comparison to several related schemes is pre-
sented for signal recovery problem involving several filters. Our work extends and gener-
alizes some related works in the literature and also demonstrates great practical potential.
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