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Abstract

The purpose of this paper is to consider someF-contraction mappings in a dualistic
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“xed point. The obtained results are extensions of several ones existing in the
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1 Introduction
The study of metric “xed point theory was initiated by Banach (1922). It has been en-

riched by introducing several structures, generalizing underlying metric space, and the

contractive condition. The Banach contraction principle has been proved in several dif-

ferent abstract metric spaces (see [1…10]). Before the publication of the paper of Mustafa

et al. [5], the metric functions were de“ned onX2, Mustafaet al. [5] introduced a metric

function de“ned on X3, and it is known as aG-metric. Mustafaet al.[5] proved the Banach

contraction principle (BCP) inG-metric spaces and gave several examples to establish its

superiority over the BCP in metric spaces. Sedghiet al. [11] introduced another abstract

metric de“ned on X3, called anS-metric, and proved the analogue of the BCP.

Working on network topologies in computer science, Matthews [12] observed that the

self-distance of a point need not be zero. This led him to introduce a partial metric and

hence obtain an analogue of the BCP. Later, many researchers worked on partial metric

spaces and produced several papers on partial metric topologies and existence of “xed

points of self-mappings (see [13…17]).

Neill [18] observed during his study on dual topologies that a partial metric may have

negative value, that is, the range set of a partial metric can be considered as a real line.

It is known as a dualistic partial metric. Oltraet al. [19] presented an analogue of the

Banach “xed point result in complete dualistic partial metric spaces using some conver-

gence properties of sequences. Subsequently, Nazamet al. [20…22] and Pitea [23] pub-

lished some papers addressing the existence of “xed points of self-mappings de“ned on

dualistic partial metric spaces.
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The concept ofF-contractions given by Wardowski [24] has attracted people in “xed

point theory, and numerous research papers onF-contractions have been published (see

[25…37] and the references therein). Proinov(2020) [38] showed that some “xed point the-

orems of Wardowski (2012) [24], Jleli and Samet (2014) [3] that have recently appeared are

equivalent to a special case of the well-known “xed point theorem of Skof (1977) [39].

In this paper, we investigate “xed points ofF-contractions under the rules practiced

in dualistic partial metric spaces. We also discuss how this di�ers from the classicalF-

contraction introduced by Wardowski [24].

2 Preliminaries
Let T : � → � be a self-mapping on a nonempty set�. The sequence{�n} in � with an

initial point �0 given as

�n = T(�n…1) for all n ∈N

is said to be a Picard iterative sequence. The partial metric space was de“ned by Matthews

[12].

Definition 1 ([12]) A partial metric on a nonempty set� is a functionP: �×� → [0,∞)

such that

(P1) � = � ⇔ P(�,�) = P(�,�) = P(�,�);
(P2) P(�,�) ≤ P(�,�);
(P3) P(�,�) = P(�,�);
(P4) P(�,ν) ≤ P(�,�) + P(�,ν) …P(�,�)

for all �,�,ν ∈�.

The notion of a partial metric was extended by Neill [18] in the following.

Definition 2 ([18]) A dualistic partial metric on a nonempty set� is a functionV : � ×
� →R ful“lling the following properties for all �, �, ν ∈�:

(V1) � = � ⇔ V(�,�) = V(�,�) = V(�,�);
(V2) V(�,�) ≤ V(�,�);
(V3) V(�,�) = V(�,�);
(V4) V(�,ν) ≤ V(�,�) + V(�,ν) …V(�,�).

Then (�,V) is said to be a dualistic partial metric space.

Remark1 Each partial metric is a dualistic partial metric. The converse does not hold in

general. For this, consider

Vm : R×R →R, Vm(�,�) = max{�,�} ∀�,� ∈R.

Then Vm is a dualistic partial metric (see [21]). HereVm is not a partial metric since for

any� < 0,� < 0 it impliesVm(�,�) < 0.

Note that in a dualistic partial metric,V(�,�) = 0 does not necessarily imply� = �.

Indeed,Vm(…1,0) = 0. This case creates a problem in obtaining a “xed point of a self-

mapping in a dualistic partial metric space. To resolve this problem, in this paper we em-
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ploy our proposedF-contraction (de“ned in the next section) along with axioms (V2) and

(V1) to get a “xed point.

We give now some examples of dualistic partial metrics. The “rst is related to the classic

one.

Example1 If (�,d) is a metric space andc∈R is an arbitrary constant, then

V(�,�) = d(�,�) + c

is a dualistic partial metric on�.

Next, we use a partial metric to de“ne a dualistic partial metric space.

Example2 ([18]) Let (�,P) be a partial metric space. The mappingV : �×� → R given

as

V(�,�) = P(�,�) …P(�,�) …P(�,�) for all �,� ∈�

veri“es axioms (V1) … (V4). So it is dualistic partial metric on�. We emphasize thatV(�,�)

may have negative values.

Example3 ([22]) Let � = R. ConsiderV : �×� →R as

V(�,�) =

⎧
⎨

⎩

|� …�| if � �= �,

…b if � = �;b > 0.

Then (�,V) is a dualistic partial metric space.

Neill [18] ensured that each dualistic partial metricV on� generates aT0 topologyτ [V ]

on � having as a base the family ofV-balls {BV (�,ω) : � ∈�,ω > 0}, where

BV (�,ω) =
{
� ∈� :V(�,�) < ω + V(�,�)

}
.

If (�,V) is a dualistic partial metric space, then the function

d∗ : �×�→R
+
0, d∗(�,�) = V(�,�) …V(�,�) (2.1)

is a quasi-metric on� such that τ (V) = τ (ds
V ) and ds

V (�,�) = max{d∗(�,�),d∗(�,�)} is a

metric on �. It is said to be an induced metric on (�,V).

The following describes the convergence criteria in a dualistic partial metric space es-

tablished by Oltraet al. [19].

Definition 3 ([19]) Let {�n}n∈N be a sequence in the dualistic partial metric space (�,V).

(1) {�n} is convergent to an element � in (�,V) if

lim
n→∞V(�n,�) = V(�,�).
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(2) {�n} in (�,V) is said to be Cauchy if

lim
n,m→∞V(�n,�m) exists and is finite.

(3) (�,V) is said to be complete if every Cauchy sequence {�n}n∈N in � converges, with
respect to T [V ], to an element � ∈� such that

V(�,�) = lim
n,m→∞V(�n,�m).

Remark2 For a sequence{�n} ⊂ �, the convergence with respect to an induced metric
space (�,ds

V ) may not lead to the convergence with respect to the dualistic partial metric

space (�,V).

Indeed, consider{�n = 1
n … 1} ⊂� and take

V : �×� →R, V(�,�) =

⎧
⎨

⎩

|� …�| = ds
V (�,�) if � �= �,

…1 if� = �.

Clearly,

lim
n→∞ ds

V (�n,…1) = 0.

This implies that�n → …1 with respect to (�,ds
V ). On the other hand, consider

lim
n→∞V(�n,…1) =V(…1,…1).

That is,

lim
n→∞|�n + 1| = …1.

It is a contradiction. Thus,�n � …1 with respect to (�,V).
With regard to the connections between convergence and Cauchyness in dualistic par-

tial metric spaces, we recall the next lemma.

Lemma 1 ([19, Lemma 2.2]) Let (�,V) be a dualistic partial metric space.
(1) Each Cauchy sequence in (�,ds

V ) is also Cauchy in (�,V).
(2) (�,V) is complete iff the induced metric space (�,ds

V ) is complete.
(3) A sequence {�n} in � converges to an element υ ∈ � with respect to T [(ds

V )] if and
only if

lim
n→∞V(υ,�n) = V(υ,υ) = lim

n,m→∞V(�n,�m).

3 Main results
Definition 4 ([24]) Denote byF the set of all functionsF: (0,∞) →R ful“lling the prop-
erties:

(1) F is strictly increasing;
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(2) For any sequence of positive terms {an}, limn→∞ an = 0 ⇐⇒ limn→∞ F(an) = …∞;
(3) There is k in (0, 1)such that limα→0+ αkF(α) = 0.

Example4 The following functionsF: (0,∞) → R given for all� ∈ (0,∞) as:

(i) F(�) = ln(�),
(ii) F(�) = � + ln(�),

(iii) F(�) = ln(�2 + �),
(iv) F(�) = …1√

�
,

belong to the setF .

In [24], Wardowski introduced a remarkable contraction known asF-contraction and
presented a method to obtain “xed points of such contractions in complete metric spaces.

The following theorem is the variant of Wardowski•s “xed point theorem [24] in the com-
plete dualistic partial metric spaces. Theorem1is a useful generalization of the mentioned

theorem.

Theorem 1 Let (M,V) be a complete dualistic partial metric space, F ∈ F , and T : M →
M be a continuous mapping for which there existsτ > 0 such that, for all j , k from M, the
following implication holds:

V(Tj,Tk) �= 0 �⇒ τ + F
(∣
∣V(Tj,Tk)

∣
∣
) ≤ F

(∣
∣V(j,k)

∣
∣
)
. (3.1)

Then T possesses a unique “xed point.

Proof Let j0 be an element fromM andjn+1 = Tjn for all n ∈N. If there isno ∈N for which

jno+1 = jno, then jno is a “xed point of T . Therefore, we may assume thatjn �= jn+1 for any

n ∈ N. Given thatV(jn, jn+1) �= 0 for anyn ∈ N. By the use of the contractive condition, we
obtain, for n ≥ 1,

F
(∣
∣V(jn, jn+1)

∣
∣
) ≤ F

(∣
∣V(jn…1, jn)

∣
∣
)

…τ < F
(∣
∣V(jn…1, jn)

∣
∣
)
, (3.2)

which, by taking advantage of the monotonicity ofF, {|V(jn, jn+1)|} is decreasing. Letr ≥ 0

be its limit. By contractive condition (3.1), we have

F
(∣
∣V(jn+1, jn)

∣
∣
)

= F
(∣
∣V

(
T(jn),T(jn…1)

)∣
∣
) ≤ F

(∣
∣V(jn, jn…1)

∣
∣
)

…τ .

Thus

F
(∣
∣V(jn+1, jn)

∣
∣
) ≤ F

(∣
∣V(jn, jn…1)

∣
∣
)

…τ . (3.3)

This in turns implies that

F
(∣
∣V(jn+1, jn)

∣
∣
) ≤ F

(∣
∣V(j1, j0)

∣
∣
)

…nτ .

Letting n → ∞ and using (F2), we get

lim
n→∞ F

(∣
∣V(jn+1, jn)

∣
∣
)

= …∞ ⇐⇒ lim
n→∞

∣
∣V(jn+1, jn)

∣
∣ = 0.
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This yields that

lim
n→∞V(jn+1, jn) = 0 = r. (3.4)

Focusing now on the self-distance, we have, forn ∈N,

F
(∣
∣V(jn+1, jn+1)

∣
∣
) ≤ F

(∣
∣V(jn, jn)

∣
∣
)

…τ < F
(∣
∣V(jn, jn)

∣
∣
)
,

and so{|V(jn, jn)|} is a sequence decreasing to somel ≥ 0. Arguing as above, we get that
l = 0. By the third property of functions inF , there isθ ∈ (0, 1) such thatlimn→∞ |Vn|θ ×
F(|Vn|) = 0.

ConsiderVn = V(jn, jn+1) for n ∈N. By applying repeatedly inequality (3.2), it follows that

F
(|Vn|

) ≤ F
(|V0|

)
…nτ

or

|Vn|θF
(|Vn|

) ≤ |Vn|θ
(
F
(|V0|

)
…nτ

)
, n ∈N.

Letting n → ∞ and taking advantage of the properties of the functionF, we get that
n|Vn|θ → 0 asn → ∞. There isN1 ∈N such that

|Vn| ≤ 1

n
1
θ

, n ≥ N1. (3.5)

Denote byVn = V(jn, jn) for n ∈N. Similarly, there isN2 ∈N such that, for anyn ≥ N2,

|Vn| ≤ 1

n
1
θ

. (3.6)

Having in mind inequalities (3.5) and (3.6), we have, form > n ≥ max{N1,N2},

d∗(jn, jm) ≤
m…n…1∑

�=0

d∗(jn+�, jn+�+1)

≤
m…n…1∑

�=0

(∣
∣V(jn+�, jn+�+1)

∣
∣ +

∣
∣V(jn+�, jn+�)

∣
∣
)

≤ 2
m…n…1∑

�=0

1

�
1
θ

.

Taking the limit to ∞, it follows that {d∗(jn, jm)} → 0. Applying an analogous procedure, we
get that{d∗(jm, jn)} → 0, henceds

V (jn, jm) → 0, so{jn} is a Cauchy sequence in the complete
metric space (M,ds

V ). Let j be its limit. Obviously,

lim
n→∞V(jn, j) = V(j, j) = 0, lim

n,m→∞V(jn, jm) = 0.

SinceT is a continuous mapping,{Tjn} converges toTj. This implies thatV(Tjn,Tjn) →
V(Tj,Tj). SinceV(Tjn,Tjn) → V(j, j) = 0, it follows thatV(Tj,Tj) = 0.
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In view that

V(j,Tj) ≤ V(j, jn+1) + V(jn+1,Tj) …V(jn+1, jn+1), n ∈N,

and

V(jn+1,Tj) ≤ V(jn+1, j) + V(j,Tj) …V(j, j), n ∈N,

by consideringn → ∞ and using the continuity ofT , we obtainV(j,Tj) = 0.
Thus V(Tj,Tj) = V(j, j) = V(j,Tj), soTj = j. Let us focus now on the uniqueness of the

“xed point of T . Assume thatj andk are two distinct “xed points of T . If V(j,k) �= 0, then
the following relations hold true:

F
(∣
∣V(j,k)

∣
∣
)

= F
(∣
∣V(Tj,Tk)

∣
∣
) ≤ F

(∣
∣V(j,k)

∣
∣
)

…τ ,

which is a contradiction. Therefore,V(j,k) = 0. Similarly, it can be proved thatV(j, j) = 0
andV(k,k) = 0. It follows that j = k, and so the “xed point is unique. �

Remark3 By settingV(j, j) = 0 for all j ∈ M, we haveV(j,k) ≥ 0 for all j,k ∈ M and thus
V : M × M →R is restricted toV : M × M →R

+, which is equal to the induced metricds
V

on M. Hence Wardowski “xed point theorem [24] is a particular case of Theorem1.

We continue with an example with respect to this theorem. Example5 does not only
explain Theorem1, but also shows that the Wardowski “xed point theorem [24] is not
applicable for� = �.

Example5 LetA = (…∞, 0]. De“ne the mapping

V : A×A→R,V(�,�) =

⎧
⎨

⎩

|� …�| if � �= �,

� ∨ � if � = �.

Then (A,V) is a complete dualistic partial metric space. Letτ > 0 and de“ne the mapping:

T : A→A,T (�) =

⎧
⎨

⎩

e…τ �
2 if � ∈Q(a set of rational numbers),

e…τ �
3 if � ∈Q

′(a set of irrational numbers).

Contractive condition (2.1) is satis“ed forF(�) = ln(�) for all � > 0. For this, consider the
following:

Case1. (a)� �= �; if �,� ∈Q, then

∣
∣V

(
T(�),T (�)

)∣
∣ =

1
2

e…τ |� …�| < e…τ
∣
∣V(�,�)

∣
∣,

which impliesτ + F(|V(T�,T�)|) ≤ F(|V(�,�)|).
(b) � �= �; if �,� ∈Q

′, then

∣
∣V

(
T(�),T (�)

)∣
∣ =

1
3

e…τ |� …�| < e…τ
∣
∣V(�,�)

∣
∣,

which leads toτ + F(|V(T�,T�)|) ≤ F(|V(�,�)|).
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Case2. (a)� = �; if � ∈Q, then

∣
∣V

(
T(�),T (�)

)∣
∣ =

∣
∣
∣
∣
1
2

e…τ �

∣
∣
∣
∣ < e…τ

∣
∣V(�,�)

∣
∣.

(b) � = �; if � ∈Q
′, then

∣
∣V

(
T(�),T (�)

)∣
∣ =

∣
∣
∣
∣
1
3

e…τ �

∣
∣
∣
∣ < e…τ

∣
∣V(�,�)

∣
∣.

From (a) and (b), we infer thatτ + F(|V(T�,T�)|) ≤ F(|V(�,�)|).
Case3. If � ∈Q, � ∈Q

′ and vice versa, then

∣
∣V

(
T(�),T (�)

)∣
∣ =

∣
∣
∣
∣
�

2
…
�

3

∣
∣
∣
∣e

…τ ≤ e…τ
∣
∣V(�,�)

∣
∣.

Thus,τ + F(|V(T�,T�)|) ≤ F(|V(�,�)|). Hence,T satis“es all the conditions of Theorem1.

Note that � = 0 is the unique “xed point ofT .

The following theorem is for Kannan type F-contraction in the dualistic partial metric

spaces. It is a useful generalization of [40, Theorem 2].

Theorem 2 Let (�,V) be a complete dualistic partial metric space, F ∈F , and T : � →�

be a continuous mapping for which there existsτ > 0 such that, for all j and k in �, the

following implication holds:

V(Tj,Tk) �= 0 �⇒ τ + F
(∣
∣V(Tj,Tk)

∣
∣
) ≤ F

(
1
2

(∣
∣V(j,Tj)

∣
∣ +

∣
∣V(k,Tk)

∣
∣
)
)

. (3.7)

Then T admits a unique “xed point.

Proof For j0 from �, setjn+1 = Tjn for n ∈ N. If there iss∈ N for which js+1 = js, then js is

a “xed point of T . We presume thatjn �= jn+1 for any n ∈ N. GivenV(jn, jn+1) �= 0 for any

n ∈N. By the use of the contractive condition, we obtain, forn ≥ 1,

F
(∣
∣V(jn, jn+1)

∣
∣
) ≤ F

(
1
2

(∣
∣d(jn…1, jn)

∣
∣ +

∣
∣V(jn, jn+1)

∣
∣
)
)

…τ (3.8)

< F
(

1
2

(∣
∣d(jn…1, jn)

∣
∣ +

∣
∣V(jn, jn+1)

∣
∣
)
)

,

from which, by taking advantage of the monotony ofF, we have that{|V(jn, jn+1)|} is a

decreasing sequence. Letr ≥ 0 be its limit.

By applying inequality (3.8) and keeping in mind also that{|V(jn, jn+1)|} is a decreasing

sequence, we get, forn ≥ 1,

F
(∣
∣V(jn, jn+1)

∣
∣
) ≤ F

(∣
∣V(jn…1, jn)

∣
∣
)

…τ ≤ F
(∣
∣V(j0, j1)

∣
∣
)

…nτ . (3.9)

It follows that limn→∞ F(|V(jn, jn+1)|) = …∞. Having in mind F ∈ F , we obtain that

limn→∞ |V(jn, jn+1)| = 0.
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Let us now analyze the self-distance. Presume that there existsn0 ∈ N such that

V(jn, jn) �= 0 for anyn ≥ n0, wheren0 ∈N. The contractive condition imposes

F
(∣
∣V(jn+1, jn+1)

∣
∣
) ≤ F

(∣
∣d(jn, jn+1)

∣
∣
)

…τ .

From (3.9), it follows that

F
(∣
∣V(jn+1, jn+1)

∣
∣
) ≤ F

(∣
∣V(jn0, jn0+1)

∣
∣
)

… (n …n0)τ .

Letting n → ∞ and using the properties of the functionF, we get thatlimn→∞ V(jn, jn) = 0.

As in the proof of Theorem1, we obtain that {jn} is a Cauchy sequence and so it is

convergent to somej. From the preceding lines,V(j, j) = 0. SinceT is continuous,{Tjn}
converges toTj, and thereforeV(Tjn,Tjn) → V(Tj,Tj). On the other hand,V(Tjn,Tjn) →
V(j, j) = 0. We have obtained thatV(Tj,Tj) = 0.

In view that

V(j,Tj) ≤ V(j, jn+1) + V(jn+1,Tj) …V(jn+1, jn+1), n ∈N,

and also that

V(jn+1,Tj) ≤ V(jn+1, j) + V(j,Tj) …V(j, j), n ∈N,

by consideringn → ∞ and using the continuity ofT , we obtainV(j,Tj) = 0. We conclude

that Tj = j, and soT has a “xed point.

Assume now that the set{n ∈ N,V(jn, jn) = 0} is not bounded. In this case, there exists

a subsequence of{jn}, {jnk} for which V(jnk , jnk ) = 0, k ∈ N. We repeat the same lines as in

the proof of Theorem1 for this subsequence{jnk}, and we obtain that{jnk} is convergent

to j ∈� with V(j, j) = 0. The equalityj = Tj follows as in the case when{n ∈N,V(jn, jn) = 0}
is bounded.

Summing up, we have proved thatT has a “xed point.

Let us focus now on the uniqueness of the “xed point ofT . Assume thatj andk are two

distinct “xed points of T . Now suppose thatV(j, j) �= 0. Then the following holds:

F
(∣
∣V(j, j)

∣
∣
)

= F
(
V(Tj,Tj)

) ≤ F
(∣
∣V(j,Tj)

∣
∣
)

…τ = F
(∣
∣V(j, j)

∣
∣
)

…τ ,

which is impossible. Hence,V(j, j) = 0. Similarly, it can be proved thatV(k,k) = 0.

If V(j,k) �= 0, then the following holds:

F
(∣
∣V(j,k)

∣
∣
)

= F
(∣
∣V(Tj,Tk)

∣
∣
) ≤ F

(
1
2

(∣
∣V(j,Tj)

∣
∣ +

∣
∣V(k,Tk)

∣
∣
)
)

…τ ,

and it is not well de“ned. Therefore,V(j,k) = 0.

It follows that j = k, and so the “xed point is unique. �

To support our results, we give the next example.
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Example6 Let� = (…∞, 0] and de“ne the functionV : �×� →R by

V(j,k) =

⎧
⎨

⎩

|j …k| + 1, if j �= k,

max{j,k}, if j = k.

According to [21], the pair (�,V) is a complete dualistic partial metric space. Consider the

mappingT : � →� given as

Tj =

⎧
⎨

⎩

…1, j ∈ (…∞,…4],

…1
2, j ∈ (…4,0].

We claim that T ful“lls the conditions of Theorem 2 for τ = ln 3
2 andF(t) = ln t .

We have to analyze several cases.

Case I.j �= k with j,k ∈ (…4,0].

We note thatV(Tj,Tk) = V(…1
2,…1

2) = …1
2. Also,

ln
3
2

+ ln
∣
∣V(Tj,Tk)

∣
∣ = ln

3
2

+ ln

∣
∣
∣
∣…

1
2

∣
∣
∣
∣

= ln
3
4

≤ ln
|V(j,…1

2)| + |V(k,…1
2)|

2

= ln
|V(j,Tj)| + |V(k,Tk)|

2
,

and so it behaves accordingly.

Case II.j �= k with j,k ∈ (…∞,…4].

Here, we have

ln
3
2

+ ln
∣
∣V(Tj,Tk)

∣
∣ = ln

3
2

+ ln
∣
∣V(…1,…1)

∣
∣

= ln
3
2

≤ ln
|V(j,…1)| + |V(k,…1)|

2

= ln
|V(j,Tj)| + |V(k,Tk)|

2
,

and the relation is also checked.

Case III.j �= k with j ∈ (…∞,…4],k ∈ (…4,0] and vice versa.

In this case, we haveV(Tj,Tk) = V(…1,…12) = 3
2. Also,

ln
3
2

+ ln
∣
∣V(Tj,Tk)

∣
∣ = ln

3
2

+ ln

∣
∣
∣
∣
3
2

∣
∣
∣
∣

= ln
9
4
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≤ ln
|V(j,…1)| + |V(k, …1

2 )|
2

= ln
|V(j,Tj)| + |V(k,Tk)|

2
.

Case IV.j = k ∈ (…4,0].

We have

ln
3
2

+ ln
∣
∣V(Tj,Tk)

∣
∣ = ln

3
2

+ ln

∣
∣
∣
∣…

1
2

∣
∣
∣
∣

= ln
3
4

≤ ln
|V(j,…1

2)| + |V(k,…1
2)|

2

= ln
|V(j,Tj)| + |V(k,Tk)|

2
,

so, this case is also true.

Case V.j = k ∈ (…∞,…4].

In this case, one writes

ln
3
2

+ ln
∣
∣V(Tj,Tk)

∣
∣ = ln

3
2

+ ln
∣
∣V(…1,…1)

∣
∣

= ln
3
2

≤ ln
|V(j,…1)| + |V(k,…1)|

2

= ln
|V(j,Tj)| + |V(k,Tk)|

2
.

The inequality in Theorem2 is ful“lled. By applying this result, we get thatT has a unique

“xed point, which is j = …1
2.

On the other hand, it can be easily veri“ed that the inequality in Theorem1 is not sat-

is“ed in the casej = k = 0.

4 Application to the boundary value problem
In this section, we apply Theorem1 to obtain the existence of the solution to the following

boundary value problem. For more details on the applications of BCP, readers are referred

to [41, 42].

⎧
⎨

⎩

…d2�

dĺ2
= ǵ(ĺ ,�(ĺ)), ĺ ∈ [0, 1],

�(0) = �(1) = 0,
(4.1)

whereǵ : [0, 1]× R −→ R is a continuous mapping. The Green function associated with

the boundary value problem (4.1) is de“ned by

V(ĺ, ȟ) =

⎧
⎨

⎩

ĺ (1 …̌h), 0≤ ĺ ≤ ȟ ≤ 1,

ȟ(1 …́l), 0≤ ȟ ≤ ĺ ≤ 1.
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Let C[0,1] be the space of all continuous mappings de“ned on [0,1]. LetC = (C[0,1],R).

De“ne the mappingV :C × C →R by

V(�, ǔ) =
∥
∥(� …ǔ)

∥
∥∞ + L = sup

ĺ∈[0,1]

∣
∣�(ĺ) …ǔ(ĺ)

∣
∣ + L, L ∈R.

The pair (C,V) is a complete dualistic partial metric space. The associated operatorT :

C → C to the boundary value problem (4.1) has the following form:

T�(ĺ) =
∫ 1

0
V(ĺ, ȟ)ǵ

(
ȟ,�(ȟ)

)
dȟ (4.2)

for all ĺ ∈ [0, 1]. Note that problem (4.1) has a solution i� the operatorT has a “xed point.

Theorem 3 Let C = C([0,1],R) and suppose that the mappinǵg : [0, 1]× C →R satis“es

∣
∣ǵ(ĺ ,�) …ǵ(ĺ, ǔ)

∣
∣ ≤ 8 ln

(
ee…τ ω

ρ

)

(4.3)

for all ĺ ∈ [0, 1],�, ǔ ∈ C, ω = |V(�, ǔ)|, ρ > 0, andτ > 0. Then boundary value problem (4.1)

has a solution.

Proof We note that q(ĺ) ∈ (C2[0,1],R) (say) is a solution of (4.1) if and only if q(ĺ) ∈ C is

a solution of integral equation (4.2). The solution of (4.2) is given by the “xed point ofT ,

i.e., q(ĺ) = T(q(ĺ)).

Let �, ǔ ∈ C and ĺ ∈ [0, 1], by (4.3), we get

∣
∣T�(ĺ) …Tǔ(ĺ)

∣
∣ =

[∣
∣
∣
∣

∫ 1

0
V(ĺ, ȟ)

[
ǵ
(
ȟ,�(ȟ)

)
…ǵ

(
ȟ, ǔ(ȟ)

)]
dȟ

∣
∣
∣
∣

]

≤
[∫ 1

0
V(ĺ, ȟ)

∣
∣ǵ

(
ȟ,�(ȟ)

)
…ǵ

(
ȟ, ǔ(ȟ)

)∣
∣dȟ

]

≤
[

8
∫ 1

0
V(ĺ, ȟ) ln

(
ee…τ ω

ρ

)

dȟ
]

≤
[

8
∫ 1

0
V(ĺ, ȟ) ln

(
ee…τ ω

ρ

)

dȟ
]

= 8 ln

(
ee…τ ω

ρ

)(

sup
ĺ∈[0,1]

[∫ 1

0
V(ĺ, ȟ) dȟ

])

.

Since
∫ 1

0 V(ĺ, ȟ) dȟ = …́l2

2 + ĺ
2 for all ĺ ∈ [0, 1], we havesup

ĺ∈[0,1]

[
∫ 1

0 V(ĺ, ȟ) dȟ] = 1
8, which implies

that

∣
∣V

(
T(�),T (ǔ)

)∣
∣ = sup

ĺ∈[0,1]

∣
∣T�(ĺ) …Tǔ(ĺ)

∣
∣ + L ≤ e…τω;

(
L = ln(ρ)

)

= e…τ
(∣
∣V(�, ǔ)

∣
∣
)
.
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Taking ln on both sides, we have

ln
∣
∣V

(
T(�),T (ǔ)

)∣
∣ ≤ ln e…τ

(∣
∣V(�, ǔ)

∣
∣
)
.

De“ne F(�) = ln(�) for all � ∈ C, and simplifying the last inequality, we have

τ + F
(∣
∣V

(
T(�),T (ǔ)

)∣
∣
) ≤ F

(∣
∣V(�, ǔ)

∣
∣
)
.

Hence, the application of Theorem1 ensures thatT has at least one “xed pointq(ĺ) ∈ C,

that is,T(q(ĺ) = q(ĺ) which is a solution of (4.2). �

5 Conclusion
This paper has extended the classicalF-contraction from the cased(j,k) > 0 toV(j,k) �= 0.

There are self-mappings de“ned on dualistic partial metric spaces which have no “xed

points, but satisfy contractive conditions given in [24,33,35,37]. However, such mappings

do not satisfy (3.1) and (3.7). Thus, contractive conditions (3.1) and (3.7) are re“nements of

the ordinary (Banach type and Kannan type)F-contractions. This paper has also presented

a new method to show the existence of “xed points ofF-contractions in dualistic partial

metric spaces.
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