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Abstract
In this paper, cross-dispersal is considered in a predator–prey model with a patchy
environment. A new predator–prey model with cross-dispersal among patches is
constructed. A new cross-dispersal matrix is established by the coupling relationship
between vertices. First, an existence theorem of the positive equilibrium for the new
model is obtained. Secondly, based on the idea of constructing Lyapunov functions
and a graph-theoretical approach for coupled systems, sufficient conditions that the
positive equilibrium of the new model is globally asymptotically stable in R2n+ are
derived on a network with strongly connected graphs. Thirdly, based on the theory of
asymptotically autonomous systems, Lyapunov functions method and graph theory,
a stability theorem for the positive equilibrium of the new model is established on a
complex network without strongly connected graphs. Finally, two examples are given
to illustrate main results.

Keywords: Cross-dispersal; Coupled model; Global stability; Predator–prey model;
Patches

1 Introduction
In the literature of predator–prey systems, it is an interesting problem to consider a patchy
environment. In reality, species always disperse from one patch to another patch. It is an
important topic to consider the population dynamics of multi-patch predator–prey mod-
els with dispersal. Dispersal among predators or among various prey has been studied by
researchers for many years. Dispersal among predators is called self-dispersal of preda-
tors, while dispersal among various prey is called self-dispersal of prey. The dynamics of
predator–prey models with self-dispersal have been studied by researchers in recent years.
Many researchers devoted more time to discussing self-dispersal of prey, self-dispersal of
predators and self-dispersal for both predators and prey of predator–prey models [1–6].
Self-dispersal of prey among n patches was considered in Refs. [1–3]. However, the models
presented in Refs. [1–3] were slightly different. One was to model and study multi-patch
periodic predator–prey systems [1]. Another was to consider multi-patch predator–prey
systems without considering the periodic character [2]. The other was to study multi-
patch predator–prey systems with a Holling type-II functional response [3]. Predator–
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prey systems with self-dispersal of predators between two patches were studied in [4].
Predator–prey models with n patches and self-dispersal for both predators and prey were
investigated in [5, 6].

Because of the close relationship among species in different patches, cross-dispersal
should be considered in the real environment. In fact, predator dispersal can affect prey
density, while prey dispersal also can affect predator density. Hence, it is necessary to study
the dynamics of the predator–prey model with cross-dispersal among all patches. Re-
cently, cross-dispersal was used to study multi-group models (see [7]). Based on graph the-
ory and Lyapunov functions method, the dynamics of a general multi-group model with
cross-dispersal were given in [7]. To the best of the author’s knowledge, few researchers
have focused on the dynamics of predator–prey models with cross-dispersal. Hence, it is
important to discuss the problem in this paper.

Based on graph theory, a systematic approach to construct global Lyapunov functions
for coupled systems was developed by the authors of [2]. Much work had been done in
order to apply this method to many areas [1–3, 6, 8–11]. The systematic approach was
based on the assumption that the network was strongly connected. However, to the best of
the author’s knowledge, graphs without strong connectedness are universal in reality. Due
to dealing with large-scale complex networks without strong connectedness, a hierarchical
method and a hierarchical algorithm were proposed in [12]. Based on the hierarchical
algorithm and the theory of asymptotically autonomous systems, stability theorems for
a new fractional-order coupled system on a network without strong connectedness were
obtained in [13].

Although predator–prey models based on ordinary differential equations (ODE) have
been discussed for many years, to the best of the author’s knowledge, cross-dispersal was
not considered in the predator–prey model based on ODE by researchers. In fact, cross-
dispersal is reasonable and applicable for patchy environment. The construction for the
new predator–prey model with cross-dispersal in a patchy environment is interesting and
can be widely applied to the ecological field. In order to fill this gap, a new predator–
prey model with cross-dispersal is constructed in this paper. To the best of the author’s
knowledge, the new predator–prey model with cross-dispersal constructed herein has not
been proposed in any other literature. The new cross-dispersal matrix presented here has
not been established by any other researcher. Based on the method of graph theory and
Lyapunov theory, global stability theorems of the positive equilibrium are established. In-
novative points are listed as follows:

1. Cross-dispersal is introduced into the predator–prey model in a patchy environment.
A new predator–prey model is established.

2. A new cross-dispersal matrix is established by the coupling relationship between
vertices.

3. Based on the idea of graph theory, a global stability theorem for the positive
equilibrium is established on a network with strongly connected graphs.

4. Based on the theory of asymptotically autonomous systems and graph theory, a
global stability theorem for the positive equilibrium is established on a network with
strongly connected components, but without strongly connected graphs.

This paper is organised as follows. Preliminary results are introduced in Sect. 2. In
Sect. 3, the main results are obtained, and examples are presented in Sect. 4. Finally, con-
clusions and outlook are outlined in Sect. 5.
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2 Preliminaries
In this section, some definitions and theorems are listed that will be used in the later sec-
tions (see [2, 12, 13]). We denote a weighted digraph as (G, A). A digraph G is strongly
connected if, for any pair of distinct vertices, there exists a directed path from one to the
other. A weighted digraph (G, A) is strongly connected if and only if the weight matrix A is
irreducible. Furthermore, a strongly connected component H of a digraph G is defined as
follows: if the subgraph H is strongly connected and for any vertex k /∈ V (H), the subgraph
that consists of the vertex set V (H) ∪ {k} is not strongly connected, then H is a strongly
connected component.

Lemma 2.1 ([2]) Assume n ≥ 2. Let ci be given in Proposition 2.1 of Ref. [2]. Then, the
following identity holds:

n∑

i,j=1

ciaijFij(xi, xj) =
∑

Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(xr , xs).

Here, Fij(xi, xj), 1 ≤ i, j ≤ n, are arbitrary functions, Q is the set of all spanning unicyclic
graphs of (G, A), w(Q) is the weight of Q, and CQ denotes the directed cycle of Q.

If (G, A) is balanced, then

n∑

i,j=1

ciaijFij(xi, xj) =
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
Fij(xi, xj) + Fji(xj, xi)

]
.

3 Main results
Based on cross-dispersal, the new predator–prey model is constructed as follows:

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi) –

∑n
j=1 kxy

ij yjsijxi,

ẏi = yi(–γi – δiyi + εixi) +
∑n

j=1 kyx
ij xjzijpijyi, i = 1, . . . , n.

(1)

Here, xi, yi denote the densities on patch i for various prey and predators, respectively.
Model parameters bi, δi, ei, εi are all positive constants. ri and γi are non-negative con-
stants. kxy

ij denotes the dispersal rate of predators from patch j to patch i. sijxi denotes
functional response of predators that disperse from patch j to patch i. kyx

ij denotes the dis-
persal rate of various prey from patch j to patch i. pijxj denotes the functional response of
predators on patch i to various prey that disperse from patch j to patch i. zij denotes the
conversion rate of various prey that come from patch j and are preyed on by predators on
patch i. The meanings of the above parameters are listed as Table 1.

Based on the Volterra predator–prey model [2], the new model constructed is reason-
able. Dispersal assumptions are reasonable from modelling. Predator–prey systems with
n patches can be studied and explained from the biological viewpoint, any prey dispersed
to this patch can be preyed on by predators on this patch. Furthermore, any prey can be
preyed on not only by predators on this patch, but also by predators dispersed to this
patch. In other words, any prey have a positive effect on the predator when prey disperse
to a predator’s population. Prey dispersed from patch j can be preyed on by predators on
patch i. Furthermore, the predator population on patch i will increase, while predators
have a negative effect on prey when predators disperse to a prey’s population. Predators
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Table 1 Parameters used in the new model

Symbol Definition

ri birth rate for prey population on patch i
eixi functional response of predators on patch i
γi death rate for predator population on patch i
εi
ei

conversion rate of prey on patch i
ri
bi

environmental capacity for prey population on patch i
γi
δi

environmental capacity for predator population on patch i

kxyij dispersal rate of predators from patch j to patch i

kyxij dispersal rate of prey from patch j to patch i
sijxi functional response of predators that disperse from patch j to patch i
pijxj functional response of predators on patch i to prey that disperse from patch j to patch i
zij conversion rate of prey that come from patch j and are preyed on by predators on patch i

dispersed from patch j can prey on patch i. In addition, the prey population on patch i will
decrease. When i = j, we assume kxy

ii = kyx
ii = 0 in the new model (1).

For simplicity, let

–kxy
ij sij = dxy

ij , kyx
ij zijpij = dyx

ij .

The above model (1) is transformed into the following model:

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi) +

∑n
j=1 dxy

ij yjxi,

ẏi = yi(–γi – δiyi + εixi) +
∑n

j=1 dyx
ij xjyi, i = 1, . . . , n.

(2)

The model (2) is equivalent to the next model (3):

⎧
⎨

⎩
ẋi = xi[(ri – bixi – eiyi) +

∑n
j=1 dxy

ij yj],

ẏi = yi[(–γi – δiyi + εixi) + dyx
ij xj], i = 1, . . . , n.

(3)

Remark 3.1 Model (1) is different from the predator–prey model with dispersal that has
been studied in recent years. The cross-dispersal is considered in model (1). This means
that predators can disperse to a prey population, while prey can also disperse to a preda-
tor’s population.

Remark 3.2 The biological significance of model (1) is that a patchy environment is formed
under the influence of natural conditions or human activities. Predator populations can
disperse to other patches to prey, prey species can also disperse to other patches to be
preyed on by predators. For example, Eagles prey on rabbits. Rabbits can migrate across
different patches, and so can eagles.

Since the above model (1) is equivalent to model (2), we will discuss model (2) in the
following sections.

3.1 The existence of the positive equilibrium for new model (2)
By the locally Lipschitz character of model (2)’s right-side function and the equivalent
model (3), positive solutions’ local existence is obvious. Now, we will construct a compact
subset to prove the positive solutions’ global existence [14–18].
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Lemma 3.1 If

[εibi –
∑n

j=1(εi|dxy
ij | + ej|dyx

ji |)]
ε2

i
> 0,

[eiδi –
∑n

j=1(ei|dyx
ij | + εj|dxy

ji |)]
e2

i
> 0

for i = 1, 2, . . . , n, then there must exist a N∗ > 0 such that G := {(x1, x2, . . . , xn, y1, y2, . . . , yn) ∈
R2n

+ :
∑n

i=1(εixi + eiyi) ≤ N∗} is positively invariant for system (2).

Proof Let li = max{ri,γi},

q1
i =

[εibi –
∑n

j=1(εi|dxy
ij | + ej|dyx

ji |)]
ε2

i
,

q2
i =

[eiδi –
∑n

j=1(ei|dyx
ij | + εj|dxy

ji |)]
e2

i
,

and qi = 1
2 min{q1

i , q2
i }, N =

∑n
i=1 Ni, Ni = εixi + eiyi. We have

N ′ ≤
n∑

i=1

(li – qiNi)Ni.

Here, we use the Mean Value Inequality with 2xy ≤ x2 + y2.
Furthermore,

N ′ ≤
n∑

i=1

(li – qiNi)Ni ≤
(

l –
q
n

N
)

N ,

where l = maxi{li}, q = mini{qi}.
Let N∗ = 2ln

q . When N > N∗, we obtain

N ′ ≤
n∑

i=1

(li – qiNi)Ni ≤ –
1
2

N ≤ 0.

This means that G is positively invariant. The proof is completed. �

Therefore, we have found a compact subset D = G. Now, the positive solutions’ global
existence for model (2) can be obtained as follows:

Lemma 3.2 If

[εibi –
∑n

j=1(εi|dxy
ij | + ej|dyx

ji |)]
ε2

i
> 0,

[eiδi –
∑n

j=1(ei|dyx
ij | + εj|dxy

ji |)]
e2

i
> 0
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for i = 1, 2, . . . , n, there is a unique solution Z(t) = (x1(t), y1(t), x2(t), y2(t), . . . , xn(t), yn(t))T

that is defined for any t ≥ t0 with Z(t0) = Z0 ∈ D for model (2).

Note that when N > N∗,

N ′ ≤ –
1
2

N ≤ 0

holds. Therefore, we obtain if Z(t0) = Z0 ∈ R2n
+ and N(Z0) > N∗, then

N ′ ≤ –
1
2

N ≤ 0.

This means that D := {(x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ R2n
+ :

∑n
i=1(εixi + eiyi) ≤ N(Z0)} is posi-

tively invariant for system (2). The next lemma is obtained naturally.

Lemma 3.3 If

[εibi –
∑n

j=1(εi|dxy
ij | + ej|dyx

ji |)]
ε2

i
> 0,

[eiδi –
∑n

j=1(ei|dyx
ij | + εj|dxy

ji |)]
e2

i
> 0

for i = 1, 2, . . . , n, there is a unique solution Z(t) = (x1(t), y1(t), x2(t), y2(t), . . . , xn(t), yn(t))T

that is defined for any t ≥ t0 with Z(t0) = Z0 ∈ R2n
+ for model (2).

Proof Two cases are considered for this lemma. One is that when N(Z0) ≤ N∗, G is a
required compact and positively invariant set. The other is that when N(Z0) > N∗, D :=
{(x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ R2n

+ :
∑n

i=1(εixi + eiyi) ≤ N(Z0)} is also a required compact
and positively invariant set. The proof of this lemma is similar to Lemma 3.2, hence we
omit it. �

Positive equilibria existence can be obtained by the next formula.

⎧
⎨

⎩
ri – bixi – eiyi +

∑n
j=1 dxy

ij yj = 0,

–γi – δiyi + εixi +
∑n

j=1 dyx
ij xj = 0, i = 1, . . . , n.

(4)

Assume

ZT = (x1, y1, x2, y2, . . . , xn, yn), bT = (r1, –γ1, r2, –γ2, . . . , rn, –γn).

Let

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

–b1 –e1 0 dxy
12 0 dxy

12 · · · · · ·
ε1 –δ1 dyx

12 0 dyx
13 0 · · · · · ·

0 dxy
21 –b2 –e2 0 dxy

23 · · · · · ·
dyx

21 0 ε2 –δ2 dyx
23 0 · · · · · ·

...
...

...
...

...
...

... · · · ... · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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Consider the system of linear equations:

AZ + b = 0.

It is reasonable to require that the unique solution be positive. Therefore, positive equi-
libria for system (2) exist naturally. The next theorem is obtained as follows:

Theorem 3.1 If the unique solution exists and is positive for the system of linear equations
AZ + b = 0, the positive equilibrium for system (2) exists.

In fact, Cramer’s rule can be used to prove that the unique solution exists and is positive
for the system of linear equations AZ + b = 0.

In this paper, we suppose conditions (H1) and (H2) are satisfied for model (2) as follows:

(H1)
[εibi–

∑n
j=1(εi|dxy

ij |+ej|dyx
ji |)]

ε2
i

> 0 (i = 1, 2, . . . , n).

(H2)
[eiδi–

∑n
j=1(ei|dyx

ij |+εj|dxy
ji |)]

e2
i

> 0 (i = 1, 2, . . . , n).
This means that the positive solution exists for model (2).

3.2 Global-stability analysis for new model (2) based on strongly connected
graphs

Two matrices are constructed as follows:

P = (pij)n×n,

with

pij =

⎧
⎨

⎩
dxy

ij , i > j,

dyx
ij , i ≤ j,

F = (fij)n×n,

with

fij =

⎧
⎨

⎩
dyx

ij , i > j,

dxy
ij , i ≤ j.

Let

B = (βij)n×n,

where

βij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εipij, |εipij| ≥ |eifij|, i > j,

eifij, |εipij| < |eifij|, i > j,

eipij, |eipij| ≥ |εifij|, i ≤ j,

εifij, |eipij| < |εifij|, i ≤ j.
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A cross-dispersal matrix can be defined as follows:

R =
(|βij|

)
n×n.

A digraph (G, A) with n vertices for system (2) can be constructed as follows. Each vertex
represents a patch. At each vertex i of G, vertex dynamics are described by the following
system:

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi),

ẏi = yi(–γi – δiyi + εixi).
(5)

Let E(G) denote the set of arcs (i, j) leading from initial vertex i to terminal vertex j. We
require that (j, i) ∈ E(G) if and only if dxy

ij �= 0 or dyx
ij �= 0.

In this section, a predator–prey model with cross-dispersal is studied. By using the
method of constructing Lyapunov functions based on a graph-theoretical approach for
coupled systems, sufficient conditions that the positive equilibrium of coupling model (2)
is globally asymptotically stable in R2n

+ are derived.
We obtain the main theorem as follows:

Theorem 3.2 Assume the following conditions hold:
1. Diagraph (G, A) is balanced;
2. Cross-dispersal matrix R = (|βij|)n×n is irreducible;
3. There exists a non-negative constant λ such that

–λεipij = eifij (i > j), –λeipij = εifij (i ≤ j);

then, whenever a positive equilibrium E∗ = (x∗
1, y∗

1, x∗
2, y∗

2, . . . , x∗
n, y∗

n) exists for system (2), it is
unique and globally asymptotically stable in R2n

+ .

Proof Let

fi(xi, yi) = ri – bixi – eiyi, gi(xi, yi) = –γi – δiyi + εixi.

In the following, we have

fi
(
x∗

i , y∗
i
)

= –
n∑

j=1

dxy
ij y∗

j , gi
(
x∗

i , y∗
i
)

= –
n∑

j=1

dyx
ij x∗

j .

Set the Lyapunov functions as

Vi(t) = εi

(
xi – x∗

i – x∗
i ln

xi

x∗
i

)
+ ei

(
yi – yi – y∗

i ln
yi

y∗
i

)
.
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Directly differentiating Vi along system (2), we have

V̇i(t) = εi
(
xi – x∗

i
)[

fi(xi, yi) – fi
(
x∗

i , y∗
i
)]

+ ei
(
yi – y∗

i
)[

gi(xi, yi) – gi
(
x∗

i , y∗
i
)]

+
n∑

j=1

dxy
ij εi

(
xi – x∗

i
)(

yj – y∗
j
)

+
n∑

j=1

dyx
ij ei

(
yi – y∗

i
)(

xj – x∗
j
)

= –εibi
(
xi – x∗

i
)2 – eiδi

(
yi – y∗

i
)2

+
n∑

j=1

dxy
ij εi

(
xi – x∗

i
)(

yj – y∗
j
)

+
n∑

j=1

dyx
ij ei

(
yi – y∗

i
)(

xj – x∗
j
)
.

Two cases are discussed as follows:
Case I. 0 ≤ λ ≤ 1.
Choosing

aij =

⎧
⎨

⎩
εi|pij|, i > j,

ei|pij|, i ≤ j,
bij =

⎧
⎨

⎩
ei|fij|, i > j,

εi|fij|, i ≤ j.

Then, we obtain

|εipij| ≥ |eifij| (i > j),

and

|eipij| ≥ |εifij| (i ≤ j).

Therefore, the cross-dispersal matrix is obtained as follows:

R =
(|βij|

)
n×n,

where

βij =

⎧
⎨

⎩
εipij, i > j,

eipij, i ≤ j.

In the following, we have

A = (aij)n×n = R =
(|βij|

)
n×n.

Let ci denote the cofactor of the ith diagonal element of the matrix (aij)n×n. From the
irreducible character of matrix (aij)n×n, we have ci > 0.

Furthermore, a Lyapunov function is set as follows:

V (t) =
n∑

i=1

ciVi(t).
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Differentiating V along the solution of system (2), we obtain

V̇ (t) ≤ –
n∑

i=1

ciεibi
(
xi – x∗

i
)2 –

n∑

i=1

cieiδi
(
yi – y∗

i
)2

+
n∑

i,j=1

ciaijFij(t) +
n∑

i,j=1

cibijF2
ij(t)

≤ –
n∑

i=1

ciεibi
(
xi – x∗

i
)2 –

n∑

i=1

cieiδi
(
yi – y∗

i
)2

+
n∑

i,j=1

ciaijFij(t) +
n∑

i,j=1

ciλaijF2
ij(t),

where

Fij(t) =

⎧
⎨

⎩
sgn(pij)(xi – x∗

i )(yj – y∗
j ), i > j,

sgn(pij)(xj – x∗
j )(yi – y∗

i ), i ≤ j,

F2
ij(t) =

⎧
⎨

⎩
sgn(fij)(xj – x∗

j )(yi – y∗
i ), i > j,

sgn(fij)(xi – x∗
i )(yj – y∗

j ), i ≤ j.

Furthermore, we obtain that

sgn(pij) = – sgn(pji), sgn(fij) = – sgn(fji).

Because the cross-dispersal matrix R = (|βij|)n×n is irreducible, the diagraph (G, A) is
strongly connected. Furthermore, since diagraph (G, A) is balanced and strongly con-
nected, we obtain that

n∑

i=1

ciaijFij(t)

=
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
Fij(t) + Fji(t)

]

=
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)(i>j)

[
sgn(pij)

(
yj – y∗

j
)(

xi – x∗
i
)

+ sgn(pji)
(
xi – x∗

i
)(

yj – y∗
j
)]

+
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)(i≤j)

[
sgn(pij)

(
yi – y∗

i
)(

xj – x∗
j
)

+ sgn(pji)
(
yi – y∗

i
)(

xj – x∗
j
)]

=
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)(i>j)

[
sgn(pij)

(
yj – y∗

j
)(

xi – x∗
i
)

– sgn(pij)
(
xi – x∗

i
)(

yj – y∗
j
)]

+
1
2

∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)(i≤j)

[
sgn(pij)

(
yi – y∗

i
)(

xj – x∗
j
)

– sgn(pij)
(
yi – y∗

i
)(

xj – x∗
j
)]

= 0 + 0

= 0,
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n∑

i=1

ciλaijF2
ij(t)

=
λ

2
∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)

[
F2

ij(t) + F2
ji(t)

]

=
λ

2
∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)(i>j)

[
sgn(fij)

(
yi – y∗

i
)(

xj – x∗
j
)

+ sgn(fji)
(
xj – x∗

j
)(

yi – y∗
i
)]

+
λ

2
∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)(i≤j)

[
sgn(fij)

(
yj – y∗

j
)(

xi – x∗
i
)

+ sgn(fji)
(
yj – y∗

j
)(

xi – x∗
i
)]

=
λ

2
∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)(i>j)

[
sgn(fij)

(
yi – y∗

i
)(

xj – x∗
j
)

– sgn(fij)
(
xj – x∗

j
)(

yi – y∗
i
)]

+
λ

2
∑

Q∈Q

w(Q)
∑

(j,i)∈E(CQ)(i≤j)

[
sgn(fij)

(
yj – y∗

j
)(

xi – x∗
i
)

– sgn(fij)
(
yj – y∗

j
)(

xi – x∗
i
)]

= 0 + 0

= 0.

In addition, we have

V̇ (t) ≤ –
n∑

i=1

ciεibi
(
xi – x∗

i
)2 –

n∑

i=1

cieiδi
(
yi – y∗

i
)2.

Therefore, by the LaSalle Invariance Principle [2], E∗ is unique and globally asymptotically
stable in R2n

+ .
Case II. λ > 1.
In this case, the cross-dispersal matrix

R =
(|βij|

)
n×n = (bij)n×n.

Let ci denote the cofactor of the ith diagonal element of the matrix (bij)n×n. From the
irreducible character of matrix (bij)n×n, we have ci > 0.

Furthermore, a Lyapunov function is listed as follows:

V (t) =
n∑

i=1

ciVi(t).

After calculation, we obtain

V̇ (t) ≤ –
n∑

i=1

ciεibi
(
xi – x∗

i
)2 –

n∑

i=1

cieiδi
(
yi – y∗

i
)2

+
n∑

i,j=1

ciλbijFij(t) +
n∑

i,j=1

cibijF2
ij(t).
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Similar to Case I, we obtain

n∑

i,j=1

ciλbijFij(t) = 0,
n∑

i,j=1

cibijF2
ij(t) = 0.

Hence,

V̇ (t) ≤ –
n∑

i=1

ciεibi
(
xi – x∗

i
)2 –

n∑

i=1

cieiδi
(
yi – y∗

i
)2.

Therefore, by the LaSalle Invariance Principle [2], E∗ is unique and globally asymptotically
stable in R2n

+ .
From Case I and Case II, the proof is completed. �

Consider λ = 0 about Theorem 3.2, we have the following corollary:

Corollary 3.1 Assume that the following assumptions hold for system (2):
1. Diagraph (G, A) is balanced;
2. Cross-dispersal matrix R = (|βij|)n×n is irreducible;
3. dyx

ij = 0 (i > j), dxy
ij = 0 (i ≤ j);

then, whenever a positive equilibrium E∗ = (x∗
1, y∗

1, x∗
2, y∗

2, . . . , x∗
n, y∗

n) exists, it is unique and
globally asymptotically stable in R2n

+ .

If the condition 3 of Theorem 3.2 is substituted for the formula as follows:

–εipij = λeifij (i > j), –eipij = λεifij (i ≤ j),

then, we have the following corollary:

Corollary 3.2 Assume the following conditions hold:
1. Diagraph (G, A) is balanced;
2. Cross-dispersal matrix R = (|βij|)n×n is irreducible;
3. There exists a non-negative constant λ such that

–εipij = λeifij (i > j), –eipij = λεifij (i ≤ j);

then, whenever a positive equilibrium E∗ = (x∗
1, y∗

1, x∗
2, y∗

2, . . . , x∗
n, y∗

n) exists, it is unique and
globally asymptotically stable in R2n

+ .

Consider λ = 0 about Corollary 3.2, we have the following corollary:

Corollary 3.3 Assume that the following assumptions hold for system (2):
1. Diagraph (G, A) is balanced;
2. Cross-dispersal matrix R = (|βij|)n×n is irreducible;3. dxy

ij = 0 (i > j), dyx
ij = 0 (i ≤ j);

then, whenever a positive equilibrium E∗ = (x∗
1, y∗

1, x∗
2, y∗

2, . . . , x∗
n, y∗

n) exists, it is unique and
globally asymptotically stable in R2n

+ .
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3.3 Global-stability analysis for new model (2) based on strongly connected
components

Let (Rhk , Bhk) denote the kth strongly connected component (SCC) of the hth layer of a
network (G, A). V (Rhk) denotes the vertex set of the SCC (Rhk , Bhk) and Nhk denotes the
number of vertices of the SCC (Rhk , Bhk).

Obviously,

∑∑
Nhk = n.

Then system (2) can be written as follows:
When h = 1, system (2) is restricted on the first layer of (G, A), i.e.

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi) +

∑
j∈V (R1k ) dxy

ij yjxi,

ẏi = yi(–γi – δiyi + εixi) +
∑

j∈V (R1k ) dyx
ij xjyi (i ∈ V (R1k)).

(6)

When h > 1, system (2) is restricted on the hth layer of (G, A), i.e.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = xi(ri – bixi – eiyi) +
∑

j∈⋃
1≤l<h

⋃
m V (Rlm) dxy

ij yjxi +
∑

j∈V (Rhk ) dxy
ij yjxi,

ẏi = yi(–γi – δiyi + εixi) +
∑

j∈⋃
1≤l<h

⋃
m V (Rlm) dyx

ij xjyi

+
∑

j∈V (Rhk ) dyx
ij xjyi (i ∈ V (Rhk)).

(7)

Based on the theory of asymptotically autonomous systems, graph theory and Lyapunov
theory, a global-stability theorem without strongly connected graphs is established in this
section.

The main theorem is obtained as follows:

Theorem 3.3 Assume the following conditions hold:
1. Diagraph (G, A) is balanced;
2. Cross-dispersal matrix R = (|βij|)n×n is reducible. (This means diagraph (G, A) is not

strongly connected.);
3. (Rhk , Bhk) are strongly connected components (SCC) of diagraph (G, A);
4. There exists a non-negative constant λ such that

–λεipij = eifij (i > j), –λeipij = εifij (i ≤ j);

then, whenever a positive equilibrium E∗ = (x∗
1, y∗

1, x∗
2, y∗

2, . . . , x∗
n, y∗

n) exists for system (2), it is
unique and globally asymptotically stable in R2n

+ .

Proof Step 1. Consider the strongly connected component (R1k , B1k). The next system is
obtained naturally.

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi) +

∑
j∈V (R1k ) dxy

ij yjxi,

ẏi = yi(–γi – δiyi + εixi) +
∑

j∈V (R1k ) dyx
ij xjyi (i ∈ V (R1k)).

(8)
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A vertex Lyapunov function on the SCC (R1k , B1k) is constructed as follows:

V1k(t) =
∑

i∈V (R1k )

c1k
i Vi(t),

where

Vi(t) = εi

(
xi – x∗

i – x∗
i ln

xi

x∗
i

)
+ ei

(
yi – y∗

i – y∗
i ln

yi

y∗
i

)
.

Let c1k
i denote the cofactor of the kth diagonal element of the matrix L1k . Here, L1k is the

SCC (R1k , B1k)’s Laplacian Matrix. As (R1k , B1k) is strongly connected, we obtain c1k
i > 0 for

every i ∈ V (R1k).
Let us assume 0 ≤ λ ≤ 1. Choosing

a1k
ij =

⎧
⎨

⎩
εi|pij|, i > j,

ei|pij|, i ≤ j,
b1k

ij =

⎧
⎨

⎩
ei|fij|, i > j,

εi|fij|, i ≤ j.

Similar to Theorem 3.2, we obtain

V̇1k(t) ≤ –
∑

i∈V (R1k )

c1k
i εibi

(
xi – x∗

i
)2 –

∑

i∈V (R1k )

c1k
i eiδi

(
yi – y∗

i
)2

+
∑

i,j∈V (R1k )

c1k
i a1k

ij Fij(t) +
∑

i,j∈V (R1k )

c1k
i b1k

ij F2
ij(t)

≤ –
∑

i∈V (R1k )

c1k
i εibi

(
xi – x∗

i
)2 –

∑

i∈V (R1k )

c1k
i eiδi

(
yi – y∗

i
)2

+
∑

i,j∈V (R1k )

c1k
i a1k

ij Fij(t) +
∑

i,j∈V (R1k )

c1k
i λa1k

ij F2
ij(t).

Since diagraph (G, A) is balanced, diagraph (R1k , B1k) is considered to be balanced natu-
rally. As (a1k

ij )N1k×N1k is irreducible and diagraph (R1k , B1k) is balanced, we obtain

∑

i,j∈V (R1k )

c1k
i a1k

ij Fij(t) = 0,
∑

i,j∈V (R1k )

c1k
i λa1k

ij F2
ij(t) = 0.

Hence,

V̇1k(t) ≤ –
∑

i∈V (R1k )

c1k
i εibi

(
xi – x∗

i
)2 –

∑

i∈V (R1k )

c1k
i eiδi

(
yi – y∗

i
)2.

If λ > 1, the proof is similar. Hence, system (2) is globally asymptotically stable on the SCC
(R1k , B1k).

Step 2. Consider the strongly connected component (R2k , B2k), we obtain

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi) +

∑
j∈V (R1k ) dxy

ij yjxi +
∑

j∈V (R2k ) dxy
ij yjxi,

ẏi = yi(–γi – δiyi + εixi) +
∑

j∈V (R1k ) dyx
ij xjyi +

∑
j∈V (R2k ) dyx

ij xjyi (i ∈ V (R2k)).
(9)
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According to the theory of asymptotically autonomous systems, we have

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi) +

∑
j∈V (R1k ) dxy

ij y∗
j xi +

∑
j∈V (R2k ) dxy

ij yjxi,

ẏi = yi(–γi – δiyi + εixi) +
∑

j∈V (R1k ) dyx
ij x∗

j yi +
∑

j∈V (R2k ) dyx
ij xjyi (i ∈ V (R2k)).

(10)

Similarly, a Lyapunov function can be constructed as follows:

V2k(t) =
∑

i∈V (R2k )

c2k
i Vi(t),

where

Vi(t) = εi

(
xi – x∗

i – x∗
i ln

xi

x∗
i

)
+ ei

(
yi – yi – y∗

i ln
yi

y∗
i

)
.

Let c2k
i denote the cofactor of the kth diagonal element of the matrix L2k . Here, L2k is the

SCC (R2k , B2k)’s Laplacian Matrix. As (R2k , B2k) is strongly connected, we obtain c2k
i > 0 for

every i ∈ V (R2k).
Let us assume λ > 1. Choosing

a2k
ij =

⎧
⎨

⎩
εi|pij|, i > j,

ei|pij|, i ≤ j,
b2k

ij =

⎧
⎨

⎩
ei|fij|, i > j,

εi|fij|, i ≤ j.

Similar to Step 1, we obtain that

V̇2k(t) ≤ –
∑

i∈V (R2k )

c2k
i εibi

(
xi – x∗

i
)2 –

∑

i∈V (R2k )

c2k
i eiδi

(
yi – y∗

i
)2

+
∑

i,j∈V (R2k )

c2k
i a2k

ij Fij(t) +
∑

i,j∈V (R2k )

c2k
i b2k

ij F2
ij(t)

≤ –
∑

i∈V (R2k )

c2k
i εibi

(
xi – x∗

i
)2 –

∑

i∈V (R2k )

c2k
i eiδi

(
yi – y∗

i
)2

+
∑

i,j∈V (R2k )

c2k
i λb2k

ij Fij(t) +
∑

i,j∈V (R2k )

c2k
i b2k

ij F2
ij(t).

Since diagraph (G, A) is balanced, diagraph (R2k , B2k) is considered to be balanced natu-
rally. As (b2k

ij )N2k×N2k is irreducible and diagraph (R2k , B2k) is balanced, we obtain

∑

i,j∈V (R2k )

c2k
i λb2k

ij Fij(t) = 0,
∑

i,j∈V (R2k )

c2k
i b2k

ij F2
ij(t) = 0.

Hence,

V̇2k(t) ≤ –
∑

i∈V (R2k )

c2k
i εibi

(
xi – x∗

i
)2 –

∑

i∈V (R2k )

c2k
i eiδi

(
yi – y∗

i
)2.

If 0 ≤ λ ≤ 1, the proof is similar. Hence, system (2) is globally asymptotically stable on the
SCC (R2k , B2k).
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Step 3. After repeating the above procedure for any hk, we obtain that system (2) is glob-
ally asymptotically stable on any SCC (Rhk , Bhk). A Lyapunov function is listed as follows:

V (t) =
∑

h,k

Vhk(t).

Then, we obtain that

V̇ (t) ≤ –
∑

h,k

∑

i∈V (Rhk )

chk
i εibi

(
xi – x∗

i
)2 –

∑

h,k

∑

i∈V (Rhk )

chk
i eiδi

(
yi – y∗

i
)2.

Therefore, by the LaSalle Invariance Principle [2], E∗ is unique and globally asymptotically
stable in R2n

+ . In the following, the proof is completed. �

The next corollaries are obtained naturally.

Corollary 3.4 Assume the following conditions hold for system (2):
1. Conditions 1–3 of Theorem 3.3 are satisfied;
2. dyx

ij = 0 (i > j), dxy
ij = 0 (i ≤ j);

then, whenever a positive equilibrium E∗ = (x∗
1, y∗

1, x∗
2, y∗

2, . . . , x∗
n, y∗

n) exists, it is unique and
globally asymptotically stable in R2n

+ .

Corollary 3.5 Assume the following conditions hold:
1. Conditions 1–3 of Theorem 3.3 are satisfied;
2. There exists a non-negative constant λ such that

–εipij = λeifij (i > j), –eipij = λεifij (i ≤ j);

then, whenever a positive equilibrium E∗ = (x∗
1, y∗

1, x∗
2, y∗

2, . . . , x∗
n, y∗

n) exists for system (2), it is
unique and globally asymptotically stable in R2n

+ .

Corollary 3.6 Assume the following conditions hold for system (2):
1. Conditions 1–3 of Theorem 3.3 are satisfied;
2. dxy

ij = 0 (i > j), dyx
ij = 0 (i ≤ j);

then, whenever a positive equilibrium E∗ = (x∗
1, y∗

1, x∗
2, y∗

2, . . . , x∗
n, y∗

n) exists, it is unique and
globally asymptotically stable in R2n

+ .

4 Examples
Example 4.1 An example is presented to illustrate Theorem 3.2. Consider the following
predator–prey system with cross-dispersal:

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi) +

∑n
j=1 dxy

ij yjxi,

ẏi = yi(–γi – δiyi + εixi) +
∑n

j=1 dyx
ij xjyi, i = 1, . . . , 8.

(11)

The parameters are listed as follows.

r1 = 1, b1 = 0.5, e1 = 0.5, γ1 = 0.01, δ1 = 0.5, ε1 = 0.5,
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r2 = 1.01, b2 = 0.5, e2 = 0.5, γ2 = 0.01, δ2 = 0.5, ε2 = 0.5,

r3 = 1.01, b3 = 0.5, e3 = 0.5, γ3 = 0.02, δ3 = 0.5, ε3 = 0.5,

r4 = 1.02, b4 = 0.5, e4 = 0.5, γ4 = 0.01, δ4 = 0.49, ε4 = 0.5,

r5 = 1.01, b5 = 0.5, e5 = 0.5, γ5 = 0.02, δ5 = 0.5, ε5 = 0.5,

r6 = 1.01, b6 = 0.5, e6 = 0.5, γ6 = 0.01, δ6 = 0.5, ε6 = 0.5,

r7 = 1.01, b7 = 0.5, e7 = 0.5, γ7 = 0.01, δ7 = 0.5, ε7 = 0.5,

r8 = 1.02, b8 = 0.5, e8 = 0.5, γ8 = 0.01, δ8 = 0.49, ε8 = 0.5.

Assume

dyx
12 = dyx

14 = dyx
23 = dyx

67 = dyx
78 = dyx

34 = dyx
35 = dyx

56 = dyx
58 = 0.01,

dxy
21 = dxy

32 = dxy
41 = dxy

43 = dxy
53 = dxy

65 = dxy
76 = dxy

85 = dxy
87 = –0.01.

Otherwise,

dxy
ij = dyx

ij = 0.

Then, we can obtain that

dyx
ij = 0 (i > j), dxy

ij = 0 (i ≤ j).

The cross-dispersal matrix is listed as follows:

R =
(|βij|

)
n×n

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 e1|dyx
12| 0 e1|dyx

14| 0 0 0 0
ε2|dxy

21| 0 e2|dyx
23| 0 0 0 0 0

0 ε3|dxy
32| 0 e3|dyx

34| e3|dyx
35| 0 0 0

ε4|dxy
41| 0 ε4|dxy

43| 0 0 0 0 0
0 0 ε5|dxy

53| 0 0 e5|dyx
56| 0 e5|dyx

58|
0 0 0 0 ε6|dxy

65| 0 e6|dyx
67| 0

0 0 0 0 0 ε7|dxy
76| 0 e7|dyx

78|
0 0 0 0 ε8|dxy

85| 0 ε8|dxy
87| 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Simple computation results in

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.005 0 0.005 0 0 0 0
0.005 0 0.005 0 0 0 0 0

0 0.005 0 0.005 0.005 0 0 0
0.005 0 0.005 0 0 0 0 0

0 0 0.005 0 0 0.005 0 0.005
0 0 0 0 0.005 0 0.005 0
0 0 0 0 0 0.005 0 0.005
0 0 0 0 0.005 0 0.005 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Figure 1 Strongly connected graph

The positive equilibrium for system (11) is obtained as follows:

E∗ = (1, 1, 1, 1, . . . , 1, 1).

From the construction of the graph, the relationship between vertices is shown in Fig. 1.
It is obvious that diagraph (G, A) is strong connected and balanced. Using Corollary 3.1,

we obtain that E∗ = (1, 1, 1, 1, . . . , 1, 1) is unique and globally asymptotically stable.

Example 4.2 An example is presented to illustrate Theorem 3.3. Consider the following
predator–prey system with cross-dispersal:

⎧
⎨

⎩
ẋi = xi(ri – bixi – eiyi) +

∑n
j=1 dxy

ij yjxi,

ẏi = yi(–γi – δiyi + εixi) +
∑n

j=1 dyx
ij xjyi, i = 1, . . . , 8.

(12)

The parameters are listed as follows.

r1 = 1, b1 = 0.5, e1 = 0.5, γ1 = 0.01, δ1 = 0.5, ε1 = 0.5,

r2 = 1.01, b2 = 0.5, e2 = 0.5, γ2 = 0.01, δ2 = 0.5, ε2 = 0.5,

r3 = 1.01, b3 = 0.5, e3 = 0.5, γ3 = 0.01, δ3 = 0.5, ε3 = 0.5,

r4 = 1.02, b4 = 0.5, e4 = 0.5, γ4 = 0.01, δ4 = 0.49, ε4 = 0.5,

r5 = 1.01, b5 = 0.5, e5 = 0.5, γ5 = 0.02, δ5 = 0.5, ε5 = 0.5,

r6 = 1.01, b6 = 0.5, e6 = 0.5, γ6 = 0.01, δ6 = 0.5, ε6 = 0.5,

r7 = 1.01, b7 = 0.5, e7 = 0.5, γ7 = 0.01, δ7 = 0.5, ε7 = 0.5,

r8 = 1.02, b8 = 0.5, e8 = 0.5, γ8 = 0.01, δ8 = 0.49, ε8 = 0.5.

Assume

dyx
12 = dyx

14 = dyx
23 = dyx

34 = dyx
67 = dyx

78 = dyx
56 = dyx

58 = 0.01,

dxy
21 = dxy

32 = dxy
41 = dxy

43 = dxy
53 = dxy

65 = dxy
76 = dxy

85 = dxy
87 = –0.01.
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Otherwise,

dxy
ij = dyx

ij = 0.

Then, we can obtain

dyx
ij = 0 (i > j), dxy

ij = 0 (i ≤ j).

The cross-dispersal matrix is listed as follows:

R =
(|βij|

)
n×n

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 e1|dyx
12| 0 e1|dyx

14| 0 0 0 0
ε2|dxy

21| 0 e2|dyx
23| 0 0 0 0 0

0 ε3|dxy
32| 0 e3|dyx

34| 0 0 0 0
ε4|dxy

41| 0 ε4|dxy
43| 0 0 0 0 0

0 0 ε5|dxy
53| 0 0 e5|dyx

56| 0 e5|dyx
58|

0 0 0 0 ε6|dxy
65| 0 e6|dyx

67| 0
0 0 0 0 0 ε7|dxy

76| 0 e7|dyx
78|

0 0 0 0 ε8|dxy
85| 0 ε8|dxy

87| 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Simple computation results in

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.005 0 0.005 0 0 0 0
0.005 0 0.005 0 0 0 0 0

0 0.005 0 0.005 0 0 0 0
0.005 0 0.005 0 0 0 0 0

0 0 0.005 0 0 0.005 0 0.005
0 0 0 0 0.005 0 0.005 0
0 0 0 0 0 0.005 0 0.005
0 0 0 0 0.005 0 0.005 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After a calculation, we obtain the positive equilibrium for system (12) as

E∗ = (1, 1, 1, 1, . . . , 1, 1).

Based on Fig. 2, we know that the diagraph (G, A) is not strongly connected. However, it
has two strongly connected components with two layers. Using Corollary 3.4, we obtain
that the positive equilibrium point E∗ of system (12) is globally asymptotically stable in
R2n

+ .

5 Conclusions and outlooks
In this paper, cross-dispersal is considered in the predator–prey model with a patchy envi-
ronment. A new predator–prey model with cross-dispersal among patches is constructed.
A new cross-dispersal matrix is established by the coupling relationship between vertices.
Based on a graph-theoretical approach for coupled systems and constructing Lyapunov
functions, sufficient conditions that the positive equilibrium of the new model is globally
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Figure 2 Strongly connected components

stable are derived on a network with strongly connected graphs. Furthermore, based on
the theory of asymptotically autonomous systems and the hierarchical method in graph
theory, a stability theorem for the positive equilibrium is established on a complex net-
work without strongly connected graphs. Two examples are given to illustrate the main
results.

The new predator–prey model with cross-dispersal among patches can be seen as a cou-
pled system with complicated coupling relationship. The complicated coupling relation-
ship considered here is very interesting. To the best of the author’s knowledge, the strongly
connected character and Lemma 2.1 are critical factors in the study for coupled systems
of differential equations on networks. Strongly connected graphs and strongly connected
components are different (see Example 4.1 and Example 4.2), factually. Therefore, Theo-
rem 3.2 and Theorem 3.3 are both useful in reality.

Parameters dxy
ij and dyx

ij can be selected and controlled by a cross-dispersal matrix, ef-
fectively. If dxy

ij and dyx
ij (i > j) are chosen such that εi|dxy

ij | ≥ ei|dyx
ij |, then dxy

ji , dyx
ji can be

chosen based on ej|dyx
ji | ≥ εj|dxy

ji |. Furthermore, conditions H1 and H2 will be checked to
adjust the parameters dxy

ij and dyx
ij .

Further studies on this subject are being carried out by this author in two aspects [19–
23]: one is to study the model with a delay effect; the other is to discuss the model with
time-varying parameters.

Acknowledgements
Not applicable.

Funding
This work was supported by the Natural Science Foundation of HeiLongJiang Province (No. LH2020A017).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YG carried out the work in this paper and drafted the manuscript. The author read and approved the final manuscript.

Authors’ information
Yang Gao, Ph.D., Professor, majors in control theory and application.



Gao Advances in Difference Equations        (2021) 2021:507 Page 21 of 21

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 17 February 2021 Accepted: 11 August 2021

References
1. Zhang, C.H., Shi, L.: Graph-theoretic method on the periodicity of coupled predator–prey systems with infinite delays

on a dispersal network. Physica A 561, 125255 (2021)
2. Li, M.Y., Shuai, Z.S.: Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ.

248(1), 1–20 (2010)
3. Zhang, C.H., Guo, Y., Chen, T.R.: Graph-theoretic method on the periodicity of multipatch dispersal predator–prey

system with Holling type-II functional response. Math. Methods Appl. Sci. 41(9), 1–12 (2018)
4. Huang, R., Wang, Y.S., Wu, H.: Population abundance in predator–prey systems with predator’s dispersal between two

patches. Theor. Popul. Biol. 135, 1–8 (2020)
5. Sun, G.W., Mai, A.L.: Stability analysis of a two-patch predator–prey model with two dispersal delays. Adv. Differ. Equ.

2018, 373 (2018). https://doi.org/10.1186/s13662-018-1833-2
6. Gao, Y., Liu, S.Q.: Global stability for a predator–prey model with dispersal among patches. Abstr. Appl. Anal. 2014,

176493 (2014)
7. Chen, T.R., Sun, Z.Y., Wu, B.Y.: Stability of multi-group models with cross-dispersal based on graph theory. Appl. Math.

Model. 47, 745–754 (2017)
8. Guo, Y., Li, Y.J., Ding, X.H.: On input-to-state stability for stochastic multi-group models with multi-dispersal. Appl.

Anal. 96(16), 2800–2817 (2017)
9. Guo, Y., Li, Y.W., Ding, X.H.: Razumikhin method conjoined with graph theory to input-to-state stability of coupled

retarded systems on networks. Neurocomputing 267, 232–240 (2017)
10. Guo, Y., Zhao, W., Ding, X.H.: Input-to-state stability for stochastic multi-group models with multi-dispersal and

time-varying delay. Appl. Math. Comput. 343, 114–127 (2019)
11. Guo, Y., Wang, Y.D., Ding, X.H.: Global exponential stability for multi-group neutral delayed systems based on

Razumikhin method and graph theory. J. Franklin Inst. Eng. Appl. Math. 355(6), 3122–3144 (2018)
12. Liu, Y., Mei, J.L., Li, W.X.: Stochastic stabilization problem of complex networks without strong connectedness. Appl.

Math. Comput. 332, 304–315 (2018)
13. Meng, X., Kao, Y.G., Karimi, H.R., Gao, C.C.: Global Mittag-Leffler stability for fractional-order coupled systems on

network without strong connectedness. Sci. China Inf. Sci. 63, 1–11 (2020)
14. Tan, Y.X.: Dynamics analysis of Mackey–Glass model with two variable delays. Math. Biosci. Eng. 17(5), 4513–4526

(2020)
15. Long, X.: Novel stability criteria on a patch structure Nicholson’s blowflies model with multiple pairs of time-varying

delays. AIMS Math. 5(6), 7387–7401 (2020)
16. Manickam, I., Ramachandran, R., Rajchakit, G., Cao, J.D., Huang, C.X.: Novel Lagrange sense exponential stability

criteria for time-delayed stochastic Cohen–Grossberg neural networks with Markovian jump parameters:
a graph-theoretic approach. Nonlinear Anal., Model. Control 25(5), 726–744 (2020)

17. Cao, Q., Long, X.: New convergence on inertial neural networks with time-varying delays and continuously
distributed delays. AIMS Math. 5(6), 5955–5968 (2020)

18. Hassan, K.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New York (2002)
19. Zhang, X., Hu, H.: Convergence in a system of critical neutral functional differential equations. Appl. Math. Lett. 107,

106385 (2020)
20. Wei, Y., Yin, L., Long, X.: The coupling integrable couplings of the generalized coupled Burgers equation hierarchy and

its Hamiltonian structure. Adv. Differ. Equ. 2019, 58 (2019). https://doi.org/10.1186/s13662-019-2004-9
21. Huang, C., Yang, L., Cao, J.: Asymptotic behavior for a class of population dynamics. AIMS Math. 5(4), 3378–3390 (2020)
22. Huang, C., Long, X., Cao, J.: Stability of antiperiodic recurrent neural networks with multiproportional delays. Math.

Methods Appl. Sci. 43(9), 6093–6102 (2020)
23. Zhang, H., Qiao, C.F.: Convergence analysis on inertial proportional delayed neural networks. Adv. Differ. Equ. 2020,

277 (2020). https://doi.org/10.1186/s13662-020-02737-3

https://doi.org/10.1186/s13662-018-1833-2
https://doi.org/10.1186/s13662-019-2004-9
https://doi.org/10.1186/s13662-020-02737-3

	Global stability for a new predator-prey model with cross-dispersal among patches based on graph theory
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	The existence of the positive equilibrium for new model (2)
	Global-stability analysis for new model (2) based on strongly connected graphs
	Global-stability analysis for new model (2) based on strongly connected components

	Examples
	Conclusions and outlooks
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Authors' information
	Publisher's Note
	References


