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Abstract
In this paper, we establish certain new subclasses of meromorphic harmonic
functions using the principles of q-derivative operator. We obtain new criteria of
sense preserving and univalency. We also address other important aspects, such as
distortion limits, preservation of convolution, and convexity limitations. Additionally,
with the help of sufficiency criteria, we estimate sharp bounds of the real parts of the
ratios of meromorphic harmonic functions to their sequences of partial sums.
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1 Introduction and definitions
Univalent harmonic functions are a new research area that was initially developed by Clu-
nie and Sheil-Small [15]; see also [40]. The significance of such functions is attributed to
their usage in the analysis of minimal surfaces and in problems relevant to applied mathe-
matics. Hengartner and Schober [18] introduced and analyzed some specific types of har-
monic functions in the region ˜D={z ∈C : |z| > 1}. They proved that a harmonic complex-
valued sense-preserving univalent mapping f defined in ˜D and obeying f (∞) = ∞ must
satisfy the following representation:

f (z) = G1(z) + G2(z) + A log |z|, (1.1)

where

G1(z) = μ1z +
∞

∑

n=1

anz–n and G2(z) = μ2z +
∞

∑

n=1

bnz–n

with 0 ≤ |μ2| < |μ1| and A ∈ C. In 1999, Jahangiri and Silverman [26] gave adequate coeffi-
cient criteria for functions of type (1.1) to be univalent. They also provided necessary and
sufficient coefficient criteria within certain constraints for functions to be harmonic and
starlike. Using this idea, the authors of [24] contributed a certain family of harmonic close-
to-convex functions involving the Alexander integral transform. In 2000, Jahangiri [22]
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and Murugusundaramoorthy [35, 36] analyzed the families of meromorphic harmonic
function in ˜D. In [12, 14] the authors used the technique developed by Zou and his coau-
thors in [55] to examine the natures of meromorphic harmonic starlike functions with
respect to symmetrical conjugate points in the punctured disc D∗={z ∈ C : 0 < |z| < 1} =
D\{0}. Particularly, in [14] a sharp approximation of the coefficients and a structural de-
scription of these functions are also determined. To understand the basics in a more clear
way, we denote by H the family of harmonic functions f that can be represented in the
series form

f (z) = h(z) + g(z) =
1
z

+
∞

∑

n=1

(

anzn + bnzn) (

z ∈D
∗), (1.2)

where h and g are holomorphic functions in D∗ and D of the form

h(z) =
1
z

+
∞

∑

n=1

anzn(z ∈D
∗) and g(z) =

∞
∑

n=1

bnzn (z ∈ D) (1.3)

and

|an| ≥ 1, |bn| ≥ 1 (n = 2, 3, . . .).

Also, let us denote by MH the set of complex-valued functions f ∈ H that are sense pre-
serving and univalent in D∗. Clearly, if g(z) ≡ 0 (z ∈ D), then MH matches with the col-
lection M of holomorphic univalent normalized functions in D. The above foundational
papers opened a new door for the researchers to add some input in this area of function
theory. In this regard, we consider the collections of meromorphic harmonic starlike and
meromorphic harmonic convex functions in D∗

MS∗
H =

{

f ∈MH : –
DHf (z)

f (z)
≺ 1 + z

1 – z
(

z ∈D
∗)

}

and

MSc
H =

{

f ∈MH : –
DH(DHf (z))

DHf (z)
≺ 1 + z

1 – z
(

z ∈D
∗)

}

,

where the notation ≺ shows the familiar subordination between the holomorphic func-
tions, and

DHf (z) = zh′(z) – zg′(z).

Furthermore, many subfamilies of meromorphic harmonic functions have also been es-
tablished by some well-known researchers; for example, see Bostanci [11], Bostanci and
Öztürk [13], Öztürk and Bostanci [38], Wang et al. [54], Al-dweby and Darus [3], Al-Shaqsi
and Darus [4], Ponnusamy and Rajasekaran [39], Ahuja and Jahangiri [2], Al-Zkeri and Al-
Oboudi [5], Stephen et al. [53], and Khan et al. [32].

The investigation of q-calculus (q stands for quantum) fascinated and inspired many
scholars due its use in various areas of the quantitative sciences. Jackson [20, 21] was



Khan et al. Advances in Difference Equations        (2021) 2021:471 Page 3 of 18

among the key contributors of all the scientists who introduced and developed the q-
calculus theory. Just like q-calculus was used in other mathematical sciences, the formu-
lations of this idea are commonly used to examine the existence of various structures of
function theory. The first paper in which a link was established between certain geometric
nature of the analytic functions and the q-derivative operator is due to the authors [19].
For the usage of q-calculus in function theory, a solid and comprehensive foundation is
given by Srivastava [43]. After this development, many researchers introduced and studied
some useful operators in q-analog with applications of convolution concepts. For exam-
ple, Kanas and Răducanu [27] established the q-differential operator and then examined
the behavior of this operator in function theory. For more applications of this operator,
see [1, 7, 17]. This operator was generalized further for multivalent analytic functions by
Arif et al. [8] and later studied in [30, 41, 51]. Analogous to q-differential operator Arif et
al. [9] and Khan et al. [33] contributed the integral operators for analytic and multivalent
functions, respectively. Similarly, in [6] the authors developed and analyzed operators in
q-analog for meromorphic functions. Also, see the survey-type paper [44] on quantum
calculus and its applications. In 2021, Srivastava, Arif, and Raza [46] introduced and stud-
ied a generalized convolution q-derivative operator for meromorphic harmonic functions.
Using these operators, many researchers contributed some good papers in this direction
in geometric function theory; see [16, 23, 25, 28, 29, 31, 37, 45, 50, 52].

Definition 1.1 Let q ∈]0, 1[. Then the q-analog derivative of f is

Dqf (z) =
f (z) – f (qz)

z(1 – q)
(z ∈D). (1.4)

See also [10, 48, 49], and [47] for some recent applications of the q-difference operators
in the theory of q-series and q-polynomials.

By means of (1.2) and (1.4) we obtain

Dqf (z) = Dqh(z) + Dqg(z)

= –
1

qz2 +
∞

∑

n=1

[n]qanzn–1 +
∞

∑

n=1

[n]qbnzn–1 for n ∈N, (1.5)

where

[n]q =
1 – qn

1 – q
= 1 +

n–1
∑

k=1

qk , and [0]q = 0.

To prevent repetition, we will assume, unless otherwise stated, that

–1 ≤ M < L ≤ 1 and q ∈]0, 1[.

Definition 1.2 By MS∗
H(q, L, M) we denote the set of functions f ∈MH such that

–
qDq

Hf (z)
f (z)

≺ 1 + Lz
1 + Mz

(

z ∈D
∗),
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where

Dq
Hf (z) = zDqh(z) – zDqg(z).

Similarly, we denote

MSc
H(q, L, M) :=

{

f ∈MH : Dq
Hf (z) ∈MS∗

H(q, L, M)
(

z ∈D
∗)}.

In this paper, we learn some nice properties for the currently established families in-
cluding distortion limits, univalency criteria, partial-sum problems, sufficiency criteria,
convexity conditions, and preserving convolutions.

2 Necessary and sufficient conditions
Theorem 2.1 If f ∈H is described by the series of the form (1.2) and if

∞
∑

n=1

(

ρn|an| + σn|bn|
) ≤ L – M, (2.1)

then f ∈MS∗
H(q, L, M) with

ρn =
∣

∣

(

q[n]q + 1
)∣

∣ +
∣

∣

(

Mq[n]q + L
)∣

∣, (2.2)

σn =
∣

∣

(

q[n]q – 1
)∣

∣ +
∣

∣

(

Mq[n]q – L
)∣

∣. (2.3)

Proof If f (z) = 1
z , then we have h(z) = 1

z and g(z) = 0. This implies that

∣

∣h
′(z)

∣

∣ –
∣

∣g
′(z)

∣

∣ > 0.

Hence by the result of Lewy [34] the function f in D∗ is locally univalent and orientation-
preserving. Now we show that f is univalent in D∗. Let z1, z2 ∈D∗ with z1 
= z2. Then

∣

∣f (z1) – f (z2)
∣

∣ =
∣

∣

∣

∣

1
z1

–
1
z2

∣

∣

∣

∣

=
|z2 – z1|
|z1z2| > 0.

To show that f ∈MS∗
H(q, L, M), we have to establish that

∣

∣

∣

∣

qDq
Hf (z) + f (z)

Lf (z) + MqDq
Hf (z)

∣

∣

∣

∣

< 1.

It is easy to find that qDq
Hf (z) = – 1

z and L – M > 0. This indicates that

∣

∣

∣

∣

qDq
Hf (z) + f (z)

Lf (z) + MqDq
Hf (z)

∣

∣

∣

∣

=
∣

∣

∣

∣

– 1
z + 1

z
L – M

∣

∣

∣

∣

= 0 < 1.

Hence f ∈MS∗
H(q, L, M). Now let f ∈H have be of the form (1.2), and let us choose n ≥ 1

such that an 
= 0 or bn 
= 0. Also, by using

q[n]q = q

(

1 +
n–1
∑

k=1

qk

)

> q for 0 < q < 1
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we have

σn

L – M
=

|(q[n]q – 1)| + |(Mq[n]q – L)|
L – M

>
|(q – n)| + |(Mq – Ln)|

L – M
=

(n – q) + (Ln – Mq)
L – M

>
(n – 1) + (Ln – M)

L – M
=

(1 + L)n – (1 + M)
L – M

>
(1 + L)n – (1 + M)n

L – M
= n for all n ≥ 1.

Similarly, ρn
L–M ≥ n for n ≥ 1. Thus using (2.1) together with the above evidence, we get

∞
∑

n=1

(

n|an| + n|bn|
) ≤ 1, (2.4)

and therefore

∣

∣h
′(z)

∣

∣ –
∣

∣g
′(z)

∣

∣ ≥ 1
|z|2 –

∞
∑

n=1

n|an||z|n–1 –
∞

∑

n=1

n|bn||z|n–1

≥ 1
|z|2

(

1 – |z|
∞

∑

n=1

(

n|an| + n|bn|
)

)

≥ 1
|z|2

(

1 –
|z|

L – M

∞
∑

n=1

(

ρn|an| + σn|bn|
)

)

≥ 1
|z|2

(

1 – |z|) > 0
(

z ∈ D
∗).

Therefore by Lewy’s result [34] the function f in D∗ is sense-preserving and locally uni-
valent. Moreover, if z1,z2 ∈ D∗ withz1 
= z2, then

∣

∣

∣

∣

zn
1 – zn

2
z1 – z2

∣

∣

∣

∣

=
n

∑

k=1

|z1|k–1|z2|k–1 ≤ n for n ≥ 2.

Hence by (2.4) we have

∣

∣f (z1) – f (z2)
∣

∣ ≥ ∣

∣h(z1) – h(z2)
∣

∣ –
∣

∣g(z1) – g(z2)
∣

∣

=

∣

∣

∣

∣

∣

1
z1

–
1
z2

–
∞

∑

n=1

an
(

zn
1 – zn

2
)

∣

∣

∣

∣

∣

–

∣

∣

∣

∣

∣

∞
∑

n=1

bn
(

zn
1 – zn

2
)

∣

∣

∣

∣

∣

≥ |z1 – z2|
(

1
|z1z2| –

∞
∑

n=1

(

n|an| + n|bn|
)

)

≥ |z1 – z2|
(

1
|z1z2| – 1

)

> 0.
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This shows that f is univalent in D∗, and thus f ∈ MH. Therefore f ∈ MS∗
H(q, L, M) if

and only if there exists a holomorphic function u with u(0) = 0 and |u(z)| < 1 such that

–
qDq

Hf (z)
f (z)

=
1 + Lu(z)
1 + Mu(z)

or, alternatively,

∣

∣

∣

∣

qDq
Hf (z) + f (z)

Lf (z) + MqDq
Hf (z)

∣

∣

∣

∣

< 1. (2.5)

To prove (2.5), it suffices to show that

∣

∣qDq
Hf (z) + f (z)

∣

∣ –
∣

∣Lf (z) + MqDq
Hf (z)

∣

∣ < 0

for z ∈D. Putting |z| = r (0 < r < 1), we attain

∣

∣qDq
Hf (z) + f (z)

∣

∣ –
∣

∣Lf (z) + MqDq
Hf (z)

∣

∣

≤
∣

∣

∣

∣

∣

∞
∑

n=1

(

q[n]q + 1
)

anzn –
∞

∑

n=1

(

q[n]q – 1
)

bnzn

∣

∣

∣

∣

∣

–

∣

∣

∣

∣

∣

(L – M)
z

+
∞

∑

n=1

(

L + Mq[n]q
)

anzn –
∞

∑

n=1

(

Mq[n]q – L
)

bnzn

∣

∣

∣

∣

∣

≤
{ ∞

∑

n=1

∣

∣

(

q[n]q + 1
)∣

∣|an| +
∞

∑

n=1

∣

∣

(

q[n]q – 1
)∣

∣|bn|
}

–
1
r

{

∣

∣(L – M)
∣

∣ –
∞

∑

n=1

∣

∣

(

Mq[n]q + L
)∣

∣|an| –
∞

∑

n=1

∣

∣

(

Mq[n]q – L
)∣

∣|bn|
}

≤ 1
r

{

–|L – M| +
∞

∑

n=1

(∣

∣

(

q[n]q + 1
)∣

∣ +
∣

∣

(

Mq[n]q + L
)∣

∣

)|an|

+
∞

∑

n=1

(∣

∣

(

q[n]q – 1
)∣

∣ +
∣

∣

(

Mq[n]q – L
)∣

∣

)|bn|
}

≤ 1
r

{

–(L – M) +
∞

∑

n=1

(

ρn|an| + σn|bn|
)

}

due inequality (2.1). Thus f ∈MS∗
H(q, L, M). �

By substituting specific values of the parameters included in this result we obtain the
following corollaries.

Corollary 2.2 Let f ∈H be of the form (1.2). If

∞
∑

n=1

(

ρn|an| + σn|bn|
) ≤ (1 + q)
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with

ρn =
∣

∣

(

q[n]q + 1
)∣

∣ +
∣

∣

(

q2[n]q – 1
)∣

∣,

σn =
∣

∣

(

q[n]q – 1
)∣

∣ +
∣

∣

(

q2[n]q + 1
)∣

∣,

then f ∈MS∗
H(q, 1, –q)

Proof The result is obtained by setting L = 1 and M = –q in the last theorem. �

Corollary 2.3 Let f ∈H be given in (1.2). If

∞
∑

n=1

n
(|an| + |bn|

) ≤ 1,

then f ∈MS∗
H(1, 1, –1).

Proof Taking the limit as q → 1– in the above corollary, we get the needed result. �

Influenced by Silverman’s paper [42], the set ϑλ, λ ∈ {0, 1}, of functions f ∈ H of type
(1.2) is now described as

an = –|an|, bn = (–1)λ|bn|
(

for n ∈N\{1}).

Hence (1.2) and (1.3) give f (z) = h(z) + g(z) with

h(z) =
1
z

–
∞

∑

n=1

|an|zn, g(z) = (–1)λ
∞

∑

n=1

|bn|zn (z ∈D). (2.6)

Using the above facts, we now define the families

MS∗
Hϑ

(q, L, M) = ϑ0 ∩MS∗
H(q, L, M),

MSc
Hϑ

(q, L, M) = ϑ1 ∩MSc
H(q, L, M).

Let us now prove that condition (2.1) is also appropriate for f ∈MS∗
Hϑ

.

Theorem 2.4 Let f ∈ ϑ0 have expansion (2.6). Then f ∈MS∗
Hϑ

(q, L, M) if and only if (2.1)
is true.

Proof To achieve the result, it is sufficient to determine that f ∈MS∗
Hϑ

(q, L, M) validates
relationship (2.1). Let f ∈MS∗

Hϑ
(q, L, M). Then inequality (2.5) holds, that is, for z ∈D∗,

∣

∣

∣

∣

∑∞
n=1(q[n]q + 1)anzn +

∑∞
n=1(q[n]q – 1)bnzn

L–M
z –

∑∞
n=1(qM[n]q + L)anzn +

∑∞
n=1(qM[n]q – L)bnzn

∣

∣

∣

∣

< 1.

Setting z = r (r ∈ (0, 1)), we obtain

∑∞
n=1(|(q[n]q + 1)||an| + |(q[n]q – 1)||bn|)rn+1

(L – M) –
∑∞

n=1(|(qM[n]q + L)||an| + |(qM[n]q – L)||bn|)rn+1 < 1. (2.7)
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Obviously, in case of r ∈ (0, 1), the left-hand side denominator of (2.7) cannot be zero. In
addition, this is positive when r = 0. Thus, using (2.7), we get

∞
∑

n=1

(

ρn|an| + σn|bn|
)

rn+1 ≤ (L – M) (0 ≤ r < 1). (2.8)

It is straightforward that the partial-sum sequence {Sn} attached with the series
∑∞

n=1(ρn|an| + σn|bn|) is nondecreasing sequence, and by (2.8) it is bounded by (L – M). So
{Sn} is a convergent sequence, and

∞
∑

n=1

(

ρn|an| + σn|bn|
)

rn+1 = lim
n→∞ Sn ≤ (L – M),

which gives assumption (2.1). �

Example 2.5 Let us choose the function

T(z) =
1
z

–
∞

∑

n=1

(

L – M
ρn

1
2n zn +

L – M
σn

1
2n zn

)

(

z ∈ D
∗).

Then we easily get

∞
∑

n=1

(

ρn|an| + σn|bn|
)

=
∞

∑

n=1

1
2n–1 (L – M) = (L – M).

Thus T ∈MS∗
Hϑ

(q, L, M).

By using the above-mentioned theorem along with the notion of class MSc
H(q, L, M) we

can easily derive the following results.

Corollary 2.6 Let f ∈H be written in the form of Taylor expansion (1.2). If

∞
∑

n=1

[n]q
(

ρn|an| + σn|bn|
) ≤ (L – M), (2.9)

then f ∈MSc
H(q, L, M).

Proof From inequality (2.9), Theorem 2.1, and Alexander-type relation

f ∈MSc
H(q, L, M) ⇐⇒ Dq

Hf ∈MS∗
H(q, L, M) (2.10)

we easily get the desired result. �

Corollary 2.7 Let f ∈ ϑ1 be written in the series form (2.6). Then f ∈ MSc
Hϑ

(q, L, M) if
and only if inequality (2.9) is fulfilled.

Proof Using relationship (2.10) and Theorem 2.4, we get the desired result. �
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3 Investigation of partial-sum problems
In this section, we investigate problems of partial sums of certain meromorphic harmonic
functions belonging to MS∗

H(q, L, M). We produce some new findings that connect the
meromorphic harmonic functions with their partial-sum sequences. Let f = h+ g with h

and g given in (1.3). Then the partial-sum sequences of f are specified by

MSt (f ) =
1
z

+
t

∑

n=1

anzn +
∞

∑

n=1

bnzn := MSt (h) + g,

MSl (f ) =
1
z

+
∞

∑

n=1

anzn +
l

∑

n=1

bnzn := MSl (g) + h,

MSt,l (f ) =
1
z

+
t

∑

n=1

anzn +
l

∑

n=1

bnzn := MSt (h) + MSl (g).

Now we find sharp lower bounds for

Re

(

f (z)
MSt (f )

)

and Re

(MSt (f )
f (z)

)

, Re

(

f (z)
MSl (f )

)

and Re

(MSl (f )
f (z)

)

,

and

Re

(

f (z)
MSt,l (f )

)

and Re

(MSt,l (f )
f (z)

)

.

Theorem 3.1 Let f have the form (1.2). If f fulfills (2.1), then

Re

(

f (z)
MSt (f )

)

≥ It+1 – L + M
It+1

(3.1)

and

Re

(MSt (f )
f (z)

)

≥ It+1

It+1 – L + M
, (3.2)

where

In = min(ρn,σn) (3.3)

and

In ≥
⎧

⎨

⎩

L – M for n = 1, 2, . . . , t,

It+1 for n = t + 1, . . . .
(3.4)

The findings above are best suited for the function

f (z) =
1
z

+
L – M
It+1

zt+1, (3.5)

where It+1 is given by (3.4).
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Proof Let us represent

�1(z) =
It+1

L – M

{

f (z)
MSt (f )

–
(

1 –
L – M
It+1

)}

= 1 +
It+1
L–M

∑∞
n=1 anzn

1
z +

∑t
n=1 anzn +

∑∞
n=1 bnzn .

Inequality (3.1) will be acquired if we are able to show that Re{�1(z)} > 0, and for this, we
required to conclude that

∣

∣

∣

∣

�1(z) – 1
�1(z) + 1

∣

∣

∣

∣

≤ 1.

Alternatively, we have the following inequalities:

∣

∣

∣

∣

�1(z) – 1
�1(z) + 1

∣

∣

∣

∣

≤
It+1
L–M

∑∞
n=t+1 |an|

2 – 2(
∑t

n=1 |an| +
∑∞

n=1 |bn|) – It+1
L–M

∑∞
n=t+1 |an|

≤ 1

if and only if

t
∑

n=1

|an| +
∞

∑

n=1

|bn| +
It+1

L – M

∞
∑

n=t+1

|an| ≤ 1. (3.6)

From (2.1) we have that it suffices to guarantee that the left-hand side of (3.6) is bounded
above by

∞
∑

n=1

In

L – M
|an| +

∞
∑

n=1

In

L – M
|bn|,

which is exactly equivalent to

t
∑

n=1

In – L + M
L – M

|an| +
∞

∑

n=1

In – L + M
L – M

|bn| +
∞

∑

n=t+1

In – It+1

L – M
|an| ≥ 0,

and this is true because of (3.4). We observe that the function

f (z) =
1
z

+
L – M
It+1

zt+1

offers the best possible outcome. We see for z = rei π
t that

f (z)
MSt (f )

= 1 +
L – M
It+1

zt+2 → 1 –
L – M
It+1

rt+2 =
It+1 – L + M

It+1
.

To examine (3.2), let us write

�2(z) =
It+1 + L – M

L – M

{MSt (f )
f (z)

–
(

1 –
L – M

It+1 + L – M

)}
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= 1 –
It+1+L–M

L–M
∑∞

n=t+1 anzn

1
z +

∑∞
n=1 anzn +

∑∞
n=1 bnzn .

Then

∣

∣

∣

∣

�2(z) – 1
�2(z) + 1

∣

∣

∣

∣

≤
It+1+L–M

L–M
∑∞

n=t+1 |an|
2 – 2(

∑t
n=1 |an| +

∑∞
n=1 |bn|) – It+1+L–M

L–M
∑∞

n=t+1 |an|
≤ 1

if and only if

t
∑

n=1

|an| +
∞

∑

n=1

|bn| +
It+1

L – M

∞
∑

n=t+1

|an| ≤ 1. (3.7)

Inequality (3.7) is valid if the left-hand side of this inequality is bounded above by

∞
∑

n=1

In

L – M
|an| +

∞
∑

n=1

In

L – M
|bn|,

and thus the proof is accomplished by using (2.1). �

Theorem 3.2 Let f = h+ g, where h and g are given by (1.3). If f fulfills (2.1), then

Re

(

f (z)
MSl (f )

)

≥ Il+1 – L + M
Il+1

(3.8)

and

Re

(MSl (f )
f (z)

)

≥ Il+1

Il+1 – L + M
, (3.9)

where In is given by (3.3), and

In ≥
⎧

⎨

⎩

L – M for n = 1, 2, . . . , l,

Il+1 for n = l + 1, . . . .
(3.10)

The equalities are achieved by considering the function

f (z) =
1
z

+
L – M
It+1

zl+1. (3.11)

Proof The proof for this specific outcome is similar to that of Theorem 3.1 and is thus
omitted. �

Theorem 3.3 Let f = h+g have the power series form (1.3). If f meets inequality (2.1), then

Re

(

f (z)
MSt,l (f )

)

≥ It+1 – (L – M)
It+1

(3.12)
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and

Re

(MSt,l (f )
f (z)

)

≥ It+1

It+1 + (L – M)
, (3.13)

where In is given by (3.3). The equalities are easily achieved by using (3.5).

Proof To establish (3.12), let us consider

�3(z) =
It+1

L – M

{

f (z)
St,l(f )

–
(

1 –
L – M
It+1

)}

= 1 +
It+1
L–M (

∑∞
n=t+1 anzn +

∑∞
n=l+1 bnzn)

1
z +

∑t
n=1 anzn +

∑l
n=1 bnzn .

Therefore, to show inequality (3.12), it is sufficient to prove the inequality

∣

∣

∣

∣

�3(z) – 1
�3(z) + 1

∣

∣

∣

∣

≤ 1.

Now recalling the left-hand side of the above-mentioned inequality, by easy calculations
we get

∣

∣

∣

∣

�3(z) – 1
�3(z) + 1

∣

∣

∣

∣

≤
It+1
L–M

∑∞
n=t+1 |an|

2 – 2(
∑t

n=1 |an| +
∑l

n=1 |bn|) – It+1
L–M (

∑∞
n=t+1 |an| +

∑∞
n=l+1 |bn|)

.

Since we observe that from (2.1) that the denominator of the last inequality is positive. The
right-hand side of the last inequality is also constrained by one if and only if the following
inequality is maintained:

t
∑

n=1

|an| +
l

∑

n=1

|bn| +
It+1

L – M

( ∞
∑

n=t+1

|an| +
∞

∑

n=t+1

|bn|
)

≤ 1. (3.14)

Eventually, to verify inequality (3.12), it suffices to show that the left-hand side of (3.14) is
bounded above by

∞
∑

n=1

In

L – M
|an| +

∞
∑

n=1

In

L – M
|bn|,

which is further analogous to

t
∑

n=1

In – (L – M)
L – M

|an| +
l

∑

n=1

In – (L – M)
L – M

|bn| +
∞

∑

n=l+1

In – It+1

L – M

( ∞
∑

n=t+1

|an| +
∞

∑

n=t+1

|bn|
)

≥ 0,

and this is true due to (3.10). Now let us choose

f (z) =
1
z

+
L – M
It+1

zt+1,
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which delivers a sharp result. We observe that for z = rei π
t ,

f (z)
MSt (f )

= 1 +
L – M
It+1

zt+2 → 1 –
L – M
It+1

rt+2(r → 1).

Similarly, we obtain (3.9). �

Theorem 3.4 Let f = h + g, where h and g are expressed by (1.3). If f meets (2.1), then

Re

(

f (z)
MSt,l (f )

)

≥ Il+1 – (L – M)
Il+1

and

Re

(MSt,l (f )
f (z)

)

≥ Il+1

Il+1 + (L – M)
,

where In is given by (3.3). The equalities are obtained for the function stated in (3.11).

Proof The proof is very similar to that of Theorem 3.3 and is therefore omitted. �

4 Further properties of the class MS∗
Hϑ

(q, L, M)
Theorem 4.1 If f ∈MS∗

Hϑ
(q, L, M), then for |z| = r,

∣

∣f (z)
∣

∣ ≤ 1
r

+
L – M

σ1
r (4.1)

and

∣

∣f (z)
∣

∣ ≥ 1
r

–
L – M

σ1
r. (4.2)

Proof Let f = h + g ∈ MS∗
Hϑ

(q, L, M) with h and g of the series form (1.3). Then by The-
orem 2.4 we have

∣

∣f (z)
∣

∣ ≤ 1
|z| +

∞
∑

n=1

(|an| + |bn|
)∣

∣zn∣
∣

≤ 1
|z| +

1
σ1

|z|
∞

∑

n=1

(

ρn|an| + σn|bn|
)

≤ 1
|z| +

L – M
σ1

|z|.

This completes the proof of (4.1). By similar arguments we easily obtain (4.2). �

Theorem 4.2 A function f ∈MS∗
Hϑ

(q, L, M) if and only if

f (z) =
∞

∑

n=1

(Xnhn + Yngn), (4.3)
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where

h(z) =
1
z

,

hn(z) =
1
z

–
L – M

ρn
zn for n ∈N,

gn(z) =
1
z

–
L – M

σn
zn for n ∈N,

and Xn, Yn ≥ 0 for n ∈N are such that

∞
∑

n=1

(Xn + Yn) = 1. (4.4)

In particular, the points {hn}, {gn} are called the extreme points of the closed convex hull of
the set MS∗

Hϑ
(q, L, M) denoted by clcoMS∗

Hϑ
(q, L, M).

Proof Let f be specified by (4.3). Then from (4.4) we get

f (z) =
1
z

–
∞

∑

n=1

(

L – M
ρn

Xnzn +
L – M

σn
Ynzn

)

,

which by Theorem 2.4 indicates that f ∈MS∗
Hϑ

(q, L, M), since

∞
∑

n=1

(

ρn

L – M
L – M

ρn
Xn +

σn

L – M
L – M

σn
Yn

)

=
∞

∑

n=1

(Xn + Yn) = 1.

Thus f ∈ clcoMS∗
Hϑ

(q, L, M). For the converse part, let f = h + g ∈MS∗
Hϑ

(q, L, M). Put

Xn =
ρn

L – M
|an|, Yn =

σn

L – M
|bn|.

Then utilizing (4.4) together with the hypothesis, we have

f (z) =
1
z

+
∞

∑

n=1

anzn +
∞

∑

n=1

bnzn

=
1
z

–
∞

∑

n=1

|an|zn –
∞

∑

n=1

|bn|zn

=
1
z

–
∞

∑

n=1

Xn
L – M

ρn
zn –

∞
∑

n=1

Yn
L – M

σn
zn

=
1
z

–
∞

∑

n=1

Xn

{

1
z

– hn

}

–
∞

∑

n=1

Yn

{

1
z

– gn

}

=

(

1 –
∞

∑

n=1

(Xn + Yn)

)

1
z

+
∞

∑

n=1

{

Xnhn(z) + Yngn(z)
}

=
∞

∑

n=1

{

Xnhn(z) + Yngn(z)
}

,

which is the needed form (4.3). Thus the proof of Theorem 4.2 is completed. �
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Theorem 4.3 Let f1, f2 ∈MS∗
Hϑ

(q, L, M). Then f1 ∗ f2 ∈MS∗
Hϑ

(q, L, M).

Proof Let

f1(z) =
1
z

–
∞

∑

n=1

|an|zn – |bn|zn

and

f2(z) =
1
z

–
∞

∑

n=1

|An|zn – |Bn|zn.

Then

(f1 ∗ f2)(z) =
1
z

+
∞

∑

n=1

|An||an|zn – |Bn||bn|zn.

Now if f2 ∈MS∗
Hϑ

(q, L, M), then by Theorem 2.4 we have |An| ≤ 1 and |Bn| ≤ 1. Thus

1
L – M

∞
∑

n=1

(

ρn|An||an| + σn|Bn||bn|
) ≤ 1

L – M

∞
∑

n=1

(

ρn|an| + σn|bn|
) ≤ 1.

By Theorem 2.4 this gives that f1 ∗ f2 ∈MS∗
Hϑ

(q, L, M). �

Theorem 4.4 The family MS∗
Hϑ

(q, L, M) is closed by a convex combination.

Proof For k ∈N, let fk ∈MS∗
Hϑ

(q, L, M) be represented by

fk(z) =
1
z

–
∞

∑

n=1

|an,k|zn –
∞

∑

n=1

|bn,k|zn.

Then by (2.1) we have

∞
∑

n=1

{

ρn|an,k| + σn|bn,k|
L – M

}

≤ 1.

For
∑∞

k=1 ξk = 1, 0 ≤ ξk < 1, the convex combination of fk is

∞
∑

k=1

ξkfk(z) =
1
z

–
∞

∑

n=1

( ∞
∑

k=1

ξk|an,k|
)

zn –
∞

∑

n=1

( ∞
∑

k=1

ξk|bn,k|
)

zn.

Then by Theorem 2.4 we can write

∞
∑

n=1

( ∞
∑

k=1

ρnξk|an,k| +
∞

∑

k=1

σnξk|bn,k|
)

≤
∞

∑

k=1

ξk

{ ∞
∑

n=1

ρn|an,k| +
∞

∑

n=1

σn|bn,k|
}

≤ (L – M)
∞

∑

k=1

ξk = L – M,

and so
∑∞

k=1 ξkfk(z) ∈MS∗
Hϑ

(q, L, M). �
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5 Conclusion
Utilizing the principles of quantum calculus, we have added some new subfamilies of
meromorphic harmonic mappings linked to a circular domain. We learned also certain
important problems for the newly specified function families, namely necessary and suf-
ficient conditions, problems for partial sums, distortion limits, convexity conditions, and
convolution preserving. For these families, other problems, such as topological properties,
fundamental mean inequality, and their implications are open problems for the scholars
to investigate.

As pointed out in the survey-cum-expository review paper by Srivastava [44, p. 340], any
attempt to produce the so-called (p, q)-variation of the q-results, which we have presented
in this paper, will be trivial and inconsequential because the additional parameter p is
obviously redundant or superfluous.
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