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1 Introduction

Interaction functional is the number of resources (prey) successfully hunted per preda-
tor consumer, and it highlights the degree of successfulness of the consumer attacks to
the predators, also the behavior of both resources and consumers. How to choose a rea-
sonable interaction function in population dynamics is an interesting subject which gets
increased attention in mathematics ecology, biology, and eco-epidemiology. One of the
first interaction functionals is the Holling type functional response where he proposes
three different interaction functionals for modeling different behavior of some animals.
His functionals were used widely, see for example the papers [1-4]. The main remark for
Holling interaction functional is the dependence of the behavior of the resources popula-
tion, which has been named the prey dependent interaction functional. The dependence
can be on the consumer population also, there are some works that model this case as
Hassell-Varley intermingling functional [5, 6], ratio-dependent intermingling functional
[7], Beddington—DeAngelis intermingling functional [8], Crowley—Martin intermingling
functional [9], and fractional calculus or different applications [10-34].
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In nature, the consumers that live in packs, such as lions, hyenas, African wild dogs,
wolves, orcas, give increased foraging adequacy. These living organisms have high-
efficiency rates, and their behavior is called cooperation. The responsible interaction func-

tional was derived by Conser et al. [35], and it is expressed in the following structure:

CeoNP

Y(N,P)= ——,
( ) 1+ hCeyNP

1
where N is the resource density, P is the consumer density, ey is the encounter coefficient
per consumer per resource unit time, / is the handling period per resource item, C is
the fraction of the resource item consumed per consumer per encounter. Many ongoing
research works analyze the rich behavior by considering the interaction functional (2), see
for example [36, 37]. Another interaction functional appears in the interface to model this
behavior, which is investigated and studied in the paper [38]. The considered interaction

functional is
W(N,P) = (A +aP)N, (2)

where A is the hunting coefficient per consumer, « is the hunting cooperation rate. Based

on the above discussion, we set the following model:

DN = rN(1- %)~ (n +aP)NP,

s ®3)
% = (A +aP)NP — uP,
where r(1 - %) is the logistic reproduction of the resources with the coefficient r and the
environmental carrying capacity k. u is the mortality coefficient for the consumer, e is the
conversion coefficient. This case of interaction has been studied on many occasions, see
[37, 39-45], which shows the huge importance of such interaction. Further, the influence
of infectious diseases in the evolution of predator—prey interaction is seen, for example, in
the papers [46—49]. In this research, we consider an infection developed in the consumer
population, which means that this population will be split into two categories, suscep-
tible consumer S and infected consumer I, i.e., P = S + I. The two categories cooperate
in hunting. Also, we presume that there is no vertical transmission, which means that the
newborn consumer cannot be infected. Further, we presume that both types of consumers
have the same efficiency of hunting, which highlights that this infection cannot influence

the performance of the consumer in hunting. As a result, we consider the following model:

N _ N(1 = XY=+ a(S+ DN +1),
B = e +a(S+I)N(S+I) - BSI - S, @
%=,351—771—/,L1.

B is the transmission rate of this infection, 7 is the mortality rate of this infection for the
consumer. It is highlighted in [1, 2] that the time-fractional derivative is responsible for
biological fluctuation in different cases and explains the influence of memory on the dy-
namical system. The memory rate is the order of this derivative, the memory function
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is the kernel of this derivative. The influence of memory on the biological and ecologi-
cal interaction has attracted many researchers, we mention a few [1-4, 50-57]. For more
examples of modeling animals social behavior and other approximations, we cite the re-
search works [58—69]. As a result, we consider it in our mathematical model which can be
expressed as

EN _ N1 - N) = (1 +a(S + D)N(S + 1),
LS —e(r +a(S+D)N(S +1) - BSI - S, 5)

G = BSI—nl—ul,

where % is Caputo’s derivative with respect to ¢, which is defined by

d*y 1 Loe"(s)
) = ds, m-1 ,meN,
)= [ s mo<a<mme

Our goal is to investigate maximally model (5), thus we will provide a mathematical and
numerical investigation of this model. Also, we will use these results for our biological
interpretation and provide some useful suggestions for conserving the ecological species.
For that purpose, we arrange the manuscript as follows:
« The 2nd section is devoted to calculating the equilibria of (5) and the epidemiological,
ecological relevance of these equilibria.
+ The stability of the equilibria is offered in Sect. 3 where the linearized stability is
offered.
+ The numerical scheme is provided in Sect. 4 using the trapezoidal product-integration
rule.
+ Some numerical representations are provided for the biological relevance, which helps
in confirming the mathematical results and in giving a proper biological conclusion.

2 Mathematical analysis and asymptotic behaviors of the solution
2.1 Equilibria of the model
Obviously, the equilibrium points are positive solutions of the system

0=rN(1-) - +a(S+DN(S+1),
0=eh+a(S+D)N(S+I)—BSI-pusS, (6)
0=p88-nl-pul.

As a first remark we can derive that (6) has Ay = (0,0,0), A; = (k,0,0) as equilibrium

points. Now we look for the disease-free equilibrium (DFE) which is written as Az =
(N, S,0), where (N, S) is the positive solution of the following system:

0=erN(1-%)—e( +aS)NS,
0=e(r +aS)NS — usS.

By summing the two equations in (7), we get

s_eN (N
S(,)
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By replacing this result in the first equation of (6), we find the following third-order poly-

nomial:
ae’r ., aer
—N——N——N+1 0. ®)
ku? w2 0

As a first remark, and using the Descartes rule, we can deduce that equation (8) has either
two or no positive solutions in the positive quadrant. The number of positive solutions in
the interval [0, k] dominates the number of the DFEs. Now we set

2
A
f(N) = —“e VN3 “e;NZ N L
ku? w "

At first, we can highlight that f verifies

Mke

f0)=1>0, flk)y=——+1,
7
also,
2
PN = Sae TN 2aeer_E
7 2
and
, Are
f(0)=-—.
7

Using the fact that f(x) is a third-order polynomial and using f'(0) < 0, we can deduce that
f has a unique global minimum at Ny,;,, where

aerk + \/a’e?r2k? + 3raerkp

3aer

min =

By a simple discussion on the positivity of f(Nuin) and f(k), we resume the existence con-
ditions for the DFEs (see also Fig. 1) in the following theorem.

Theorem 2.1 The existence of the DFE for system (5) is arranged in the following aspects:

(i) System (5) has no DFE if

min

A
(Nmm <kand N3 N,im eNmin>~
k w? W

(i) System (5) has one DFE denoted by As = (N3, Ss,0) if 1 < Ake or

A
(Nmm <kand 2 N;m 2% N2+ eNmm).
k 2 w? w
(iii) System (5) has two DFEs denoted by Az = (N3,Ss3,0) and Ay = (Na, S4,0) if u > Ake,
and

A
( min < k and —N3 —Nim eNmin>~
12 n

k2 min
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Figure 1 Existence of DFE for the values r=12,1 =002, u=25,e=08,a=0.5, B =3.5,1n=0.5 where for
(A) we considered k = 8.5. We have no existence of the DFE for (B), we take k= 10.15, hence we have the
existence of a unique DFE. For k= 12.5, we guarantee the existence of two DFEs

Next, we investigate the existence of endemic equilibrium EE which highlights the per-
sistence of the three populations. From the third equation of (6) we deduce that the sus-
ceptible density equilibrium is

m+n
B

§* =

Note that the infected density equilibrium and the resource density equilibrium are the
solution of the system

0=r(1-2) - (A +a(S* +D)(S* +1),

&)
O=e(A+a(S*+I))N(S*+1)— (Bl + u)S*.
From the first equation of (9) we get
A kI k
N:ﬁ([):k(l— -5 - ”—l(s*)2> — (A +2a)— - “p. (10)
r r ror

It is easy to see that f] is a strictly decreasing concave function; also, for guaranteeing the
positivity of f; for some values of I, we assume that 1 > %S* + %(5*)* and intersects the
horizontal axis at

Linte = a‘l[—(k +2a) + \/(A +2a)? + 4a(r —AS* — a(S*)Z)].
Using the second equation of (9), we have

(BI + 11)S*

N=pD= e +a(S*+D)(S*+1)’

(11)



Mezouaghi et al. Advances in Difference Equations (2021) 2021:487 Page 6 of 17

HUA—BSkL
B2’

which is a positive functional. Under the condition 8 < & and a < a* := we get

that f; is strictly decreasing in /. Hence, we can draw the following result.

Theorem 2.2 Assume that 1 > %S* + %(S*)2, B<& a<a = "2(_5’1‘?:*, then system (5) has

an interior equilibrium denoted by A* = (N*,S*,I*) where

n+n . (BI* + pn)S*

§= g’ T e+ alS + IS + 1Y)

and I* is the positive intersection between the graphical representation of fy and f;.

2.2 Asymptotic behaviors (5)
In this part, we are interested in determining the asymptotic stability of the equilibria
obtained in the previous section.

Letting (N, S,I) be an equilibrium for system (5), the Jacobian matrix (J-matrix) of (5)

at (N, S,I) is
r(l—%)—(k+a(5+1))($+1) ~N(\ +2a(S +1)) ~N(\ +2a(S +1))
J(N,S,I) = e +a(S+D)S+1) eN(+2a(S+1)—pu—pBI eNO+2a(S+1)-BS|.
0 BI BS = (1 +n)
(12)

For defining the concept of the local stability for the fractional-order system, we set the
following theorem.

Theorem 2.3 At a random equilibrium for fractional system (5), the local stability of the
equilibrium occurs if the eigenvalues 0 of the J-matrix (12) verify |arg(0)| > 5 for each
eigenvalue ). of ]. The equilibrium for (6) is unstable if | arg(0)| < 5~ for some eigenvalues
6.

At the origin Ay, J-matrix (12) becomes

r 0 0
J(0,0,00=]0 -pun 0 ) (13)
0 0 —(u+n)

J-matrix (13) has the eigenvalues 6; =r >0, 6, = —p1 < 0, 63 = —(u + n). This equilibrium is
always unstable.
Now, we evaluate the /-matrix at A;, we get

—-r —kA —kA
J(k,0,00=| 0 ekr—pu ek |. (14)
0 0 —(n+n)

J-matrix (14) has the eigenvalues 6; = —r <0, 6, = ekA — u, 03 = —(u + ). Then the sign of
0, dominates the stability/instability of the equilibrium A;. Hence,

<0 fork<£%,

>0 fork> L.

0y =
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The stability conditions are summarized in the following lemma.
Lemma 2.4 A, is locally stable if k < & and unstable if k > L.

Now, we focus on analyzing the stability of A;, i = 3,4,

_’TNi —N;(\ + 2aS;) =N;i(A +2aS;)
JNLS,0) = [ B eNaS  eNix+2aS)-pS; |, i=34. (15)
0 0 BSi — (1 +n)

Obviously, 85 = BS; — (1 + 1) can be considered as an eigenvalue of /-matrix (15), hence, if
BS; > (u + 1), then these equilibria are unstable. Now, we assume that 8S; < (i + 1), which
means that 65 < 0, hence the other two eigenvalues dominate the stability of the DFEs. The

other two are the solution of the equation
6% —Tr;0 + Det; =0, i=3,4, (16)
where

Tr; = —rTNi +eN,a$;

N2
Det; = —@ + uS;(A + 2asS;)

i=3,4. (17)

Clearly, if Det; < 0, i = 3,4, hence we get the instability of the equilibria A;, i = 3,4. Now
we consider that Det; > 0 i = 3,4, then if Tr; < 0, i = 3,4, we conclude that A;, i = 3,4, are
stable. Now we consider that Det; > 0, Tr; > 0, i = 3,4, hence, these equilibria are unstable
for the first-order derivative. However, for the FOD we have a possibility of the stability of
this equilibrium. Note that in this situation (16) has two complex roots 6; = 5, + G_ji, 0 e R,
j = 3,4. Then these roots verify the following:

4(-2SNE L1800+ 2aS)

—rTN" + eN;aS;)?

tanz(arg{é,-}) = 1, i=3,4

For guaranteeing the stability of A;, i = 3,4, we must obtain tan?(arg{6;}) > tanz(% ),i=3,4,

which is equivalent to

eraSiNi2

4 + uS;(A + 2aS;
(Hy): = 5 HSil ) >1 +tan2(ﬂ).
(-7 + eNiaS;)? 2

Then, if (H;) holds, then we get the stability of the DFEs, else it is instable. The obtained

results are resumed in the following theorem.

Theorem 2.5 Assume that condition (ii) or (iii) in Theorem 2.1 is verified, then we get:
(i) If BS: > (u +n), then DFE is unstable.
(ii) If BS; < (i +n) and (Hy) holds, then DFEs is stable, otherwise it is unstable.

Page 7 of 17
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Now, determining the stability of the endemic equilibrium (EE), the /-matrix at this

equilibrium takes the following form:

-2 -N*( +2a(S* + 1) SNk +2a(S" + 1)
J(N*,8*,IF) = | eGurals* + ) +1%)  eN*(h+2a(S" + 1)~ — BI*  eN*(h+2a(S" + 1)) - 5" |,
0 pr 0
(18)

the characteristic equation corresponding to /-matrix (18) is

A:93+a)292+w19 + wo,

where
o= B (N (1 4 2a(s" 1)) i 1),
" rN*(S* + I*)(eN*(A + 2a(S* + I*)) — u — BI*)
L=—
k

+ eN*(k + a(S* + I*))(S* +I*)(A + 2a(S* +I*))
- ﬁl*(eN*(k + Za(S* + I*)) - ﬂS*),

wp = _r,BI*N* (eN*(A +2a(S* +1*))

- BS*) = BI*'N*(e(x + a(S* +I*)) (S* + I*)) (A + 2a(S* + I*)).

Put A = 18wywwg + (0201)? — 4w — 4w} — 27w} . By using the Routh—Hurwitz criterion
defined in [2, 3], we find the local stability of the EE, which is highlighted in the following

theorem.

Theorem 2.6 Assume that the condition mentioned in Theorem 2.2 holds, then the EE is
stable if
(i) A>0,wy >0, wy >0, wrw >wy, or

(i) A<0,w;>0,01>0,wp>0,anda<?2.

3

2.3 Numerical scheme
Our goal in this subsection is to build a numerical scheme for our graphical representa-
tions for confirming the results found in the previous section. At first, we consider the

following fractional problem:

dOt

X _
o =G(t, x (). (19)

The employment of the principal theorem of fractional calculus on (5) yields

()= x(0) = ﬁ /0 G(v, x (W)t - v)* dv. (20)

Page 8 of 17
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We set t = t,, = nh in (20), we find
1 =L optia
16 =10+ 5> [ G )6 -0 o,
F(Ol) i-0 t;
By approximating the functional G(t, x (¢t)) by

t—1tiv
h

G(t x (1) = G(tis1, xiv1) + (Gltis1 xir1)) = Gt x2)s € [tirtinn],

where x; = x(&;).
The substitution of Eq. (22) into (21) gives (for more details, see [70])

Xn=Xo+ " (AnG(tO, Xo) + ZBn—iG(ti, Xi)),

i=1

where
A ="' —p*n-—a-1)
" [ +2)
1 —
B, = I(a+2)’ n=0
=
(n=1)*=2n% +(1+n)* _
T, n= 1,2,...

The application of the numerical method (23) to solve (5) yields

N, =No +h* (AnGl(NOrSOxIO) + ZBniGl(MxShIi))r

i=1

n
Sp=So+h" (AnGZ(NO:SO:IO) + ZBn—iGZ(Ni:Sirli));

i=1

Li=Ip+h* (AnGs(No,So,lo) + ZBn_iGS(Ni,Si,I,-))

i=1

with

Gi1(N,S,I) = rN(l - %) - (A +a(S+I))N(S+1),

Py(N,S,I) = e()» + a(S+I))N(S+I) — BSI — uS,

P5(N,S,I) = BSI — nl — ul.

3 Numerical analysis of system (5)
3.1 Graphical representations

Page9of 17

(21)

(22)

(23)

(24)

(25)

(26)

In this subsection, we show that our mathematical analysis represents perfectly what we

have in the real life through several examples with different values.

Fig. 3: Here we consider« =0.9,7r=1.2,k=2.5,7=0.5,1=0.5, # =0.5,a=3.5,=0.5,

e = 0.5. Hence we get the stability of the DFE A3 = (0.45,0.46,0).
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e
=09, and (N,S,1))=(7,4,2)
7 s\ 1)
— 1)
—(t)
6
35
5 3
25
4 = 2
— (7,4,2) att=0
1.5
N 1
05
2
10
10
1
4
| | 5224,0.46487,0.0046178) at t=100
0 10 20 3 40 50 60 70 80 90 100 S(t) 0 o N(t)
Time
Figure 2 Influence of the hunting cooperation rate a on the existence of the DFE for the values r=1.2,
n=25e=081=002k=125p8=35n=05

a=0.9, and (NS 1 )=(7.4,2)
T T T T T
7 e | (1)
—(h)
—(t)
6
35
5 3
25
i =
=
— (7,4,2) at t=0
15
3 1
05
2
10
10
1
4
| | | | | | | 45224,0.46487,0.0046178) at t=100
0 10 20 3 40 50 60 70 80 90 100 S(t) 0 o N(t)
Time

Figure 3 Extinction of the infection which is elaborated by the stability of the DFE

Fig. 4: In this figure we have the instability of the DFE and the existence of oscillations in
time. The following values As = (0.27,0.64,0.11), where the following values « = 0.9,
r=3.2,k=1051=25,e=0.5A=1.5,a=3.5, 8 =1.51n=0.5 are considered.

Fig. 5: This figure shows the stability of the EE A5 = (0.27,0.64, 0.11) where the following
valuesa =0.9,r=3.2, k=105, u =0.5,e=0.5,1=15,a=35,8=1.5,n=0.5 are
used.

Fig. 6: The persistence of the three populations in the case of the instability of the EE, the
following values « =0.9, r =5.2, k =30.5, A = 1.5, u = 2.5, e = 0.8, a = 4.5, B = 3.5,
n = 0.5 are utilized.
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(
=0.9, and (NS ,1)=(7,4,2)
7 - - - - -
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6
35
s 3
25
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— 15
3 1
05

"96995,0.44373,0.0017107) at t=100
0 10 20 30 40 50 60 70 80 90 100 S(t) [ N(t)
Time

Figure 4 Extinction of the infection elaborated by the instability of the DFE, which is by the existence of
oscillations in time

@=0.9, and (N, ,1,)=(7,4,2)
7 T T T T T
Ju——r
— (1)
—I(t)
6
6
5
5
4
4 —
=
=3
3 2
e (7,4,2) a1 1=0
1
2
10
10
1
4
. \ n n : T r T T 705,9.64508,0.1145) at t=100
0 10 20 3 40 5 60 70 8 9 100 S(t) 0 o N(t)

Time

Figure 5 Persistence of the three populations which is elaborated by the stability of the EE

Fig. 7: We consider the values @ =0.9,r =5.2, k =30.5, # =2.5,e=0.8,1=15,a=0.5,
B =3.5,n=0.5 are utilized.

Fig. 8: We puta =0.9,r=5.2,k=30.5A=45 u=25=08,a4=0.58=3.5n1n=05.

Fig. 9: We set « =0.9, r =5.2, k =30.5, u =2.5,e=0.8, a=0.5, B = 3.5 1 =0.5, and
multi-values of A.

Fig. 10: We use the following set of the parameters: « = 0.9, r = 5.2, k = 30.5, u = 2.5,
e=0.8,1=02, 8 =3.5,n=0.5 and multi-values of a.

Fig. 11: We use the following set of the parameters: r = 5.2, k = 30.5, u = 2.5, e = 0.8,
a=15,1=0.1, 8 =3.5,1n=0.5, and multi-values of «.
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e
=09, and (N_,S,1,)=(1,1,0.2)
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14
0.25
12
0.2
;
=
= o5
0.8
0.1 (1,1,0.2) at t=0
06
0.4
0.2
0 5 10 15 20 25 30 35 40
Time
Figure 6 Persistence of the three populations in the case of the instability of EE

2=0.9,and (Ny,S,l)=(1,1,0.2)

JE—t
1

25

0.6 (1.396,0.85807,1.1308) at t=40

0.5

Time

Figure 7 Local stability of the EE

4 Conclusion
We dealt in this research with the consumer-resource system where we investigated the in-
fluence of the hunting cooperation on the spread of the disease developed in the consumer
population. Note that the cooperation of consumers gives more accuracy in hunting, and
it has been discussed throughout the paper. The purpose of this research is to determine
the impact of this cooperation on the prevalence of infection and the interaction between
resources and consumers. To mention that in the case of the presence of contagion disease
in the consumer, this last will still use cooperation in hunting, which increases the contact
between the populations, which can lead to the persistence of the infection in populations.
The mathematical analysis of the considered system (5) is also considered, where the
equilibria of this system are successfully determined. The hunting cooperation can gen-
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erate two DFEs, which is investigated through Theorem 2.1, and it is proved numerically
using Fig. 1, where many scenarios can behold as the nonexistence of DFE, the existence
of one DFE, or two. The existence of two DFEs highlights the possibility of the extinc-
tion of the infection for consumer populations but in different levels (which is affected
by the degree of cooperation between the two populations), which is affected principally
by the value of the hunting cooperation rate  as it has been shown in Fig. 2 where the
rate 2 can dominate the existence and the multiplicity of DFE. Further, the stability of this
equilibrium can hold, which is considered through numerical simulation in different sce-
narios, as in Fig. 3 we have the stability of DFE, and in Figs. 4, 8 we have the extinction

of infected consumers as a form of oscillations. Besides, the persistence of the epidemic
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is also probably where the stability of the EE shows this result. Indeed, this stability can
be seen through Theorem 2.6, and it is confirmed using graphical representation in Fig. 5.
Further, the persistence of the infection can be seen differently through the occurrence of
oscillations guaranteed by the instability of EE (see Fig. 6), which shows the richness of
the dynamics generated by model (5).

Furthermore, we investigated the influence of solitary hunting and cooperation hunting
on the degree of the spread of the disease, wherein Fig. 9 we obtained that this parameter
can influence the stability of the EE, which shows a big impact on the behavior of animals.
Also, the cooperation hunting affects the stability of EE, as it has been shown in (10) where
there are oscillations for multi-values of 4 but in different levels. Also, the memory plays
an important role in measuring the memory raised by taking advantage of the previous
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experiments done by the animal for more accuracy in hunting for consumers and avoiding
predation for the resources. This rate influences the behavior of solution where it appears
in the stability of equilibrium states as in Theorem 2.6 and Theorem 2.5 (condition (H1)),
and it is confirmed through graphical representation (Fig. 11), which shows a huge impact

on the evolution of the studied species.
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