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Abstract
In this paper, we study the uniqueness and existence of the solution of a
non-autonomous and nonsingular delay difference equation using the well-known
principle of contraction from fixed point theory. Furthermore, we study the
Hyers–Ulam stability of the given system on a bounded discrete interval and then on
an unbounded interval. An example is also given at the end to illustrate the
theoretical work.
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1 Introduction
In most of the fields of science like mathematics, statistics, economics, and engineering,
people take the number of samples as a discrete form, not in a continuous form. In real
life, some model such as [1–4] are used to analyze the real life problems from mechan-
ics and biomathematics by means of partial differential equations, but some models like
cobweb [5] and national income model [6] can be described by difference equations. Peo-
ple study difference equations because of their many applications in population mod-
els and information transmission. S.A. Kuruklis [7] and J.S. Yu [8] studied the asymp-
totic behavior of the variable type delay difference equation. W. Kosmala [9] provided
a good insight and discussed the behavior of solution of the difference equation of the
type Uk+1 = (A + Uk–1)/(BUk + Uk–1). Zheng-Fan Liu [10] designed the exponential be-
havior of switch discrete-time delay system. Marwen Kermani [11] discussed the stability
techniques about the switched nonlinear time-delay difference equations. Yuanyuan Liu
[12] described the stability techniques of a higher-order difference system. The stability of
higher-order rational difference systems was studied by A. Khaliq [13].

A difference system has a lot of qualitative properties, among them stability is a very
useful property. It is a vital part for a system to work appropriately. There are many types
of stability, but today’s general interest that leads people to want to know more is about
Hyers–Ulam stability. Ulam [14], in 1940, initially studied the theory of Hyers–Ulam sta-
bility. When he lectured a seminar, he put out some problems related to the group ho-
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momorphisms stability. A year later, Hyers [15] answered brightly to the problem by con-
sidering that groups are Banach spaces, specified by Hyers–Ulam stability. Rassias [16],
in 1978, gave an outstanding general approach of the Hyers–Ulam stability, specified by
Hyers–Ulam–Rassias stability. In particular, he also extended the same concept to Cauchy
difference equation. This idea was then extended to differential equations by Obloza [17].
Later on, this stability of difference equations was proved by Jung [18] and Khan et al. [19].

Delay systems can have a lot of uses in the characterization of the evolution process
in automatic engine, physiology system, and control theory. Khusainov and Shuklin [20]
solved the linear autonomous delay-time system with commutable matrices. Diblik and
Khusainov [21] gave the description about the solutions of a discrete delayed system us-
ing the idea [20]. Then Wang et al. [22] studied relative controllability and exponential
stability of nonsingular systems. The consequences about Ulam stability of nonsingular
delay differential equation having first order were shown by A. Zada et al. [23]. Recently,
some results on Ulam type stability of a first-order nonlinear impulsive time varying delay
dynamic system was discussed by S.O. Shah et al. in [24, 25].

In this study, we discuss the Hyers–Ulam stability of nonsingular delay difference system
of the form:

⎧
⎨

⎩

AGn+1 = MGn + NGn–k + F(n, Gn–k), n ≥ 0, k ≥ 0,

Gn = φn, –k ≤ n ≤ 0,
(1.1)

where the constant matrices A, M, and N are commutable having order n×n. The matrix
A is invertible and φ ∈ B(Z+, X), where B(Z+, X) is the space of bounded sequences, also
F ∈ CS(Z+ × X, X), the space of all convergent sequences, where I = {–k, –k + 1, . . . , 0},
Z+ = {0, 1, 2, . . .} and X = Rn. Such work in the continuous case is given in [26].

2 Preliminaries
In this portion, we discuss some definitions and basic concepts which are useful for es-
tablishing the main work. We will use the notation R, R+, Z+ for the real numbers, non-
native real numbers, all nonnegative integers, and the space of all n-tuples of R is denoted
by Rn. The set J = {0, 1, . . . , k} is the subset of Z and X = Rn, the space of all bounded and
convergent sequences from J to X is represented by CS(J , X) with the norm

‖G‖cs =
{

sup
n∈J

∥
∥G(n)

∥
∥ for all G ∈ CS(J , X)

}
.

Besides, we define C1(J , X) = {G ∈ C(J , X); G′ ∈ C1(J , X)}.

Lemma 2.1 The nonsingular delay difference system

⎧
⎨

⎩

AGn+1 = MGn + NGn–k + F(n, Gn–k), n ≥ 0, k ≥ 0,

Gn = �n, –k ≤ n ≤ 0,

has the solution

Gn = MnA–n�0 + Mn–1A–n
k∑

i=0

M–iAi(N�i–k + F(i,�i–k)
)
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+ Mn–1A–n
n∑

i=k+1

M–iAi(NGi–k + F(i, Gi–k)
)
,

where MN = NM, NA = AN , and MA = AM.

The proof can be easily obtained by successively putting the values of n ∈ {–k, –k +1, . . .}.

Definition 2.1 The solution of system (1.1) will be exponentially stable if there exist pos-
itive real numbers λ1 and λ2 such that

‖Gn‖ ≤ λ1e–λ2n, ∀n ≥ 0.

Definition 2.2 For a positive real number ε, the sequence ψn is said to be an ε-
approximate solution of (1.1) if

⎧
⎨

⎩

‖Aψn+1 – Mψn – Nψn–k – F(n,ψn–k)‖ ≤ ε, n ≥ 0, k ≥ 0,

‖ψn – φn‖ ≤ ε, –k ≤ n ≤ 0.
(2.1)

Definition 2.3 System (1.1) will be Hyers–Ulam stable if, for every ε-approximate solu-
tion ψn of system (1.1), there will be an exact solution Yn of (1.1) and a nonnegative real
number K such that

‖Yn – ψn‖ ≤ Kε, n ∈ J .

Definition 2.4 A function ‖ · ‖β : V → [0,∞) is called β-norm, with 0 < β ≤ 1, where V

is a vector space over field K, if the function satisfies the following properties:
(1) ‖H‖β = 0 if and only if G = 0;
(2) ‖κH‖β = |κ|β‖H‖β for each κ ∈ K and H ∈V;
(3) ‖H + H1‖β ≤ ‖H‖β + ‖H1‖β for all H,H ∈V.

And (V,‖ · ‖β ) is said to be a β-norm space.

Lemma 2.2 If zn and gn are nonnegative sequences and a ≥ 0, which satisfies the inequality

‖zn‖ ≤ a +
n∑

i=0

‖gi‖‖zi‖, n ≥ 0,

then

‖zn‖ ≤ a exp

( n∑

i=0

‖zi‖
)

.

Remark 2.1 It is clear from (2.1) that Y ∈ C1(J , X) satisfies (2.1) if and only if there exists
f ∈ CS(J , X) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

‖fn‖ ≤ ε, n ∈ J ,

AYn+1 = MYn + NYn–k + F(n,Yn–k) + fn, n ∈ Z+,

Yn = φn, –k ≤ n ≤ 0.
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3 Existence result
To describe the existence result of the system given by (1.1), we have the following as-
sumptions which will be needed:

�1: The linear system AGn+1 = MGn + NGn–k is well modeled.
�2: The continuous function H : J × X → X satisfies the Caratheodory condition

∥
∥H(n, f ) – H

(
n, f ′)∥∥ ≤K

∥
∥f – f ′∥∥, K ≥ 0,

for every f , f ′ ∈ X .
�3: Mn–1A–n(N + K)L < 1.

Theorem 1 If assumptions �1–�3 hold, then system (1.1) has the unique solution G ∈
B(J , X).

Proof Define T : B(J , X) → B(J , X) by

(TG)n = Mn
A

–nφ0 + Mn–1
A

–n
k∑

i=0

M–i
A

i(Nφj–k + F(i,φi–k)
)

+ Mn–1
A

–n
n∑

i=k+1

M–i
A

i(NGi–k + F(i, Gi–k)
)
.

Now, for any G, G′ ∈ B(J , X), we have

∥
∥(TG)n –

(
TG′)

n

∥
∥ =

∥
∥
∥
∥
∥

Mn
A

–nφ0 + Mn–1
A

–n
k∑

i=0

M–i
A

i(Nφi–k + F(i,φi–k)
)

+ Mn–1
A

–n
n∑

i=k+1

M–i
A

i(NGi–k + F(i, Gi–k)
)

– Mn–1
A

–nφ0 – Mn–1
A

–n
n∑

i=k+1

M–i
A

i(Nφi–k + F(i,φi–k)
)

– Mn–1
A

–n
n∑

i=k+1

M–i
A

i(NG′
i–k + F

(
i, G′

i–k
))

∥
∥
∥
∥
∥

.

This implies that

∥
∥(TG)n –

(
TG′)

n

∥
∥ ≤ ∥

∥Mn–1∥∥
∥
∥A–n∥∥

n∑

i=k+1

∥
∥M–i∥∥

∥
∥Ai∥∥

(∥
∥NGi–k – NG′

i–k
∥
∥

+
∥
∥F(i, Gi–k) – F

(
i, G′

i–k
)∥
∥
)

≤ ∥
∥Mn–1∥∥

∥
∥A–n∥∥

n∑

i=k+1

M–i
A

i(∥∥NGi–k – NG′
i–k

∥
∥

+ K
∥
∥Gi–k – G′

i–k
∥
∥
)

=
∥
∥Mn–1∥∥

∥
∥A–n∥∥(N + K)

n∑

i=k+1

M–i
A

i∥∥Gi–k – G′
i–k

∥
∥

≤ ∥
∥Mn–1∥∥

∥
∥A–n∥∥(N + K)L

∥
∥G – G′∥∥

B .
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Thus, T is a contraction if ‖Mn‖‖A–n‖(N + K)L < 1, so (by BCP) it has a unique fixed
point and will be the solution of system(1.1). �

4 Hyers–Ulam stability on bounded discrete interval
To describe the Hyers–Ulam stability of system (1.1) over a bounded discrete interval, we
have to put some assumptions:

�1: The linear system AGn+1 = MGn + NGn–k is well posed.
�2: The map F : J × X → X satisfies the Caratheodory condition

∥
∥F(n,ϑ) – F

(
n,ϑ ′)∥∥ ≤ K

∥
∥ϑ – ϑ ′∥∥

for some K ≥ 0 and for all ϑ ,ϑ ′ ∈ B(J , X).
�3: There exists nondecreasing ϕn ∈ B(J , X) with a constant η such that

n–k∑

r=1

φr ≤ ηϕn for each n ∈ J .

Theorem 2 If �1, �2, and �3 along with (2.1) and Remark 2.1 hold, then system (1.1) is
Hyers–Ulam stable.

Proof The solution of delay difference equation

⎧
⎨

⎩

AGn+1 = MGn + NGn–k + F(n, Gn–k), n ≥ 0, k ≥ 0,

Gn = �n, –k ≤ n ≤ 0,

is

Gn = MnA–n�0 + Mn–1A–n
k∑

i=0

M–iAi(N�i–k + F(i,�i–k)
)

+ Mn–1A–n
n∑

i=k+1

M–iAi(NGi–k + F(i, Gi–k)
)
.

From Remark 2.1 the solution of

⎧
⎨

⎩

AYn+1 = MYn + NYn–k + F(n,Yn–k) + fn, n ≥ 0, k ≥ 0,

Yn = �n, –k ≤ n ≤ 0,

is

Yn = MnA–n�0 + Mn–1A–n
k∑

i=0

M–iAi(N�i–k + F(i,�i–k)
)

+ Mn–1A–n
n∑

i=k+1

M–iAi(NYi–k + F(i,Yi–k) + fi–k
)
.
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Now, we have

‖Yn – Gn‖ =

∥
∥
∥
∥
∥

MnA–n�0 + Mn–1A–n
k∑

i=0

M–iAi(N�i–k + F(i,�i–k)
)

+ Mn–1A–n
n∑

i=k+1

M–iAi(NYi–k + F(i,Yi–k) + fi–k
)

– MnA–n�0 – Mn–1A–n
k∑

i=0

M–iAi(N�i–k + F(i,�i–k)
)

– Mn–1A–n
n∑

i=k+1

M–iAi(NGi–k + F(i, Gi–k)
)
∥
∥
∥
∥
∥

,

‖Yn – Gn‖ =

∥
∥
∥
∥
∥

Mn–1A–n
n∑

i=k+1

M–iAi(NYi–k + F(i,Yi–k) + fi–k
)

– Mn–1A–n
n∑

i=k+1

M–iAi(NGi–k + F(i, Gi–k)
)
∥
∥
∥
∥
∥

,

‖Yn – Gn‖ ≤ ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖i(‖NYi–k – NGi–k‖

+
∥
∥F(i,Yi–k) – F(i, Gi–k)

∥
∥ + ‖fi–k‖

)
,

‖Yn – Gn‖ ≤ ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖i(‖NYi–k – NGi–k‖

+ K‖Yi–k – Gi–k‖ + ‖fi–k‖
)

= ‖M‖n–1‖A‖–n
n∑

j=k+1

‖M‖–i‖A‖i(∥∥(N + K)Yi–k

– (N + K)Gi–k
∥
∥ + ‖fi–k‖

)

≤ ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖i‖fi–k‖

≤ ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖iεφi–k

= ε‖M‖n–1‖A‖–n
n–k∑

r=1

‖M‖–k–r‖A‖k+rφr

= εL4
n–k∑

r=1

φr

≤ εL4ηϕϕn

= Kε.

Therefore, system (1.1) is Hyers–Ulam stable over a bounded discrete interval. �



Rahmat et al. Advances in Difference Equations        (2021) 2021:474 Page 7 of 15

5 Hyers–Ulam stability on unbounded discrete interval
To discuss the Hyers–Ulam stability over an unbounded discrete interval, we have the
following assumptions:

A1: The operator family ‖L4‖ ≤ Ne–νn, n ≥ 0, ν ≥ 0, N ≥ 1.
A2: The linear system AGn+1 = MGn + NGn–k is well posed.
A3: The continuous function H : Z+ × X → X satisfies the Caratheodory condition

∥
∥H(n,ω) – H

(
n,ω′)∥∥ ≤ K

∥
∥ω – ω′∥∥, K ≥ 0,

for every n ∈ Z+ ω,ω′ ∈ X .
A4: Also, assume that

n–1∑

r=1

φr ≤ ηϕn

for each n ∈ Z+, η ≥ 0 and ϕn is a convergent sequence.

Theorem 3 If A1–A4 along with (2.1) and Remark 2.1 are satisfied, then system (1.1) is
Hyers–Ulam stable over an unbounded interval.

Proof Since the exact solution of the non-autonomous and nonsingular delay difference
equation

⎧
⎨

⎩

AUn+1 = MUn + NUn–k + F(n, Un–k), n ≥ 0, k ≥ 0,

Un = ψn, –k ≤ n ≤ 0,

is

Un = MnA–nψ0 + Mn–1A–n
k∑

i=0

M–iAi(
Nψi–k + F(i,ψi–k)

)

+ Mn–1A–n
n∑

i=k+1

M–iAi(
NUi–k + F(i, Ui–k)

)
.

Letting Y be the approximate solution of the above system, then clearly for a sequence fn

with ‖fn‖ ≤ ε we have

⎧
⎨

⎩

AYn+1 = MYn + NYn–k + F(n, Yn–k) + fn, n ≥ 0, k ≥ 0,

Yn = ψn, –k ≤ n ≤ 0,

and

Yn = MnA–nψ0 + Mn–1A–n
k∑

i=0

M–iAi(
Nψi–k + F(i,ψi–k)

)

+ Mn–1A–n
n∑

i=k+1

M–iAi(
NYi–k + F(i, Yi–k) + fi–k

)
.
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Now, consider

‖Yn – Un‖ =

∥
∥
∥
∥
∥
MnA–nψ0 + Mn–1A–n

k∑

i=0

M–iAi(
Nψi–k + F(i,ψi–k)

)

+ Mn–1A–n
n∑

i=k+1

M–iAi(
NYi–k + F(i, Yi–k) + fi–k

)

– MnA–nψ0 – Mn–1A–n
k∑

i=0

M–iAi(
Nψi–k + F(i,ψi–k)

)

– Mn–1A–n
n∑

i=k+1

M–iAi(
NUi–k + F(i, Ui–k)

)
∥
∥
∥
∥
∥

.

That is,

‖Yn – Un‖ = ‖M‖n–1‖A‖–n

∥
∥
∥
∥
∥

n∑

i=k+1

M–iAi(
NYi–k + F(i, Yi–k) – NUi–k – F(i, Ui–k)

)

+
n∑

i=k+1

M–iAifi–k

∥
∥
∥
∥
∥

≤ ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖i(‖NYi–k – NUi–k‖

+
∥
∥F(i, Yi–k) – F(i, Ui–k)

∥
∥ + ‖fi–k‖

)

≤ ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖i(‖NYi–k – NUi–k‖ + K‖Yi–k – Ui–k‖

+ ‖fi–k‖
)

= ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖i(∥∥(N + K)Yi–k

– (N + K)Ui–k
∥
∥ + ‖fi–k‖

)

= ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖i‖fi–k‖.

That is,

‖Yn – Un‖ ≤ ‖M‖n–1‖A‖–n
n∑

i=k+1

‖M‖–i‖A‖iεφi–k

= ε‖M‖n–1‖A‖–n
n–k∑

r=1

‖M‖–k–r‖A‖k+rφr

= εL4
n–k∑

r=1

φr

≤ εL4ηϕn

≤ Ne–νnηKε
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≤ NηKε

= Kε,

where K = NηK . Thus, system (1.1) is Hyers–Ulam stable over an unbounded discrete
interval. �

6 β-Hyers–Ulam stability
To describe β-Hyers–Ulam stability over an unbounded interval, we needed some as-
sumptions:

A0: The operator family ‖L4‖ ≤ Nekn, n ≥ 0, k ≤ 0, N ≥ 1.
A1: The linear system AGn+1 = MGn + NGn–k is well posed.
A2: The continuous function H : Z+ × X → X satisfies the Caratheodory condition

∥
∥H(n,ρ) – H

(
n,ρ ′)∥∥ ≤ Kn

∥
∥ρ – ρ ′∥∥, K ≥ 0,

for every n ∈ Z+ ρ,ρ ′ ∈ X .
A3: Also, assume that

n∑

i=k+1

ekn(N + Kn) ≤ ηϕϕn, k ≤ 0,

for each n ∈ Z+, ηϕ ≥ 0, and ϕn is a convergent sequence.
By considering inequality (2.1) and the above mentioned assumptions, we are able to

prove the following theorem.

Theorem 4 If A0–A3 are satisfied, then system (6.1) is β-Hyers–Ulam stable over an un-
bounded interval.

Proof The only one solution of nonsingular delay difference equation

⎧
⎨

⎩

AUn+1 = MUn + NUn–k + F(n,Un–k), n ≥ 0, k ≥ 0,

Un = �n, –k ≤ n ≤ 0,
(6.1)

is

Un = MnA–n�0 + Mn–1A–n
k∑

l=0

M–lAl(N�l–k + F(l,�l–k)
)

+ Mn–1A–n
n∑

l=k+1

M–lAl(NUl–k + F(l,Ul–k)
)
.

Let Y satisfy (2.1), then for every n ∈Z+ we have

∥
∥
∥
∥
∥
Yn – MnA–n�0 – Mn–1A–n

k∑

l=0

M–lAl(N�l–k + F(l,�l–k)
)

– Mn–1A–n
n∑

l=k+1

M–lAl(NYl–k + F(l,Yl–k)
)
∥
∥
∥
∥
∥
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=

∥
∥
∥
∥
∥
Mn–1A–n

n∑

l=k+1

M–lAlfl–k

∥
∥
∥
∥
∥

=
∥
∥Mn–1∥∥

∥
∥A–n∥∥

n∑

l=k+1

∥
∥M–l∥∥

∥
∥Al∥∥‖fl–k‖

=
n∑

l=k+1

L4εφn

=
n∑

l=k+1

Neknεφn.

Now,

‖Yn – Un‖β =

∥
∥
∥
∥
∥
Yn – MnA–n�0 – Mn–1A–n

k∑

i=0

M–lAl(N�l–k + F(l,�l–k)
)

– Mn–1A–n
n∑

l=k+1

M–lAl(NUl–k + F(l,Ul–k)
)
∥
∥
∥
∥
∥

β

,

‖Yn – Un‖β =

∥
∥
∥
∥
∥
Yn – MnA–n�0 – Mn–1A–n

k∑

l=0

M–lAl(N�l–k + F(l,�l–k)
)

– Mn–1A–n
n∑

l=k+1

M–lAl(NUl–k + F(l,Ul–k)
)

+ Mn–1A–n
n∑

l=k+1

M–lAl(NYl–k + F(l,Yl–k)
)

– Mn–1A–n
n∑

l=k+1

M–lAl(NYl–k + F(l,Yl–k)
)
∥
∥
∥
∥
∥

β

=

∥
∥
∥
∥
∥
Yn – MnA–n�0 – Mn–1A–n

k∑

l=0

M–lAl(N�l–k + F(l,�l–k)
)

– Mn–1A–n
n∑

l=k+1

M–lAl(NYl–k + F(l,Yl–k)
)

+ Mn–1A–n
n∑

l=k+1

M–lAl(NYl–k + F(l,Yl–k)
)

– Mn–1A–n
n∑

l=k+1

M–lAl(NUl–k + F(l,Ul–k)
)
∥
∥
∥
∥
∥

β

,

‖Yn – Un‖β ≤
∥
∥
∥
∥
∥
Yn – MnA–n�0 – Mn–1A–n

k∑

l=0

M–lAl(N�l–k + F(l,�l–k)
)

– Mn–1A–n
n∑

l=k+1

M–lAl(NYl–k + F(l,Yl–k)
)
∥
∥
∥
∥
∥

β
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+

∥
∥
∥
∥
∥
Mn–1A–n

n∑

l=k+1

M–lAl(NYl–k + F(l,Yl–k)
)

– Mn–1A–n
n∑

l=k+1

M–lAl(NUl–k + F(l,Ul–k)
)
∥
∥
∥
∥
∥

β

≤
( n∑

l=k+1

Neknεφn

)β

+

(
∥
∥Mn–1∥∥

∥
∥A–n∥∥

n∑

l=k+1

∥
∥M–l∥∥

∥
∥Al∥∥

∥
∥NYl–k

+ F(l,Yl–k) – NUl–k – F(l,Ul–k)
∥
∥

)β

,

‖Yn – Un‖β =

( n∑

l=k+1

Neknεφn

)β

+

(
∥
∥Mn–1∥∥

∥
∥A–n∥∥

n∑

l=k+1

∥
∥M–l∥∥

∥
∥Al∥∥

(‖NYl–k – NUl–k‖

+
∥
∥F(l,Yl–k) – F(l,Ul–k)

∥
∥
)
)β

≤
( n∑

l=k+1

Neknεφn

)β

+

(
∥
∥Mn–1∥∥

∥
∥A–n∥∥

n∑

l=k+1

∥
∥M–l∥∥

∥
∥Al∥∥

(‖NYl–k – NUl–k‖

+ Kn‖Yl–k – Ul–k‖
)
)β

=

( n∑

l=k+1

Neknεφn

)β

+

( n∑

l=k+1

L4(N + Kn)‖Yl–k – Ul–k‖
)β

≤
( n∑

l=k+1

Neknεφn

)β

+

( n∑

l=k+1

Nekn(N + Kn)‖Yl–k – Ul–k‖
)β

,

‖Yn – Un‖ =

[( n∑

l=k+1

Neknεφn

)β

+

( n∑

l=k+1

Nekn(N + Kn)‖Yl–k – Ul–k‖
)β] 1

β

.

Now, using

(� + ξ )α ≤ 3α–1(�α + ξα
)
, �, ξ ≥ 0 and α > 1,

we obtain

‖Yn – Un‖ ≤ 3
1
β

–1
n∑

l=k+1

Neknεφn + 3
1
β

–1(N + Kn)
n∑

l=k+1

Nekn‖Yl–k – Ul–k‖,
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with the help of Lemma(2.2), we get

‖Yn – Un‖ ≤ 3
1
β

–1
n∑

l=k+1

Neknεφn exp

(

3
1
β

–1
n∑

l=k+1

Nekn(N + Kn)

)

,

‖Yn – Un‖ ≤ ε

(

3
1
β

–1
n∑

l=k+1

Nekn

)

exp

(

3
1
β

–1
n∑

l=k+1

Nekn(N + Kn)

)

= ε

(

3
1
β

–1
n∑

l=k+1

Nekn

)

exp
(
3

1
β

–1
Neknηϕϕn

)
,

‖Yn – Un‖β = εβ

(

3
1
β

–1
n∑

l=k+1

Nekn

)β

exp
(
3

1
β

–1
Neknηϕϕn

)β

= εβ

(

3
1
β

–1
n∑

l=k+1

Nekn

)β
(

exp
(
N3

1
β

–1))β(
exp(ηϕϕn)

)β

= LF,N,φ,βεβηβ
ϕϕβ

n ,

where

LF,N,φ,β =

(

3
1
β

–1
n∑

l=k+1

Nekn

)β
(

exp
(
N3

1
β

–1))β .

So, system (6.1) is β-Hyers–Ulam stable over an unbounded interval. �

7 An example
Consider we have the following nonsingular delay difference equation:

⎧
⎨

⎩

AGn+1 = MGn + NGn–3 + F(n,Gn–3), G0 = 1, n ∈ {0, 1, 2, 3},
Gn = �n, –3 ≤ n ≤ 0,

(7.1)

with inequality

⎧
⎨

⎩

‖AGn+1 – MGn – NGn–3 – F(n,Gn–3)‖ ≤ 0.7, n ∈ {0, 1, 2, 3},
‖Gn – �n‖ ≤ 1, –3 ≤ n ≤ 0,

(7.2)

here k = 3. If we fix

M =

(
–3.5 1.4
3.2 1.6

)

, N =

(
3.6 1.4

–3.2 1.7

)

, A =

(
1.3 0
0 1.3

)

,

F(n, Gn–3) = Gn–3[0.3 sin(n) 0.15 sin(n)] and φn = [cos(n + π
2 ) cos(n + π

2 )]t (obviously,
φn = [0 0]t , when n = 0), hence, we get

NM =

(
8.12 7.28

–16.64 –1.76

)

= MN , AN =

(
4.68 1.28

–4.16 2.12

)

= NA,
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AM =

(
4.55 1.82

–4.16 2.08

)

= MA, A–1 =

(
0.769231 0

0 0.769231

)

,

A–1N =

(
2.762316 1.0769234

–2.4615392 1.3076927

)

= NA–1,

A–1M =

(
2.6923085 1.0769234

–2.4615392 1.2307696

)

= MA–1.

Moreover, if G satisfies (7.2), then there exists fn such that ‖fn‖ ≤ 0.7, and

⎧
⎨

⎩

AGn+1 = MGn + NGn–3 + F(n,Gn–3) + fn, G0 = 1, n ∈ {0, 1, 2, 3},
Gn = �n, –3 ≤ n ≤ 0,

also the solution of (7.1) is

Gn = MnA–n�0 + Mn–1A–n
k∑

i=0

M–iAi(N�i–k + F(i,�i–k)
)

(7.3)

+ Mn–1A–n
n∑

i=k+1

M–iAi(NGi–k + F(i,Gi–k)
)
,

where MA = AM, NA = AN , and MN = NM.
Let ε = 0.7, and f : Z+ →R2 be as given below

fn =
[

0.6 cos(n + π
2 ) 0.6 sin(n + π

2 )
]t

,

then clearly

‖fn‖ =

√
(

0.6 cos

(

n +
π

2

))2

+
(

0.6 sin

(

n +
π

2

))2

=
[

(0.6)2 cos2
(

n +
π

2

)

+ (0.6)2 sin2
(

n +
π

2

)] 1
2

=
√

0.62 = 0.6

≤ ε = 0.7.

Now the perturbed delay difference system (7.3) has the solution

Hn = MnA–nψ0 + Mn–1A–n
k∑

i=0

M–iAi(
Nψi–k + F(i,ψi–k)

)

+ Mn–1A–n
n∑

i=k+1

M–iAi(
NHi–k + F(i, Hi–k) + fi–k

)
.

Using Mathematica, we get the values given in Table 1.
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Table 1 Table for Gn and Hn

n Gn Hn ‖Gn – Hn‖
1. a1 = 1.11268 a1 = 1.51268 0.4

b1 = 1.38337 b1 = 1.64668 0.534
2. a2 = 4.48545 a2 = 4.92105 0.4356

b2 = 3.03628 b2 = 3.46195 0.42567
3. a3 = 10.9602 a3 = 11.5274 0.567234

b3 = 8.3165 b3 = 8.92885 0.61235

Plotting these values, we have the following graphs.

Hence, we have a solution within a multiple of ε = 0.7 and a constant, so system (1.1)
has a unique solution in B(Z+,R2), which is Hyers–Ulam stable on Z+.
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