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Abstract

The purpose of this paper is to consider someontraction mappings in a dualistic
partial metric space and to provide su cient related conditions for the existence of
“xed point. The obtained results are extensions of several ones existing in the
literature. Moreover, we present examples and an application to support our resu
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1 Introduction

The study of metric “xed point theory was initiated by Banach (1922). It has been en-
riched by introducing several structures, generalizing underlying metric space, and the
contractive condition. The Banach contraction principle has been proved in several dif-
ferent abstract metric spaces (se&.[10]). Before the publication of the paper of Mustafa

et al.[5], the metric functions were de“ned onX?, Mustafaet al. [5] introduced a metric
function de“ned on X3, and itis known as @-metric. Mustafaet al.[5] proved the Banach
contraction principle (BCP) inG-metric spaces and gave several examples to establish its
superiority over the BCP in metric spaces. Sedgdtial. [11] introduced another abstract
metric de“ned on X3, called anS-metric, and proved the analogue of the BCP.

Working on network topologies in computer science, MatthewslP] observed that the
self-distance of a point need not be zero. This led him to introduce a partial metric and
hence obtain an analogue of the BCP. Later, many researchers worked on partial metric
spaces and produced several papers on partial metric topologies and existence of “xed
points of self-mappings (se€elB..17]).

Neill [18] observed during his study on dual topologies that a partial metric may have
negative value, that is, the range set of a partial metric can be considered as a real line.
It is known as a dualistic partial metric. Oltraet al. [19] presented an analogue of the
Banach “xed point result in complete dualistic partial metric spaces using some conver-
gence properties of sequences. Subsequently, Nazztral. [20..22] and Pitea R3] pub-
lished some papers addressing the existence of “xed points of self-mappings de“ned on
dualistic partial metric spaces.
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The concept of F-contractions given by Wardowski 24] has attracted people in “xed
point theory, and numerous research papers dicontractions have been published (see
[25..37] and the references therein). Proinov(202038] showed that some “xed point the-
orems of Wardowski (2012)24], Jleliand Samet (2014 8] that have recently appeared are
equivalent to a special case of the well-known “xed point theorem of Skof (1973%].

In this paper, we investigate “xed points of-contractions under the rules practiced
in dualistic partial metric spaces. We also discuss how this di ers from the classi¢al
contraction introduced by Wardowski p4].

2 Preliminaries
Let T: U — U be a self-mapping on a nonempty séf. The sequencg’,} in U with an
initial point £¢ given as

£, =T, ) forallneN

is said to be a Picard iterative sequence. The partial metric space was de“ned by Matthews
[12].

Definition 1 ([12]) A partial metric on a nonempty set is a functionP: U x U — [0, 00)
such that

(Py) £=h< P(¢,£)=P(h,h)=P(,h);

(P2) P(¢, ) < P(e,h);

(Ps) P(¢,h)=P(h,);

(Ps) P(¢,v) <P(¢,R)+P(h,v)..P(h,R)
forall ¢,7,v € U.

The notion of a partial metric was extended by Neill[8] in the following.

Definition 2 ([18]) A dualistic partial metric on a nonempty set is a functionV: U x
U — R fullling the following properties for all ¢, A, v € U:

V1) L=ho V() =V(h k) =V, h);

(V2) V(€,6) =V(¢,h);

(V3) V(€ h)=V(h,0);

Va) V(,v) <V(,h)+V(hv)..V(hh).
Then (U, V) is said to be a dualistic partial metric space.

Remarkl Each partial metric is a dualistic partial metric. The converse does not hold in
general. For this, consider

Vm:RxR— R, Vm(€,h) =max{¢,h} V¢,heR.

Then Vy, is a dualistic partial metric (see41]). Here Vy, is not a partial metric since for
any{¢<0,h<0itimplies Vn(¢,h) <O0.

Note that in a dualistic partial metric,V(¢,h) = 0 does not necessarily imply = k.
Indeed, Vn(...1,0) = 0. This case creates a problem in obtaining a “xed point of a self-
mapping in a dualistic partial metric space. To resolve this problem, in this paper we em-
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ploy our proposedF-contraction (de“ned in the next section) along with axioms),) and
(V1) to get a “xed point.

We give now some examples of dualistic partial metrics. The “rstis related to the classic
one.

Examplel If (U,d) is a metric space and € R is an arbitrary constant, then
V(,h)=d(¢,h)+cC
is a dualistic partial metric onU.
Next, we use a partial metric to de“ne a dualistic partial metric space.

Example2 ([18]) Let (U, P) be a partial metric space. The mappiny': U x U — R given
as

V(€ k) =P, B ..P(,¢) ..P(h,E) forall ¢,he®

veri‘es axioms (1) ... ¥4). So itis dualistic partial metric on5. We emphasize thaV'(¢, h)
may have negative values.

Example3 ([22]) Let 5 =R. ConsiderV: U x U — R as

|¢. b ifeh,
b if ¢=h;b>0.

V(¢ h)=

Then (U, V) is a dualistic partial metric space.

Neill [18] ensured that each dualistic partial metri¢’ on U generates & topology t[V]
on U having as a base the family df-balls {By,(¢,w) : £ € U,w > 0}, where

Bu(t,w)={heU:V(t,h) <w+V((,0)}.
If (U,V) is a dualistic partial metric space, then the function
d*: U x U — R, d*(¢,h) =V(¢,h) .. V(£,0) (2.1)
is a quasi-metric onU such that (V) = t(dj,) and d3,(¢, /) = max{d*(¢,r),d*(h, £)} is a
metric on U. Itis said to be an induced metric oni(, V).
The following describes the convergence criteria in a dualistic partial metric space es-

tablished by Oltraet al.[19].

Definition 3 ([19]) Let {¢n}nen be a sequence in the dualistic partial metric spads,().
(1) {€n} is convergent to an element £ in (U, V) if

lim V(¢n,€) = V(£, ).
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(2) {€n}in (G,V) is said to be Cauchy if

lim V(¢n,¢m) exists and is finite.
n,m— oo

(3) (G,V) is said to be complete if every Cauchy sequence {£n}nen in U converges, with
respect to 7[V], to an element £ € U such that

V(6O = lim V(e Em).

Remark2 For a sequencé(,} C U, the convergence with respect to an induced metric
space {J,ds,) may not lead to the convergence with respect to the dualistic partial metric
space (5, V).

Indeed, consider{¢, = ... 1 C U and take

€ ..B=dS,(e,h) ifLFh,

ViOxU—>R,  V(,h)=
ift = .

Clearly,
lim df,(¢n,...1)=0.
n—oo
This implies that ¢, — ...1 with respect toi§,d},). On the other hand, consider
n1im V(n,...1) P(...1,...1).
That s,
lim ¢, +1]=...1.
n—o0

It is a contradiction. Thus,¢, - ...1 with respect toi§, V).
With regard to the connections between convergence and Cauchyness in dualistic par-
tial metric spaces, we recall the next lemma.

Lemma 1 ([19, Lemma 2.2]) Let (U, V) be a dualistic partial metric space
(1) Each Cauchy sequence in (U,03,) is also Cauchy in (U, V).
(2) (U,V) is complete iff the induced metric space (U, d3,) is complete.
(3) A sequence {€n} in U converges to an element v € U with respect to T[(dS,)] if and

only if

lim V(U,zn) = V(U, U) = lim V(En,Em).
n—oo n,m— oo

3 Main results
Definition 4 ([24]) Denote by.F the set of all functionsF: (0,00) — R ful“lling the prop-
erties:

(1) Fis strictly increasing;
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(2) For any sequence of positive terms {an}, limp_. 00 8n =0 <= limp_, o F(an) = ..00;
(3) There is k in (0, 1) such that lim,_, ¢+ oXF(r) = 0.
Exampled4 The following functionsF: (0,00) — R given for all£ € (0,0¢0) as:
(i) F(¢)=1In(e),
(i) F(€)=2¢+1n(¢),
(iii) F(€) =1In(€? + £),
. - 1
(iv) F(e) = T
belong to the setF.

In [24], Wardowski introduced a remarkable contraction known aB-contraction and
presented a method to obtain “xed points of such contractions in complete metric spaces.
The following theorem is the variant of Wardowskiss “xed point theoren?{] in the com-
plete dualistic partial metric spaces. Theorethis a useful generalization of the mentioned
theorem.

Theorem 1 Let(M,)) be a complete dualistic partial metric spa¢& € F,and T: M —
M be a continuous mapping for which there exists> 0 such that for all j, k from M, the
following implication holds

VAL TK) 20 = «+F(|V(T,Tk)|) < F(|VG.K)|). 3.1
Then T possesses a unique “xed paint

Proof Letjg be an element fromM andjn+1 = Tj, for all n € N. If there isn, € N for which
Ino+1 = Jne» then j,, is a “xed point of T. Therefore, we may assume thg{ 7 ju+1 for any
n € N. Given that)(jn,jn+1) #Z 0 for anyn € N. By the use of the contractive condition, we
obtain, forn > 1,

F([V(nins0)]) < F(|VGn...ain)]) -7 <F(|V(n...1in)]), (3.2)

which, by taking advantage of the monotonicity d¥, {|V(jn,jn+1)|} is decreasing. Let > 0
be its limit. By contractive condition 8.1), we have

F(VGns1.dn)]) = F(V(T (). T Gn..3) ) < F([VGnsdn. 3) - 7.
Thus

F(|VGnsw.n)]) < F(|VGniin..3]) - (3.3)
This in turns implies that

F(|V(insw.in)|) = F(|VGvio)|) - 7.
Letting n — oo and using ), we get

nlglgo F(‘V(jmlvjn)’) =.00 nlggo}v(jnﬂ,jn)’ =0.
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(3.4)

This yields that

Tim V(jne1,jn) =0=r.
Focusing now on the self-distance, we have, foe N,

F([V(n1inen)]) < F([VGnodn)]) -7 <F(VGnjn)]),
and so{|V(jn,jn)|} is a sequence decreasing to sorhe- 0. Arguing as above, we get that
| =0. By the third property of functions inF, there is6 € (0, 1) such thatlimp_, o, |Va|? x

F(Val)=0.
ConsiderV, = V(jn,jn+1) for n € N. By applying repeatedly inequalityd(2), it follows that

F(IVal) <F(1Vol) ..nt

or
neN.,

Vol F(IVal) < Wal” (F(1Vol) .. n7)
Letting n — oo and taking advantage of the properties of the functiok, we get that
(3.5)

nV,l? — 0 asn — oo. There isN; € N such that

1
Val < —, n=Ng.
ne
Denote byV;, = V(jn,jn) for n € N. Similarly, there isN, € N such that, for anyn > N,
(3.6)

1

ne
Having in mind inequalities @.5 and (3.6), we have, fom >n > max{N1, N5},

m..n...1

d*(jn,jm) < Z d*(jn+e,jneer1)

£=0
m..n..1
Z (|V(jn+lljn+e+l)’ + ’V(jn+[,jn+z)|)

=0
Taking the limitto oo, it follows that {d*(jn,jm)} — 0. Applying an analogous procedure, we
getthat{d*(jm,jn)} — O, henceds,(jn,jm) — O, sofjn} is a Cauchy sequence in the complete

metric space M,d3,). Let]j be its limit. Obviously,
lim V(jn,jm) =0.
n,m—oo

lim V(jn, ) = V(1) =0,
SinceT is a continuous mapping{Tj,} converges taTlj. This implies thatV(Tjn, Tjn) —

V(Tj,Tj). SinceV(Tjn, Tjn) — V(,j) = 0, it follows that V(Tj, Tj) = 0.
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In view that
VG, T) = V(hJne1) + V(e T) . V(netiinea), NeN,
and
V(ine1, ) < V(ine1,)) + VG, T)) - V(00), neN,

by consideringn — oo and using the continuity of T, we obtainV(j, Tj) = 0.

Thus V(Tj,Tj) = V(j,j) = V(j,Tj), soTj =j. Let us focus now on the uniqueness of the
“xed point of T. Assume that andk are two distinct “xed points of T. If V(j,k) Z 0, then
the following relations hold true:

F(IVG.k)) =F (v, Tk)) <F([Vi.K)) ...

which is a contradiction. Therefore)(j,k) = 0. Similarly, it can be proved that/(j,j) =0
and V(k,k) = 0. It follows that j = k, and so the “xed point is unique. O

Remark3 By settingV(j,j) = 0 for all j € M, we have)(j,k) > 0 for all j,k € M and thus
V:M xM — Risrestrictedto) :M x M — R*, which is equal to the induced metrials,
on M. Hence Wardowski “xed point theorem P4] is a particular case of Theorem.

We continue with an example with respect to this theorem. Exampkdoes not only
explain Theorem1, but also shows that the Wardowski “xed point theoremZ4] is not
applicable for¢ = h.

Example5 Let. A =(..0c0,0]. De“ne the mapping

|¢..hl ifexh,

V:Ax A— RV, h)=
evh o ife=h.

Then (A, V) is a complete dualistic partial metric space. Let> 0 and de“ne the mapping:

et if £ € Q(a set of rational numbers),

2
e;[ if £ € Q'(a set of irrational numbers).

T.A— A,T(E)=[

Contractive condition 2.1) is satis“ed for F(¢) = In(¢) for all £ > 0. For this, consider the
following:
Casel. (a)¢ # h;if £,h € Q, then

V(T(), T(h)|=5e"le..nl<e™|V(L,h),

NI -

which implies T + F(V(T £, Th)|) < F(IV(¢, R))).
(b)e=h;if £,h e @, then

V(T ), TM)|= %e--fw Lhl<e V(e n),

which leads tor + F((V(T ¢, Th)|) < F(V(,h))).
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Case2. (a)t =h; if £ € Q, then

V(T@©).T(M)|= Ee--fe <e|V(L,h)l.
(b)¢=h;if £ € Q, then
V(TE.T(0)|= ‘%e"fe <e ).

From (a) and (b), we infer that + F(|V(T ¢, T R)|) < F(|V(¢, R)|).
Case3. If £ € Q, h € Q' and vice versa, then

wl >

V(T (). T(M)|= ‘

e..r < e..r |V(€, h)|

NI~

Thus,t+F(|V(T £, Th)|) < F(V(¢,h)]). Hence,T satis“es all the conditions of Theorend.
Note that ¢ = 0 is the unique “xed point of T.

The following theorem is for Kannan type F-contraction in the dualistic partial metric
spaces. Itis a useful generalization of(, Theorem 2].

Theorem 2 Let (U, V) be a complete dualistic partial metric spa¢& € F,andT: 05— U
be a continuous mapping for which there exists> 0 such that for all j and k in G, the
following implication holds

VA, Tk 70 = t+F(|V(T],Tk)|) < F(%(|V(j,Tj)| + |V(k,Tk)|)). (3.7)

Then T admits a unique “xed point

Proof For jo from U, setjn+1 = Tjn for n € N. If there isse N for which js1 = s, thenjsis
a “xed point of T. We presume thatj, 7 jn+1 for any n € N. GivenV(jn,jn+1) Z 0 for any
n € N. By the use of the contractive condition, we obtain, for > 1,

- 1, . o
F(Vanine) = F( 590300+ Plinins)) - 38)
1. . o
< F(E(‘d(ln...l]n)’ + ’V(Jny]n+l)‘)),
from which, by taking advantage of the monotony of, we have that{|V(jn,jn+1)|} IS @
decreasing sequence. Let> 0 be its limit.
By applying inequality 8.8) and keeping in mind also thaf|V(jn,jn+1)|} iS a decreasing

sequence, we get, far> 1,

F([V(nind)|) < F(V(n...ain)]) -7 <F(|VGo.j1)]) .07 (3.9)

It follows that limp_ o F(|V(jin,jn+1)|) = ..00. Having in mind F € F, we obtain that
limp_, o [V(jn,jn+1) = 0.
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Let us now analyze the self-distance. Presume that there existse N such that
V(in,jn) 70 for anyn > ng, whereng € N. The contractive condition imposes

F(|V(jn+1,jn+1)|) = F(‘d(jn,jn+1)|) ..T.

From (3.9), it follows that

F(|V(jn+11jn+l)|) = F(‘V(jnoijno+l)|) ... no)T.

Letting n — oo and using the properties of the functior, we get thatlimy_, oo V(jn,jn) = 0.
As in the proof of Theorem1, we obtain that{j,} is a Cauchy sequence and so it is
convergent to somg. From the preceding lines)/(j,j) = 0. SinceT is continuous,{Tj,}
converges toTj, and thereforeV(Tj,, Tjn) — V(Tj,Tj). On the other hand,V(Tj, Tjn) —
V(j,j) = 0. We have obtained thaV(Tj, Tj) = 0.
In view that

V(ijj) =< V(j,jn+1) + V(jn+1,Tj) ...V(jn+1,jn+1), ne N,
and also that
V(ine1,T)) < V(ine1,)) + VG, T)) - V(00), neN,

by consideringn — oo and using the continuity ofT, we obtainV(j, Tj) = 0. We conclude
that Tj =j, and soT has a “xed point.

Assume now that the se{n € N,V (jn,jn) = 0} is not bounded. In this case, there exists
a subsequence dfin}, {jn, } for which V(jn,.jn,) = 0,k € N. We repeat the same lines as in
the proof of Theorem1 for this subsequencdj,, }, and we obtain that{j,, } is convergent
to j € U with V(j,j) = 0. The equalityj = Tj follows as in the case whefn € N, V(jn,jn) = 0}
is bounded.

Summing up, we have proved thal has a “xed point.

Let us focus now on the uniqueness of the “xed point &f . Assume that andk are two
distinct “xed points of T. Now suppose that/(j,j) #0. Then the following holds:

F(IVG.0]) =FVT ) <F(vGQ. D)) ..o =F(]VG6.J)|) - .

which is impossible. Hence)(j,j) = 0. Similarly, it can be proved thav’(k,k) = 0.
If V(j,k) # 0, then the following holds:

F([Va.k)]) =F(|vT,Tk)|) < F(%(|V(j,Tj)| + |V(k,Tk)|)> T,

and it is not well de“ned. Therefore,)(j,k) = 0.
It follows that j = k, and so the “xed point is unique. g

To support our results, we give the next example.
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Example6 LetU =(..00, 0] and de“ne the functionV: U x U — R by

j..kl+1, ifjZk,
V= 11K i7

max{j,k}, ifj=k.
According to [21], the pair (0, V) is a complete dualistic partial metric space. Consider the
mappingT : U — U given as

Ti= 21, je(oo, .4,
.3, je(...4,0]

We claim that T ful“lls the conditions of Theorem 2 for t = lng and F(t) = Int.
We have to analyze several cases.
Case ljZzk with j,k € (...4,0].
We note that V(Tj, Tk) = V(..3,..3) = ..3. Also,

mg+mWUymn:mg+m

3
=1ln-
4
21y VG D+ VK -3)]
- 2
= 1y VGTD+ VK, TK))
2 1

and so it behaves accordingly.
Case Il.j Zk with j,k € (..c0, ...4].
Here, we have

lng +ln|V(Tj,Tk)| = 1ng +1n|V(...1, ﬂ)

3
=Iln=

2
SlnIV(J',---JJ)’;IV(k,---]J)
_ 1y VG VTR
= In 5 ,

and the relation is also checked.
Case lll.j Zk with j € (..00, ...4]k € (...4, 0] and vice versa.
In this case, we have’(Tj, Tk) = V(...1, 3) = 2. Also,

3 , 3 3
lni +ln’V(Tj,Tk)‘ = lné +1n 5‘
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VG, ... 00+ VK, =5

1
=<In >
_ 1 VG T+ VK TR
5 .
Case lVj=ke(...4,0].
We have
1
lng +1In|V(T], TK)| = lng +1In E‘
= hl§
4
VG VK )
- 2
_ VG T+ VK, TR)]
2 L

S0, this case is also true.
CaseVj=ke(..00,...4].
In this case, one writes

h‘g +In|V(T], TK)| = 1ng +1n|V(...1,...[1)

3
=Iln=

2
SlnIV(J',---]J)J;IV(k,---]J)
_ 1y VG VTR
=1In > .

The inequality in Theorem2is ful“lled. By applying this result, we get thal has a unique
“xed point, whichis j = ..3.

On the other hand, it can be easily veri“ed that the inequality in Theorerhis not sat-
is“ed in the casgj =k =0.

4 Application to the boundary value problem
In this section, we apply Theoreni to obtain the existence of the solution to the following
boundary value problem. For more details on the applications of BCP, readers are referred
to [41,42].

LEL=g @), Tefo 1], @1
£(0)=¢(1) =0, '

where§: [0,1] x R — R is a continuous mapping. The Green function associated with
the boundary value problem4.1) is de“ned by

Page 11 of 14
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Let C[0, 1] be the space of all continuous mappings de“ned on [0, 1]. Lét (C[O0, 1],R).
De“ne the mapping)V :C x C — R by

Ve, )= ..o +L= sup |e(l) ..o +L, LeR.
{e[0,1]

The pair (C,V) is a complete dualistic partial metric space. The associated operafor
C — C to the boundary value problem4.1) has the following form:

Te() = /Olva’, hg(h, £(h)) dh (4.2)

foralli e [0, 1]. Note that problem @.1) has a solution i the operatorT has a “xed point.

Theorem 3 LetC = C([0, 1],R) and suppose that the mapping: [0, 1] x C — R satis“es

v T

eep w) 4.3)

601, ¢) .41, )| 581n(

foralli €[0,1],¢,t € C,w=[V(¢,U)], p >0, andr > 0. Then boundary value probleny.1)
has a solution.

Proof We note that q(f) € (C?[0,1],R) (say) is a solution of4.1) if and only if q(f) eCis
a solution of integral equation 4.2). The solution of @.2) is given by the “xed point of T,
le,q(l)=T().

Let¢,0 eC andl €[0,1], by @.3), we get

1
< /0V(f,ﬁ)|g(ﬁ,£(ﬁ))..g(ﬁ,ﬂ(ﬁ))]dﬁ]

- l s é“tw
_8/0 V(I,h)ln( ; )d
- l s &"TC()
5_8/0 V(I,h)ln( ; )d

:sm(em)( sup [/lV(l’,ﬁ)dﬁD.
I3 fefo,1L/0

Since/fy V(I,hydh= .2 + 1 foralll € [0, 1], we havesup [ /1 V (i,h)dh] = , which implies
ie[0,1]

IA

that

V(T @O, T@)|= sup [Te(h) .. Tud)| +L < e w;(L=1n(p))
1€[0,1]

=e " (|V(e,))).
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Taking In on both sides, we have
In|V(T(©), TW)| <Ine*(|V(e,)]).
De“ne F(¢) =1n(¢) for all ¢ € C, and simplifying the last inequality, we have

T +F([V(T0),TW)]) <F([ve.)

)-

Hence, the application of Theorend ensures thatT has at least one “xed poinq(f) eC,
thatis, T (q(I) = q() which is a solution of @.2). O

5 Conclusion

This paper has extended the classidalcontraction from the cased(j, k) > 0 to V(j, k) # 0.
There are self-mappings de“ned on dualistic partial metric spaces which have no “xed
points, but satisfy contractive conditions given irg4, 33, 35, 37]. However, such mappings
do not satisfy 8.1) and (3.7). Thus, contractive conditions 8.1) and (3.7) are re“nements of
the ordinary (Banach type and Kannan typ&)-contractions. This paper has also presented
a new method to show the existence of “xed points df-contractions in dualistic partial
metric spaces.
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