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Abstract
In this paper, the dynamic behavior of a class of switched systems with internally
forced switching (IFS) is investigated. By introducing the definitions of continuous
dependence and differentiability, the continuous dependence and differentiability of
the solution relative to the control function are obtained. In the past studies, the
optimal control problem given by IFS mainly focused on a special class of controlled
systems (the piece affine system). Our results lay a good foundation for studying the
more general internally forced switching problem.
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1 Introduction
Recently, the switched system has been an object of increasing interest because of its wide
applicability in many fields, such as vehicle’s engine management systems [36], electrical
power systems [7, 32], robot systems [13, 16], chemical [11, 22], and so on. For the recent
results on its stability and stabilization, one can refer to the survey [24] and the references
therein. For the recent results on stability of switched systems, one can read the reports
[8, 9, 20, 21, 35, 42]. In addition to stability and stabilization issues, its optimal control
problem also has attracted researchers from various fields in science and engineering.
There are both theoretical and computational results in the open literature. The avail-
able theoretical results usually extend the classical maximum principle or the dynamic
programming approach to the switched system (see [29, 30, 34]). Namely, studying the
behavior of the switched system is most important in studying its optimal control prob-
lem, particularly the continuous dependence and differentiability of the solution relative
to the control function of the switched system.

As we all know, the switched system is a special class of hybrid systems consisting of sev-
eral subsystems and a switching law. In general, as a controlled system, a switched system
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can be expressed as

ẋ(t) = fω(t,x(t))
(
x(t), u(t)

)
, t > 0, (1)

where ω is the switching law valuing from P (P is an index set), u ∈ R
m is the input,

and fi : Rn ×R
m →R

n, i ∈ P , is a family of known functions. According to the switching
law, the switched system can be classified into two classes: the switched system with in-
ternally forced switching (IFS) or externally forced switching (EFS). The switching law of
IFS is based on the information of the state and the current mode. In general, it can be a
function of t, x, and p. The autonomous lane change systems is a typical class of switched
systems with internally forced switching. Each mode of the autonomous lane change sys-
tem can be described by a differential equation. Transitions between modes are abrupt
and triggered by system states and its constantly changing surroundings including veloc-
ity, throttle angle, engaged gear, obstacles, traffic signs, pedestrian, and so on. Note that
the switching times are not pre-set but dependent on the time and states, which implies
that its switching law is a function of t and x. The switching law of EFS is an exogenous
input to the system such as the traffic signal lamp system. Its switching times are not de-
pendent on the vehicle driving states but pre-set. Namely, the exogenous input of IFS is
only u while the exogenous input of EFS is a pair (ω, u). Furthermore, the optimal con-
trol problem given by the switched system can be divided into two kinds: internally forced
switching problem and externally forced switching problem according to the above taxon-
omy. The internally forced switching problem is finding an admissible control u while the
externally forced switching problem is finding an admissible control pair (ω, u). In addi-
tion, numerous examples indicate that IFS is more effective in modeling the smart system,
such as self-driving cars [3, 33], switched Hopfield neural networks [14, 41], memristive
neural networks [26], Toxin systems, and so on.

The above analysis shows that IFS is relatively simple and smart. However, the optimal
control problem of the switched system focuses on the externally forced switching prob-
lem and obtains great achievements (see [10, 12, 17, 37–39]). The existing literature of
the externally forced switching problem mainly covers a special class of IFS (the piece-
wise affine system) (see [2, 15, 18, 28, 31]). The more general internally forced switching
problem is still an open problem. The difficulty in this problem is that the solution of IFS
does not have continuous dependence relative to the control due to its switching law. Nat-
urally, the differentiability of the solution with respect to the control does not hold either.
To make the phenomenon clear, we will give a simple example. We first define several
functions as follows:

f1(t) = 2t – u, t ∈ [0, +∞), f2(t) = –2t, t ∈ [0, +∞),

and

y1(t) = 1, t ∈ [0, +∞), y2(t) = 0, t ∈ [0, +∞).

Consider the following switched system with internally forced switching:

ẋ(t) = fω(x)(t), t ≥ t0, (2)
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where the switching law ω is a piecewise constant function from R
+ to P having the form

ω(x) =

⎧
⎨

⎩
1, if t ∈ ⋃

x(a)=y1
[a, b),

2, if t ∈ ⋃
x(a)=y2

[a, b).

The time interval [a, b) satisfies the following conditions: (i) set a = t̃ if there exists t̃ ∈
[t0, +∞) such that x(t̃) = yi, i ∈ P , and (ii) set

b = inf
{

t|t ∈ (a, +∞), x(t) = yj, j ∈ P , i �= j
}

if there exists t̄ ∈ (a, +∞) such that x(t̄) = yj, j ∈ P , i �= j. Otherwise, let b = +∞.
Denote by x(·; u) the solution of (2) corresponding to the control function u. Let the

initial state of (2) be (0, 1), then we have the following result:

x(t; 2) =

⎧
⎨

⎩
(t – 1)2, t ∈ [0, 1),

–t2 + 1, t ∈ [1, +∞),

and

x
(

t; 2 –
1
n

)
= (t – 1)2 +

1
n

t.

Furthermore, we derive that

lim
n→∞

∥∥
∥∥x(t; 2) – x

(
t; 2 –

1
n

)∥∥
∥∥

L1((0,1),R)
= 1,

which implies that the solution x(·; 2) of (2) is not continuously dependent on the control
function in the L1 space. Naturally, we cannot expect the differentiability of the solution
with respect to the control function either. As is known, the continuous dependence and
differentiability of the solution with respect to the control function of the controlled sys-
tem are the key to studying its optimal control problem. However, to our knowledge, the
study of IFS is focused on the stability [1, 4, 5, 19, 25, 27, 40]. Compared with a large num-
ber of results for stability of IFS, only a few results have appeared on the existence and
continuity of its solution. In particular, as far as we know, to date, except for [25] and [6]
studying the existence of the solution of a class of IFSs, there has been no published papers
on the continuous dependence and differentiability of the solution for IFS. In conclusion,
the continuous dependence and differentiability of the solution for IFS are interesting and
challenging problems.

Motivated by the ideas, in this paper we study the continuous dependence and differ-
entiability of the solution with respect to the control of a class of switched systems with
internally forced switching. Suppose that fi : R+ →R is a family of known functions, a and
the warning line yi both are known constants in R, and the control function u ∈ Lp

loc(R+,R)
where i ∈ P , P = {1, 2}. In this paper, we deal with the following switched system with
internally forced switching:

ẋ(t) = ax(t) + fω(x)(t) + u(t), t ≥ 0, (3)
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where the switching law ω : R→ P is a piecewise constant function defined by

ω(x) =

⎧
⎨

⎩
1, if t ∈ ⋃

x(a)=y1
[a, b),

2, if t ∈ ⋃
x(a)=y2

[a, b).
(4)

and [a, b) is the same as (2). Throughout this paper, let (0, y1) be the initial state of IFS (3).
Our goal in the paper is to study the continuous dependence and differentiability of the

solution relative to the control function u for IFS (3). The rest of the paper is organized as
follows. In Sect. 2, introducing some definitions, modifying some classical definitions, the
continuous dependence of the solution for IFS (3) is discussed. In Sect. 3, the differentia-
bility of the solution for IFS (3) is given.

Notations Throughout this paper, we use the following notations. Rn denotes the n-
dimensional Euclidean space and |x| denotes the Euclidean norm of a vector x. Take
R

+ = [0, +∞) and Oθ2
yi

= O(yi, θ2), where O(yi, θ2) is the closed set centered at yi and of
radius θ2. For any U ⊂R

+, Lp(U ,R) denotes the class of Lebesgue measurable functions f
from U to R with ‖f ‖Lp(U ,R) < ∞, where ‖f ‖Lp(U ,R) = (

∫
U |f (t)|p dt)

1
p (1 ≤ p < ∞). Also, let

C(U ,R) be the class of continuous functions g from U to R and ‖g‖C(U ,R) = maxt∈U |g(t)|.

2 Continuous dependence of solution on the control
In this section, we consider the continuous dependence of the solution of IFS (3) with
respect to the control. It is found from example (2) that the solution of IFS might not have
the continuous dependence relative to the control even in the L1 space. A major reason for
this is that there is a different number of switches on bounded time intervals under a small
perturbation of the control. That is to say, small perturbations of the control can have a
great impact on the switching times of the systems. In order to overcome the difficulties
and obtain the continuous dependence of the solution of IFS (3) relative to the control,
some preliminaries will be involved. According to our previous study [23], we have the
following result.

Lemma 2.1 Suppose that u ∈ Lp
loc(R+,R) and fi ∈ Lp

loc(R+,R) (p > 1, i ∈ P), then IFS (3)
admits a unique solution.

Let x(·; u) be the solution of IFS (3) corresponding to the initial conditions (0, y1) and the
control function u, then the solution of IFS (3) has the following form:

x(t; u) = eaty1 +
∫ t

0
ea(t–τ )u(τ ) dτ +

∑

0≤tk–1<tk <t
x(tk–1;u)=yi

∫ tk

tk–1

ea(t–τ )fi(τ ) dτ

+
∫

[tk ,t]
x(tk ;u)=yj

ea(t–τ )fj(τ ) dτ , (5)

where i, j ∈ P , i �= j, k ∈N
+.

Furthermore, we introduce the definitions of the approximate solution and continuous
dependence.
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Definition 2.1 A function xθ (·; u) ∈ C(R+,R) is said to be an approximate solution of IFS
(3) if, for any fixed sufficiently small θ > 0, xθ (·; u) satisfies the following integral equation:

xθ (t; u) = eaty1 +
∫ t

0
ea(t–τ )u(τ ) dτ +

∑

0≤tk–1<tk<t
x(tk–1;u)∈Oθ2

yi

∫ tk

tk–1

ea(t–τ )fi(τ ) dτ

+
∫

[tk ,t]
x(tk ;u)∈Oθ2

yj

ea(t–τ )fj(τ ) dτ , (6)

where i, j ∈ P , i �= j, k ∈N
+.

Note that the approximate solution xθ (·; u) is the solution of IFS (3), as θ = 0. Meanwhile,
Lemma 2.1 shows that, for any sufficient small θ > 0, (3) admits a unique approximate
solution xθ (·; u) having the form (6) under the conditions of Lemma 2.1, and IFS (3) at
most has a finite number of switches on every bounded time interval (see the literature
[23] for detail). Let

un(·) ∈ Lp
loc

(
R

+,R
)

with ‖un – u‖Lp → 0 (7)

and xθ (·; un) be an approximate solution of IFS (3) corresponding to the control function
un(·). It can be seen from Definition 2.1 that xθ (·, un) and x(·) have the same number of
irregular points on [0, T] for any fixed T > 0.

Definition 2.2 The solution x(·; u) of IFS (3) is said to have continuous dependence rela-
tive to the control function u if

(1)

lim
θ→0‖un–u‖Lp →0

xθ (t; un) = x(t; u), if x(t) �= yi for all i ∈ P

and (2) given any ε > 0 there is a closed set Iε ⊆ [0, T] and δ > 0 such that m([0, T] \ Iε) < ε

and

∣
∣xθ (t; un) – x(t; u)

∣
∣ < ε, t ∈ Iε

provided θ + ‖un – u‖Lp < δ, where m([0, T] \ Iε) is the Lebesgue measures of the set
[0, T] \ Iε .

Furthermore, we have the following result.

Theorem 2.1 If u ∈ Lp
loc(R+,R) and fi ∈ Lp

loc(R+,R) (p > 1, i ∈ P), then the solution of
IFS (3) has continuous dependence relative to the control function u in the sense of Defini-
tion 2.2.

Proof Firstly, it can be seen from Lemma 2.1 that IFS (3) at most has a finite number of
switches on every bounded time interval [0, T] for any fixed T > 0 (see the literature [23]
for detail). Namely, there are only two possibilities: Case (1): IFS (3) does not switch on
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[0, T] and Case (2): IFS (3) switches at least one time on [0, T]. We will prove the result
from the two cases.

In Case (1), according to the continuous dependence of the solution on the parameter
for an ordinary differential equation, we obtain that x(·) has continuous dependence on
the initial value in the classical sense, i.e.,

lim
θ→0‖uk –u‖Lp →0

∥
∥xθ (·; un) – x(·; u)

∥
∥

C([t0,T],R) = 0.

In Case (2), without loss of generally, assume IFS (3) just switches k times on [0, T]. For
convenience, let tm ∈ [0, T] (m = 1, 2, . . . , k) be the switching times of IFS (3). From the
definition of its switching law (see (4), we know that there exist some i ∈ P such that
x(tm; u) = yi, in which i = 1 if m is even and i = 2 if m is odd. Combining Lemma 2.1 with
Definition 2.1, we have that IFS (3) has a unique approximate solution xθ (·; un) for any
sufficient small θ > 0 under the conditions of Theorem 2.1. Also, Definition 2.1 suggests
that xθ (·; un) and x(·; u) have the same number of switching times on [0, T]. Let tm(θ ; fj)
(m = 1, 2, . . . , k, j ∈ P) be the switching times of xθ (·; un). Then, given any ε > 0, IFS (3)
does not switch on [0, t1 – ε

4k ]. Hence, there exists δ1 > 0 such that

∣
∣xθ (t; un) – x(t; u)

∣
∣ < ε

for each θ + ‖un – u‖Lp < δ1, t ∈ [t0, t1 – ε
4k ], which means that

lim
θ+‖un–u‖Lp →0

t1(θ ; f1) = t1. (8)

Analogously, consider the time interval [t1 + ε
4k , t2 – ε

4k ]. Recalling equation (5) and Defi-
nition 2.1, we have that

∣∣xθ (t; un) – x(t; u)
∣∣

=
∣
∣∣
∣e

a(t–t1(θ ;f1))ỹ2 +
∫ t

t1(θ ;f1)
ea(t–τ )(un(τ ) + f2(τ )

)
dτ

–
[

ea(t–t1)y2 +
∫ t

t1

ea(t–τ )(u(τ ) + f2(τ )
)

dτ

]∣∣
∣∣

≤ ∣∣ea(t–t1)y2 – ea(t–t1)ỹ2
∣∣ +

∣∣ea(t–t1)ỹ2 – ea(t–t1(θ ;f1))ỹ2
∣∣

+
∫ t

t1(θ ;f1)
ea(t–τ )∣∣u(τ ) – un(τ )

∣∣dτ

≤ ea(t–t1)|y2 – ỹ2| + ea(t–t1)∣∣aỹ2
(
t1 – t1(θ ; f1)

)∣∣ +
∫ t1(θ ;f1)

t1

ea(t–τ )∣∣u(τ ) + f2(τ )
∣
∣dτ

+
∫ t

t1(θ ;f1)
ea(t–τ )∣∣u(τ ) – un(τ )

∣∣dτ

≤ eaT
[
θ2 +

∣∣aỹ2
(
t1 – t1(θ ; f1)

)∣∣ +
∫ t1(θ ;f1)

t1

∣∣u(τ ) + f2(τ )
∣∣dτ

+
∫ t

t1(θ ;f1)

∣
∣u(τ ) – un(τ )

∣
∣dτ

]
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for each t ∈ [t1 + ε
4k , t2 – ε

4k ]. Using Hölder’s inequality, we have that

∣
∣xθ (t; un) – x(t; u)

∣
∣ ≤ eaT[

θ2 +
(|aỹ2| + ‖u + f2‖Lp

)∣∣t1 – t1(θ ; f1)
∣
∣ + T

1
p ‖u – un‖Lp

]

for all t ∈ [t1 + ε
4k , t2 – ε

4k ]. Furthermore, it can be seen from (7) and (8) that there exists
δ2 > 0 (δ2 < δ1) such that

∣∣xθ (t; un) – x(t; u)
∣∣ < ε, for all t ∈

[
t1 +

ε

4k
, t2 –

ε

4k

]
and θ + ‖u – un‖Lp < δ2

and

lim
θ+‖u–un‖Lp →0

t2(θ ; f1) = t2.

In general, we consider the time interval [tm + ε
4k , tm+1 – ε

4k ] (m = 1, 2, . . . , k – 1) or [tk +
ε

4k , T]. Combined (5) with Definition 2.1, we obtain that

∣∣xθ (t; un) – x(t; u)
∣∣

=
∣
∣∣
∣e

a(t–tm(θ ;fj))ỹi +
∫ t

tm(θ ;fj)
ea(t–τ )(un(τ ) + fi(τ )

)
dτ

–
[

ea(t–tm)yi +
∫ t

tm

ea(t–τ )(u(τ ) + fi(τ )
)

dτ

]∣
∣∣
∣

≤ ∣
∣ea(t–tm)yi – ea(t–tm)ỹi

∣
∣ +

∣
∣ea(t–tm)ỹi – ea(t–tm(θ ;fj))ỹi

∣
∣

+
∫ t

tm(θ ;fj)
ea(t–τ )∣∣u(τ ) – un(τ )

∣
∣dτ

≤ ea(t–tm)|yi – ỹi| + ea(t–tm)∣∣aỹi
(
tm – tm(θ ; fj)

)∣∣ +
∫ tm(θ ;fj)

tm

ea(t–τ )∣∣u(τ ) + fi(τ )
∣
∣dτ

+
∫ t

tm(θ ;fj)
ea(t–τ )∣∣u(τ ) – un(τ )

∣
∣dτ

≤ eaT
[
θ2 +

∣
∣aỹi

(
tm – tm(θ ; fj)

)∣∣ +
∫ tm(θ ;fj)

tm

∣
∣u(τ ) + fi(τ )

∣
∣dτ

+
∫ t

tm(θ ;fj)

∣
∣u(τ ) – un(τ )

∣
∣dτ

]

for each t ∈ [tm + ε
4k , tm+1 – ε

4k ] ∪ [tk + ε
4k , T], where i = 1 if m is even and i = 2 if m is odd.

Using Hölder’s inequality, we have that

∣∣xθ (t; un) – x(t; u)
∣∣ ≤ eaT[

θ2 +
(|aỹi| + ‖u + fi‖Lp

)∣∣tm – tm(θ ; fj)
∣∣ + T

1
p ‖u – un‖Lp

]

for all t ∈ [tm + ε
4k , tm+1 – ε

4k ] ∪ [tk + ε
4k , T]. Furthermore, there exists a constant δm+1 > 0

(δm+1 < δm) such that

∣
∣xθ (t; un) – x(t; u)

∣
∣ < ε for all t ∈

[
tm +

ε

4k
, tm+1 –

ε

4k

]
and θ + ‖u – un‖Lp < δm+1
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and

lim
θ+‖u–un‖Lp →0

tm+1(θ ; fi) = tm+1.

Now define

Iε =
[

t0, t1 –
ε

4k

]
∪

( k–1⋃

m=1

[
tm +

ε

4k
, tm+1 –

ε

4k

])

∪
[

tk +
ε

4k
, T

]
.

It is easy to see m([t0, T] \ Iε) = ε
2 < ε, and there is δ = δk > 0 such that the inequality

∣
∣xθ (t; un) – x(t; u)

∣
∣ < ε

holds for each t ∈ Iε and θ + ‖u – un‖Lp ∈ [0, δ). This completes the proof of Theo-
rem 2.1. �

3 Differentiability of solution with respect to the control
In this section, we discuss the differentiability of the solution relative to the control func-
tion for IFS (3). Before that, we make some preparations. For convenience, we consider
the smooth optimal control problem, namely the allowable control set U ([0, T];R) ⊂
C([0, T];R). Suppose that (x̄, ū) is the solution of the smooth optimal control problem
given by IFS (3), where the optimal trajectory x̄(·; ū(·)) is the solution of IFS (3) corre-
sponding to the optimal control ū. For any α ∈ R and u(·) ∈ U ([0, T];R), we have that
uα(·) = ū(·) + αu(·) ∈ U ([0, T];R). Furthermore, it can be seen from Lemma 2.1 that IFS
(3) has a unique approximate solution uα(·; uα). From IFS (2), we can claim that IFS may be
not continuous dependence relative to the control function. Naturally, we cannot expect
to the differentiability of the solution relative to the control function. Hence, we need to
modify the classical definition of the variation.

Definition 3.1 The solution x(·; u) of IFS (3) is said to be Gâteaux differentiable relative
to u(·) in the direction of the function uα(·) if

lim
α↘0

xα(t; uα) – x(t; u)
α

exists for all t such that x(t; u) �= yi for all i ∈ P . Furthermore, let

ϕ
(
t; uα

)
=

⎧
⎨

⎩
limα↘0

xα (t;uα )–x(t;u)
α

, x(t; u) �= yi for all i ∈ P ,

lims↗t limα↘0
xα (t;uα )–x(t;u)

α
, x(t) = yi for some i ∈ P ,

(9)

then ϕ(·; uα) is called the Gâteaux derivative of the solution x(·; u) relative to the control
function u(·) in the direction of uα(·).

To obtain the differentiability of the solution relative to the control function for IFS (3),
we need the following lemma. For this purpose, we first define several functions as follows:

ỹ(α) =

⎧
⎨

⎩
yi – α2, if yi > yj,

yi + α2, if yi < yj,
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where i, j ∈ P ,

H(α, t) = xα

(
t; uα

)
– ỹ(α), (10)

ht(α) denotes the solution of H(θ , t) = 0.

Furthermore, we get the following lemma.

Lemma 3.1 If fi ∈ ([0, +∞),R) and fi(t) + ū(t) �= ayj for all t ∈ [0, +∞) and i, j ∈ P , then
there is δ > 0 such that ht is differentiable on [0, δ] and its derivative is given by

ḣtm (0) =

⎧
⎪⎨

⎪⎩

–
∫ t1

0 ea(t1–τ )u(τ ) dτ

f1(t1)+ay2+ū(t1) , m = 1,

–
∫ tm

0 ea(tm–τ )u(τ ) dτ+
∑m–1

i=1 (–1)i+1ḣti (0)ea(tm–ti)(f1(ti)–f2(ti))– ˙̃y(α)
fi(tm)+ayj+ū(tm) , m = 2, 3, . . . , k,

where i = 2, j = 1 if m is even and i = 1, j = 2 if m is odd.

Proof We can deduce from Theorem 2.1 that there exists δ > 0 such that ht : [0, δ] → O(t)
is a function for all α ∈ [0, δ] and ht(0) = t, if x(t) = yi for some i ∈ P , where O(t) denotes
some neighborhood of t. Furthermore, we have that

xα

(
htm (α); uα

)
= ỹ(α) for all α ∈ [0, δ], m = 1, 2, . . . , k,

which implies

H
(
α, htm (α)

)
= 0 for all α ∈ [0, δ], m = 1, 2, . . . , k.

Since

∂H(α, t)
∂t

=
∂[xα(t; uα) – ỹ(α)]

∂t
= axα

(
t; uα

)
+ uα(t) + fi(t) for all α ∈ [0, δ],

then it can be seen from fi(·) ∈ C([0, T];R) and uα(·) ∈ C([0, T];R) that ∂H(α,t)
∂t is continuous

on [0, δ] × [htm , htm+1 ]. Combined with fi(t) + ū(t) �= –ayi for all i ∈ P , we have that

∂H(α, t)
∂t

∣
∣∣∣
t=htm (α)

=
∂[xα(t; uα) – ỹ(α)]

∂t

∣
∣∣∣
t=htm (α)

= fi
(
htm (α)

)
+ aỹ(α) + uα

(
ht1 (α)

) �= 0, (11)

where m = 1, 2, . . . , k, i ∈ P . Otherwise, for the time interval [0, ht1 (α)), we obtain that

Hα(α, t)

= lim
ξ→0

H(α + ξ , t) – H(α, t)
ξ

= lim
ξ→0

xα+ξ (t; uα+ξ ) – xα(t; uα)
ξ

– ˙̃y(α)

= lim
ξ→0

eaty1 +
∫ t

0 ea(t–τ )(uα+ξ (τ ) + f1(τ )) dτ – [eaty1 +
∫ t

0 ea(t–τ )(uα(τ ) + f1(τ )) dτ ]
ξ
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– ˙̃y(α)

=
∫ t

0
ea(t–τ )u(τ ) dτ – ˙̃y(α). (12)

The above implies that the continuous partial derivative of H(α, t) with respect to α exists
on [0, δ] × [0, ht1 (α)). Furthermore, we induce from (11) and (12) that

ḣt1 (α) = –
∂H(α,t)

∂α

∂H(α,t)
∂t

∣
∣∣
∣
t=ht1 (α)

= –
∫ ht1 (α)

0 ea(ht1 (α)–τ )u(τ ) dτ – ˙̃y(α)
f1(ht1 (α)) + aỹ(α) + uα(ht1 (α))

and

ḣt1 (0) = –
∫ t1

0 ea(t1–τ )u(τ ) dτ

f1(t1) + ay2 + ū(t1)
.

Secondly, when t ∈ (ht1 (α), ht2 (α)), we can reduce that

Hα(α, t)

=
∂

∂α

(
eaty1 +

∫ t

0
ea(t–τ )uα(τ ) dτ +

∫ ht1(α)

0
ea(t–τ )f1(τ ) dτ +

∫ t

ht1 (α)
ea(t–τ )f2(τ ) dτ

)

– ˙̃y(α)

=
∫ t

0
ea(t–τ )u(τ ) dτ + ḣt1 (α)ea(t–ht1 (α))[f1

(
ht1 (α)

)
– f2

(
ht1 (α)

)
– ˙̃y(α), (13)

which implies that the continuous partial derivative of H(α, t) with respect to α exists on
[0, δ] × [ht1 (α), ht2 (α)). Furthermore, we induce from (11) and (13) that

ḣt2 (α) = –
∫ ht2 (α)

0 ea(ht2 (α)–τ )u(τ ) dτ + ḣt1 (α)ea(ht2 (α)–ht1 (α))(f1(ht1 (α)) – f2(ht1 (α))) – ˙̃y(α)
f2(ht2 (α)) + aỹ(α) + uα(ht2 (α))

and

ḣt2 (0) = –
∫ t2

0 ea(t2–τ )u(τ ) dτ + ḣt1 (0)ea(t2–t1)(f1(t1) – f2(t1))
f2(ht2 (α)) + ay1 + ū(t2)

.

In general, for any t ∈ (htm (α), htm+1 (α)) (m = 1, 2, . . . , k – 1) or t ∈ (htk (α), T], we have

Hα(α, t)

=
∂

∂α

(

eaty1 +
∫ t

0
ea(t–τ )uα(τ ) dτ +

m∑

i=1

∫ hti (α)

hti–1 (α)
ea(t–τ )fp(τ ) dτ

+
∫ t

htm (α)
ea(t–τ )fj(τ ) dτ

)

– ˙̃y(α)

=
∫ t

0
ea(t–τ )u(τ ) dτ +

m∑

i=1

(–1)i+1ḣti (α)ea(t–hti (α))(f1
(
hti (α)

)
– f2

(
hti (α)

)
– ˙̃y(α), (14)
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where p = 1 if i is odd and p = 2 if i is even j ∈ P and j �= p, which implies that the con-
tinuous partial derivative of H(ε, t) with respect to ε exists on [0, δ] × (htm (ε), htm+1 (ε)).
Furthermore, from the implicit function theory, (11), and (14), we discover that

ḣtm+1 (α)

= –
∫ htm+1 (α)

0 ea(htm+1 (α)–τ )u(τ ) dτ +
∑m

i=1(–1)i+1ḣti (α)ea(htm+1 (α)–hti (α))(f1(hti (α)) – f2(hti (α))) – ˙̃y(α)
fi(htm+1 (α)) + aỹ(α) + uα(htm+1 (α))

and

ḣtm+1 (0) = –
∫ tm+1

0 ea(tm+1–τ )u(τ ) dτ +
∑m

i=1(–1)i+1ḣti (0)ea(tm+1–ti)(f1(ti) – f2(ti)) – ˙̃y(α)
fi(tm+1) + ayj + ū(tm+1)

,

where i = 1, j = 2 if m is even and i = 2, j = 1 if m is odd. This completes the proof of
Lemma 3.1. �

Based on Lemma 3.1 and Definition 3.1, we will give our final result.

Theorem 3.1 Suppose that fi ∈ ([0, +∞),R) and fi(t) + ū(t) �= ayj for all t ∈ [0, +∞) and
i, j ∈ P , then for any u(·) ∈ U ([0, T];R), the solution x̄(·; ū) of IFS (3) is Gâteaux differen-
tiable at ū(·) in the direction of u(·) in the sense of Definition 3.1. Moreover, its derivative ϕ

satisfies the following impulsive differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

.
ϕ(t; uα) = aϕ(t; uα) + u(t), t ∈ (t0, T], x(t) �= yp (p ∈ P).

ϕ(t+; uα) = ϕ(t; uα) + ḣt(0)[fj(t) – fi(t)], x(t) = yi (i, j ∈ P , i �= j),

ϕ(0; uα) = 0.

(15)

Proof For the number of the irregular points on [t0, T], there are only two possibilities
which are Case (1): x̄(·; ū) has no irregular point on [t0, T] and Case (2): x̄(·; ū) has at least
one irregular point on [t0, T]. We will prove Theorem 3.1 from the two aspects.

Case (1), one can directly check that x(·) is Gâteaux differentiable and its Gâteaux deriva-
tive ϕ (see Definition 3.1) is a solution of the following differential equation:

⎧
⎨

⎩

.
ϕ(t; uα) = aϕ(t; uα) + u(t), t ∈ (0, T],

ϕ(0; uα) = 0.

Case (2), from Definition 3.1, we first have that

ϕ
(
t; uα

)
= lim

α→0

xα(t; uα) – x̄(t; ū)
α

= lim
α→0

eaty1 +
∫ t

0 ea(t–τ )(f1(τ ) + uα(τ )) dτ – [eaty1 +
∫ t

0 ea(t–τ )(f1(τ ) + ū(τ )) dτ ]
α

=
∫ t

0
ea(t–τ )u(τ ) dτ , ∀t ∈ (0, t1).
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Namely, ϕ(·) satisfies the following equation:
⎧
⎨

⎩

.
ϕ(t; uα) = aϕ(t; uα) + u(t), t ∈ (0, t1),

ϕ(0; uα) = 0.
(16)

Meanwhile, when ht1 (α) > t1, combining equation (3) with (9), we discover that

lim
α→0

xα(ht1 (α); uα) – x̄(t1; ū)
α

= lim
α→0

xα(ht1 (α); uα) – xα(t1; uα)
α

+ lim
α→0

xα(t1; uα) – x̄(t1; ū)
α

= lim
α→0

xα(ht1 (α); uα) – xα(t1; uα)
ht1 (α) – t1

ht1 (α) – t1

α
+ ϕ

(
t1; uα

)

= ḣt1 (0)
(
ay2 + f1(t1) + ū(t1)

)
+ ϕ

(
t1; uα

)
.

Furthermore, we can reduce that

ϕ
(
t1+; uα

)
= lim

α→0

xα(ht1 (α); uα) – x̄(ht1 (α); ū)
α

= lim
α→0

xα(ht1 (α); uα) – x̄(t1; ū)
α

+ lim
α→0

x̄(t1; ū) – x̄(ht1 (α); ū)
α

= ḣt1 (0)
(
f1(t1) – f2(t1)

)
+ ϕ

(
t1; uα

)
.

Similarly, when ht1 (α) < t1, we have that

lim
α→0

xα(ht1 (α); uα) – x̄(t1; ū)
α

= lim
α→0

xα(ht1 (α); uα) – x̄(ht1 (α); ū)
α

+ lim
α→0

x̄(ht1 (α); ū) – x̄(t1; ū)
α

= ϕ
(
t1; uα

)
+ lim

α→0

x̄(ht1 (α); ū) – x̄(t1; ū)
ht1 (α) – t1

ht1 (α) – t1

α

= ϕ
(
t1; uα

)
+ ḣt1 (0)

(
ay2 + f1(t1) + ū(t1)

)
,

and

ϕ
(
t1+; uα

)
= lim

α→0

xα(t1; uα) – x̄(t1; ū)
α

= lim
α→0

xα(t1; uα) – xα(ht1 (α); uα)
α

+ lim
α→0

xα(ht1 (α); uα) – x̄(t1; ū)
α

= ḣt1 (0)
(
f1(t1) – f2(t1)

)
+ ϕ

(
t1; uα

)
.

In conclusion, we can claim that

lim
α→0

xα(ht1 (α); uα) – x̄(t1; ū)
α

= ϕ(t1) + ḣt1 (0)
(
ay2 + f1(t1) + ū(t1)

)

and

ϕ
(
t1+; uα

)
= ḣt1 (0)

(
f1(t1) – f2(t1)

)
+ ϕ

(
t1; uα

)
. (17)
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Analogously, we consider (t1, t2). From the following equation

ϕ
(
t; uα

)

= lim
α→0

x(t; uα) – x̄(t; ū)
α

= lim
α→0

ea(t–ht1 (α))ỹ(α) +
∫ t

ht1 (α) ea(t–τ )(f2(τ ) + uα(τ )) dτ – [ea(t–t1)y2 +
∫ t

t1
ea(t–τ )(f2(τ ) + ū(τ )) dτ ]

α

= lim
α→0

(ea(t–ht1 (α)) – ea(t–t1))ỹ(α)
ht1 (α) – t1

ht1 (α) – t1

α
+ lim

α→0

ea(t–t1)(ỹ(α) – y2)
α

+ lim
α→0

∫ t1
ht1 (α) ea(t–τ )(f2(τ ) + ū(τ )) dτ

ht1 (α) – t1

ht1 (α) – t1

α
+ lim

α→0

∫ t

ht1 (α)
ea(t–τ )u(τ ) dτ

= lim
α→0

(ea(t–ht1 (α)) – ea(t–t1))ỹ(α)
ht1 (α) – t1

ht1 (α) – t1

α
+ lim

α→0

ea(t–t1)(xα(ht1 (α); uα) – x̄(t1; ū))
α

+ lim
α→0

∫ t1
ht1 (α) ea(t–τ )(f2(τ ) + ū(τ )) dτ

ht1 (α) – t1

ht1 (α) – t1

α
+ lim

α→0

∫ t

ht1 (α)
ea(t–τ )u(τ ) dτ

=
∫ t

t1

ea(t1–τ )u(τ ) dτ + ḣt1 (0)
(
f1(t1) – f2(t1)

)
+ ϕ

(
t1; uα

)

=
∫ t

t1

ea(t1–τ )u(τ ) dτ + ϕ
(
t1+; uα

)
, ∀t ∈ (t1, t2),

we know from (17) that ϕ(·; uα) satisfies the following equation:

⎧
⎨

⎩

.
ϕ(t; uα) = aϕ(t; uα) + u(t), t ∈ (t1, t2),

ϕ(t1+; uα) = ḣt1 (0)(f1(t1) – f2(t1)) + ϕ(t1; uα).
(18)

Analogous to ϕ(t1+; uα), from equations (3), (9), and Lemma 3.1, we have the following
results about ϕ(t2+; uα): when ht2 (α) > t2,

ϕ
(
t2+; uα

)

= lim
α→0

xα(ht2 (α); uα) – x̄(ht2 (α); ū)
α

= lim
α→0

xα(ht2 (α); uα) – x̄(t2; ū)
α

+ lim
α→0

x̄(t2; ū) – x̄(ht2 (α); ū)
α

= lim
α→0

xα(ht2 (α); uα) – xα(t2; uα)
α

+ lim
α→0

xα(t2; uα) – x̄(t2; ū)
α

+ lim
α→0

x̄(t2; ū) – x̄(ht2 (α); ū)
α

= lim
α→0

xα(ht2 (α); uα) – xα(t2; uα)
ht2 (α) – t2

ht2 (α) – t2

α
+ lim

α→0

xα(t2; uα) – x̄(t2; ū)
α

+ lim
α→0

x̄(t2; ū) – x̄(ht2 (α); ū)
ht2 (α) – t2

ht2 (α) – t2

α

= ḣt2 (0)
(
f2(t2) – f1(t2)

)
+ ϕ

(
t2; uα

)
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and when ht2 (α) < t2,

ϕ
(
t2+; uα

)
= lim

α→0

xα(t2; uα) – x̄(t2; ū)
α

= lim
α→0

xα(t2; uα) – xα(ht2 (α); uα)
α

+ lim
α→0

xα(ht2 (α); uα) – x̄(ht2 (α); ū)
α

+ lim
α→0

x̄(ht2 (α); ū) – x̄(t2; ū)
α

= lim
α→0

xα(t2; uα) – xα(ht2 (α); uα)
ht2 (α) – t2

ht2 (α) – t2

α

+ lim
α→0

x̄(ht2 (α); ū) – x̄(t2; ū)
ht2 (α) – t2

ht2 (α) – t2

α

+ ϕ
(
t2; uα

)

= ḣt2 (0)
(
f2(t2) – f1(t2)

)
+ ϕ

(
t2; uα

)
.

The above equations yield that

ϕ
(
t2+; uα

)
= ḣt2 (0)

(
f2(t2) – f1(t2)

)
+ ϕ

(
t2; uα

)
.

Repeat the above process, we consider the time interval (tm, tm + 1) (m = 1, 2, . . . , k – 1) or
(tk , T). Firstly, we have the following equation:

ϕ
(
t; uα

)

= lim
α→0

x(t; uα) – x̄(t; ū)
α

= lim
α→0

ea(t–htm (α))ỹ(α) +
∫ t

htm (α) ea(t–τ )(fi(τ ) + uα(τ )) dτ – [ea(t–tm)yi +
∫ t

tm
ea(t–τ )(fi(τ ) + ū(τ )) dτ ]

α

= lim
α→0

(ea(t–htm (α)) – ea(t–tm))ỹ(α)
htm (α) – tm

htm (α) – tm

α
+ lim

α→0

ea(t–tm)(ỹ(α) – yi)
α

+ lim
α→0

∫ tm
htm (α) ea(t–τ )(fi(τ ) + ū(τ )) dτ

htm (α) – tm

htm (α) – tm

α
+ lim

α→0

∫ t

htm (α)
ea(t–τ )u(τ ) dτ

= lim
α→0

(ea(t–htm (α)) – ea(t–tm))ỹ(α)
htm (α) – tm

htm (α) – tm

α
+ lim

α→0

ea(t–tm)(xα(htm (α); uα) – x̄(tm; ū))
α

+ lim
α→0

∫ tm
htm (α) ea(t–τ )(fi(τ ) + ū(τ )) dτ

htm (α) – tm

htm (α) – tm

α
+ lim

α→0

∫ t

htm (α)
ea(t–τ )u(τ ) dτ

=
∫ t

tm

ea(tm–τ )u(τ ) dτ + ḣtm (0)
(
fj(tm) – fi(t1)

)
+ ϕ

(
tm; uα

)

=
∫ t

tm

ea(tm–τ )u(τ ) dτ + ϕ
(
tm+; uα

)
, ∀t ∈ (tm, tm + 1) ∪ (tk , T),

where i = 2, j = 1 if m is even and i = 1, j = 2 if m is odd. The above equation implies that,
for any t ∈ (tm, tm +1)∪ (tk , T) (m = 1, 2, . . . , k –1), ϕ(t; uα) satisfies the following differential



Li and Chen Advances in Difference Equations        (2021) 2021:489 Page 15 of 17

equation:

.
ϕ
(
t; uα

)
= aϕ

(
t; uα

)
+ u(t), t ∈ (tm, tm + 1) ∪ (tk , T). (19)

On the other hand, analogous to ϕ(t1+; uα) and ϕ(t2+; uα), we obtain that

ϕ
(
tm+1+; uα

)
= ḣtm+1 (0)

(
fi(tm+1) – fj(tm+1)

)
+ ϕ

(
tm+1; uα

)
, (20)

where i = 2, j = 1 if m is even and i = 1, j = 2 if m is odd.
In conclusion, we can deduce from (18), (19), and (20) that ϕ(·; uα) satisfies the following

impulsive differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

.
ϕ(t; uα) = aϕ(t; uα) + u(t), t ∈ (t0, T], x(t) �= yp (p ∈ P),

ϕ(t+; uα) = ϕ(t; uα) + ḣt(0)[fj(t) – fi(t)], x(t) = yi (i, j ∈ P , i �= j),

ϕ(0; uα) = 0.

The proof of Theorem 3.1 is complete. �

4 Conclusions
We considered a class of switched systems with internally forced switching. This sys-
tem may be helpful for modeling the intelligent system, such as the self-driving system,
switched Hopfield neural network, memristive neural network, etc. Naturally, the opti-
mal control problem of such systems is a hot topic in applied mathematics. However, the
existing literature of this problem mainly focuses on a special class controlled system (the
piece affine system). There are few reports about more general internally forced switching
problem (the optimal control problem given by IFS), especially in theory. The principal
reason for this is that the internally forced switching law can destroy the continuous de-
pendence of the solution with respect to the control (see IFS (3) for details), which leads to
the fact that the classical optimal control theory is not suitable for more general internally
forced switched systems. Hence, in the paper, we investigate the continuous dependence
and the differentiability of the solution with respect to the control. These results lay the
foundation for studying a more general internally forced switching problem. Our future
research directions are (i) extending the presented results to the more general IFS and
(ii) studying the optimal control problem given by IFS (2) by using the presented results.
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