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Abstract
In this paper, the controllability analysis is proposed for both linear and nonlinear
higher-order fractional damped stochastic dynamical systems with distributed delay
in Hilbert spaces which involve fractional Caputo derivative of different orders. Based
on the properties of fractional calculus, the fixed point technique, and the
construction of controllability Gramian matrix, we establish the controllability results
for the considered systems. Finally, examples are constructed to illustrate the
applicability of obtained results.
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1 Introduction
Controllability theory for linear and nonlinear control systems in finite and infinite di-
mensional spaces has been well developed, and the particulars can be identified in the
works and references [5, 8]. Besides, the deterministic models repeatedly fluctuate based
on environmental noise. So, it is essential to move stochastic systems from determinis-
tic systems for having improved performance in the models. Stochastic differential equa-
tions act a key role in formulation and analysis of applied sciences and control engineering
[14, 24, 35, 38]. The inclusion of random effects in differential equations leads to sev-
eral distinct classes of stochastic equations, for which the solution processes have differ-
entiable or non-differentiable sample paths. The general theory of stochastic differential
equations both finite-dimensional and infinite-dimensional and their techniques can be
found in the field of many applied sciences. This theory formed a very active research
topic since it provides a natural framework for mathematical modeling of many physical
phenomena. Therefore, stochastic differential equations and their controllability study re-
quire attention, and some fruitful results can be found in [4, 15, 36].

The fractional-order calculus establishes the branch of mathematics dealing with differ-
entiation and integration under an arbitrary order of the operation and has been widely ap-
plied in several fields of applied science and technology [25, 29]. So, researchers have been
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interested in studying the various phenomena in nature from the viewpoint of fractional
calculus like control applications [10, 11] and so on. In recent years, research works re-
garding applications of fractional-order stochastic systems became a major research field
for researchers and technologists since the systematic events demonstrated by fractional-
order derivatives and integrals take into account the historical properties of events under
consideration at each time period and estimate the fluctuations in the systems more suit-
ably than the action of deterministic operators [22, 37].

A nonlinear dynamical system with fractional damping is of great importance in many
fields such as engineering and applied sciences [2, 30, 32]. As a replacement for ordi-
nary derivatives, the viscoelastic models containing fractional derivatives are novel re-
search issues. In comparison with a first-order damping model, the fractional derivative
damping behavior may better converge to realistic exploratory models. So, the fractional
derivative model may specifically prescribe a nonlinear damping behavior than other well-
known damping models. On the other hand, when the stochastic effects are applied to a
fractional-order system with damping behavior, it is related to the natural situation. Espe-
cially, the model under consideration is valuable to illustrate the viscoelastic properties of
beams and plates, nonlinear fractional-order oscillators with stochastic noise, and so on
[1, 7, 20].

Time delay is an inevitable concept on the study of dynamical systems in the real word
[16, 17, 35]. Concerning the controllability of stochastic fractional systems with delays, we
point out [9, 12, 33]. The linear delay differential equations and systems with distributed
delays were first studied in [26]. However, it should be pointed out that all these results
were obtained only for unconstrained admissible controls, finite dimensional state space,
and without delays in state or control. So, it is important to analyze the controllability of
stochastic systems with distributed delay. Distributed delays have found widespread use in
the modeling of aggregative property in large systems. They are often suitable in modeling
processes which are irreversible and described by flow rates of objects that transfer at dif-
ferent rates through the given process. The distributed delay model utilized in these kind
of applications is generally a time invariant one. Some interesting results on distributed
delays can be found in [21, 23, 28] and the references therein. But till now, there have been
few results on the problems for fractional system with distributed delays [21, 23]. In recent
years, Li et al. [19] derived the existence and exact controllability of fractional evolution in-
clusions with damping in Banach spaces by utilizing an appropriate fixed point theorem.
Li et al. [18] reported the existence and controllability for nonlinear fractional control
systems with damping in Hilbert spaces. Recently, results for controllability of damped
fractional differential system with impulses and state delay can be found in [27]. In [6], the
authors studied the mild solutions and approximate controllability for fractional neutral
differential equations with damping.

However, to the best of our knowledge, the controllability results for higher-order frac-
tional stochastic systems with damping behavior and distributed delay are an untreated
topic in the present literature. Herein, we derive the controllability result for a linear frac-
tional stochastic damped system with Caputo fractional derivative by using the control-
lability Gramian matrix. We then study the controllability results for the nonlinear frac-
tional stochastic damped system by using fixed point theory. This theory owns certain
advantages of linearization for the nonlinear functional relating to the state variables. So
it is more interesting and essential to study it. It should be noted that stochastic differen-
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tial equations present a relationship between probability theory and the well-established
fields of ordinary and partial differential equations. Based on this feature the analysis of
stochastic controllability is one of the most interesting tools in practice. It is worth not-
ing that the controllability analysis of this type of higher-order fractional damped systems
involving stochastic effects with distributed delay has not been studied in the existing re-
sults.

This paper is prepared as follows. Section 2 contains definitions and preliminary results.
In Sect. 3, a linear higher-order fractional damped stochastic dynamical system with dis-
tributed delay is considered and the controllability condition is established using the con-
trollability Gramian matrix which is defined by means of a Mittag-Leffler matrix func-
tion. In Sect. 4, the corresponding nonlinear higher-order fractional damped stochastic
dynamical system with distributed delay is considered, and the controllability results are
examined with the natural assumption that the linear fractional system is controllable.
The results are established by using the Banach fixed point theorem. In Sect. 5, examples
are provided to verify the theoretical results.

2 Preliminaries
Let (�,�, P) be a complete probability space with a probability measure P on � and a
filtration {�t|t ∈ [0, T]} generated by an m-dimensional Wiener process w(s) : 0 ≤ s ≤ t.
Let L2(�,�t ,Rn) denote the Hilbert space of all �t-measurable square integrable random
variables with values in R

n. L�
2 ([0, T],Rn) denotes the Hilbert space of all square integrable

and �t-measurable processes with values in R
n. Uad := L�

2 ([0, T],Rm) is the set of admis-
sible controls. Let I(J , L2(�,�t , P)) denote the Banach space of continuous maps from J
into L2(�,�t , P) satisfying supt∈J E‖z(t)‖2 ≤ ∞. E denotes the mathematical expectation
operator of a stochastic process with respect to the given probability measure P.

Definition 2.1 Caputo’s fractional derivative of order η1 (0 ≤ m1 ≤ η1 < m1 + 1) for a
function f : R+ → R is defined as

C
0 Dη1

t f(t) =
1

�(m1 – η1 + 1)

∫ t

0

f(m1+1)(θ )
(t – θ )η1–m1

dθ .

The Laplace transform of the Caputo fractional derivative is

L
{C

0 Dη1
t f(t)

}
(ω) = ωη1 F(ω) –

n–1∑
k=0

f
(k)(t)ωη1–1–k .

Definition 2.2 The Mittag-Leffler function Eη1 (z) with η1 > 0 is defined by

Eη1 (z) =
∞∑
j=0

zj

�(η1j + 1)
, η1 > 0, z ∈ C.

The two-parameter Mittag-Leffler function Eη1,η2 (z) with η1,η2 > 0 is defined by

Eη1,η2 (z) =
∞∑
j=0

zj

�(η1j + η2)
, η1 > 0, z ∈C.
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The Laplace transform of the Mittag-Leffler function Eη1,η2 (z) is

L
{

tη2–1Eη1,η2

(±atη1
)}

(ω) =
ωη1–η2

ωη1 ∓ a
.

For η2 = 1, we have

L
{

Eη1

(±atη1
)}

(ω) =
ωη1–1

ωη1 ∓ a
.

Definition 2.3 Let f(t) and g(t) be two functions of t. The convolution of f(t) and g(t) is
also a function of t, denoted by (f ∗ g)(t) and is defined by the relation

(f ∗ g)(t) =
∫ ∞

–∞
f(t – z)g(z) dz.

However, if f and g are both casual functions, then f(t), g(t) are written f(t)u(t) and g(t)u(t)
respectively so that

(f ∗ g)(t) =
∫ ∞

–∞
f(t – z)u(t – z)g(z)u(z) dz =

∫ t

0
f(t – z)g(z) dz

because of the properties of the step functions (u(t – z) = 0 if z > t and u(z) = 0 if z < 0).

Lemma 2.4 (Burkholder–Davis–Gundy’s inequality [24]) For any r ≥ 1 and for an arbi-
trary L0

2-valued predictable process �(t), t ∈ [0,T ], one has

E

(
sup

0≤t≤T

∣∣∣∣
∫ t

0
�(ω) dw(ω)

∣∣∣∣
2r)

≤ CrE

(∫ t

0

∥∥�(ω)
∥∥2

L0
2

dω

)r

, (1)

where

Cr =
(
r(2r – 1)

)r
(

2r
2r – 1

)2r2

. (2)

Consider a higher-order fractional differential equation of the form

⎧⎨
⎩

C
0 Dη1

t z(t) – BC
0 Dη2

t z(t) = f(t), t ≥ 0,

z(0) = z0, z′(0) = z1, . . . , zρ–1 = zρ–1,
(3)

with ρ – 1 < η1 ≤ ρ , μ – 1 < η2 ≤ μ, and μ ≤ ρ – 1, B is an n × n matrix, and f : J → R
n

is a continuous function. By using the Laplace transform on both sides of (3), we get

ωη1 Z(ω) – ωη1–1z(0) – ωη1–2z′(0) – · · · – ωη1–ρzρ–1(0) – Bωη2 Z(ω)

+ Bωη2–1z(0) + Bωη2–2z′(0) + · · · + Bωη2–μzμ–1(0) = F(ω),

then

Z(ω) =
ωη1–η2–1

ωη1–η2 I – B
z0 +

ωη1–η2–2

ωη1–η2 I – B
z1 + · · · +

ωη1–η2–ρ

ωη1–η2 I – B
zρ–1 – B

ω–1

ωη1–η2 I – B
z0
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– B
ω–2

ωη1–η2 I – B
z1 – · · · – B

ω–μ

ωη1–η2 I – B
zμ–1 + F(ω)

ω–η2

ωη1–η2 I – B
.

By applying the inverse Laplace transform to both sides, then substituting the Laplace
transformation of Mittag-Leffler function and the Laplace convolution operator, we get

z(t) =
ρ–1∑
r=0

zr(0)trEη1–η2,1+r
(
Btη1–η2

)
–

μ–1∑
r=0

zr(0)tη1–η2+rEη1–η2,η1–η2+1+r
(
Btη1–η2

)

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
f(ω)dω. (4)

3 Controllability result for linear system
Consider the linear fractional-order stochastic system with damping behavior and dis-
tributed delay of the form

C
0 Dη1

t z(t) – B
C
0 Dη2

t z(t) = Cu(t) +
∫ 0

–h
dλD(t,λ)u(t + λ) + σ (t)

dw(t)
dt

, t ∈ [0,T ], (5)

z(0) = z0, z′(0) = z1, . . . , zρ–1 = zρ–1, (6)

u(t) = ϑ(t), λ ≤ t ≤ 0, (7)

where ρ – 1 < η1 ≤ ρ , μ – 1 < η2 ≤ μ, and μ ≤ ρ – 1, z ∈ R
n is a state variable, and the

second integral term is in the Lebesgue–Stieltjes sense with respect to λ. Let h > 0 be
given. u(t) ∈ R

m is a control input, ϑ ∈ C([λ, 0],Rn) is the initial control function, where
C([λ, 0],Rn) denotes the space of all continuous functions mapping the interval [λ, 0] into
R

n. B∈R
n×n, C ∈R

n×m are the known constant matrices, D(t,λ) is an n×m dimensional
matrix continuous in t for fixed λ and is of bounded variation in λ on [–h, 0] for each t ∈ J
and continuous from left in λ on the interval (–h, 0). λ is a negative constant. w(t) is a
given m-dimensional Wiener process with the filtration Ft generated by w(ω), 0 ≤ ω ≤ t
and σ : [0,T ] ×R

n →R
n×m is an appropriate continuous function.

The solution of system (5)–(7) can be expressed in the following form:

z(t) =
ρ–1∑
r=0

zr(0)trEη1–η2,1+r
(
Btη1–η2

)
–

μ–1∑
r=0

zr(0)tη1–η2+rEη1–η2,η1–η2+1+r
(
Btη1–η2

)

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
Cu(ω) dω

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ 0

–h
dλD(ω,λ)u(ω + λ)

)
dω

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω. (8)

The fourth term in the right-hand side of (8) contains the values of the control u(t) for
t < 0 as well as for t > 0. To separate them, the fourth term of (8) must be transformed by
changing the order of integration. Using the unsymmetric Fubini theorem, we have

z(t) =
ρ–1∑
r=0

zr(0)trEη1–η2,1+r
(
Btη1–η2

)
–

μ–1∑
r=0

zr(0)tη1–η2+rEη1–η2,η1–η2+1+r
(
Btη1–η2

)
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+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
Cu(ω) dω +

∫ t+λ

λ

[∫ 0

–h

(
t – (ω – λ)

)η1–1

× Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ)ϑ(ω) dDλ

]
dω

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

=
ρ–1∑
r=0

zr(0)trEη1–η2,1+r
(
Btη1–η2

)
–

μ–1∑
r=0

zr(0)tη1–η2+rEη1–η2,η1–η2+1+r
(
Btη1–η2

)

+
∫ 0

–h

[∫ 0

λ

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)

×D(ω – λ,λ)ϑ(ω) dω

]
dDλ

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

+
∫ t+λ

0

[
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

+
∫ 0

–h

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
u(ω) dω

+
∫ t

t+λ

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
Cu(ω) dω. (9)

Set up the controllability Gramian matrix W as

W =
∫ T +λ

0

[
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C

+
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]

×
[

(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C

+
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]∗
dω

+
∫ T

T +λ

[
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C
]

× [(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C
]∗ dω. (10)

Definition 3.1 System (5)–(7) is said to be controllable on J if, for every z0, z1, z2, . . . ,
zρ–1, zT ∈ R

n, there exists a control u(t) such that the solution z(t) satisfies the conditions
z(0) = z0, z′(0) = z1, . . . , zρ–1(0) = zρ–1, z(T ) = zT .

Theorem 3.2 Linear system (5)–(7) is controllable on J iff the n × n Gramian matrix

W =
∫ T +λ

0

[
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C
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+
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]

×
[

(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C

+
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]∗
dω

+
∫ T

T +λ

[
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C
]

× [(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C
]∗ dω (11)

is nonsingular.

Proof Suppose that W is nonsingular, then given z0, z1, . . . , zρ–1, and zT , we can choose
the input function u(t) as

u(t) =

⎧⎨
⎩
G

∗
1(T , t)W –1(α̂), t ∈ [0,T + λ],

G
∗
2(T , t)W –1(α̂), t ∈ [T + λ,T ],

(12)

where

G1(T , t) =
[

(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C

+
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
,

G2(T , t) =
[
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C
]
,

α̂ = 1/2

[
zT –

ρ–1∑
r=0

zr(0)T rEη1–η2,1+r
(
BT η1–η2

)

+
μ–1∑
r=0

zr(0)T η1–η2+rEη1–η2,η1–η2+1+r
(
BT η1–η2

)

–
∫ 0

–h

[∫ 0

λ

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)

×D(ω – λ,λ)ϑ(ω) dω

]
dDλ

–
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

]
,

z(T ) =
ρ–1∑
r=0

zr(0)T rEη1–η2,1+r
(
BT η1–η2

)
–

μ–1∑
r=0

zr(0)T η1–η2+rEη1–η2,η1–η2+1+r
(
BT η1–η2

)

+
∫ 0

–h

[∫ 0

λ

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ)

× ϑ(ω) dω

]
dDλ
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+
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

+
∫ T +λ

0
G1(T ,ω)G∗

1(T ,ω)W –1α̂ dω +
∫ T

T +λ

G2(T ,ω)G∗
2(T ,ω)W –1α̂ dω

= zT . (13)

Therefore, system (5)–(7) is controllable on J .
On the other hand, suppose that system (5)–(7) is controllable, but for the sake of a

contradiction, assume that the matrix W is singular. If W is singular, then there exists a
vector y �= 0 such that

y∗Wy = y∗
∫ T +λ

0
G1(T ,ω)G∗

1(T ,ω)ydω + y∗
∫ T

T +λ

G2(T ,ω)G∗
2(T ,ω)y dω

= 0.

Thus,

y∗
G2(T ,ω) = 0 (14)

and

y∗
G1(T ,ω) = 0. (15)

Using (14) in (15), we get

y∗(T – (ω – λ)
)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) = 0 (16)

for t ∈ J .
Consider the initial points z0 = z1 = · · · = zρ–1 = 0 and the final point zT = y, so that

system (5)–(7) is controllable. There exists a control u(t) on J that steers the response
from 0 to zT = y at t = T ,

zT = y =
∫ 0

–h

[∫ 0

λ

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ)

× ϑ(ω) dω

]
dDλ

+
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

+
∫ T +λ

0

[
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C

+
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
u(ω) dω

+
∫ T

T +λ

(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
Cu(ω) dω,
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thus

y∗y =
∫ 0

–h
y∗
[∫ 0

λ

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)

×D(ω – λ,λ)ϑ(ω) dω

]
dDλ

+
∫ T

0
y∗(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

+
∫ T +λ

0
y∗
[

(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C

+
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
u(ω) dω

+
∫ T

T +λ

y∗(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
Cu(ω) dω.

Then taking into account that

∫ 0

–h
y∗
[∫ 0

λ

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ)ϑ(ω) dω

]
dDλ

+
∫ T

0
y∗(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

and
∫ T +λ

0
y∗
[

(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C

+
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
u(ω) dω

+
∫ T

T +λ

y∗(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
Cu(ω) dω (17)

tend to zero leads to the conclusion y∗y = 0. This is a contradiction to y �= 0. Thus the
matrix W is nonsingular. �

4 Controllability result for nonlinear system
In this section, we discuss the controllability criteria for the following higher-order frac-
tional damped stochastic system with distributed delay:

C
0 Dη1

t z(t) – B
C
0 Dη2

t z(t) = Cu(t) +
∫ 0

–h
dλD(t,λ)u(t + λ) + f

(
t, z(t)

)

+ σ
(
t, z(t)

)dw(t)
dt

, t ∈ [0,T ], (18)

z(0) = z0, z′(0) = z1, . . . , zρ–1 = zρ–1, (19)

u(t) = ϑ(t), λ ≤ t ≤ 0, (20)

where ρ – 1 < η1 ≤ ρ , μ – 1 < η2 ≤ μ, and μ ≤ ρ – 1, B, C, and D(t,λ) are the same as de-
fined in the previous section, λ is a negative constant, z ∈ R

n, u(t) ∈R
m, f : J ×R

n →R
n,
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and σ : J ×R
n →R

n×m. w(t) is a given m-dimensional Wiener process with the filtration
Ft generated by w(ω). Then the solution of system (18)–(20) is given by

z(t) =
ρ–1∑
r=0

zr(0)trEη1–η2,1+r
(
Btη1–η2

)
–

μ–1∑
r=0

zr(0)tη1–η2+rEη1–η2,η1–η2+1+r
(
Btη1–η2

)

+
∫ 0

–h

[∫ 0

λ

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)

×D(ω – λ,λ)ϑ(ω) dω

]
dDλ

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
f
(
ω, z(ω)

)
dω

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

+
∫ t+λ

0
[(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

+
∫ 0

–h

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ]u(ω) dω

+
∫ t

t+λ

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
Cu(ω) dω. (21)

Fix the control function

u(t) =

⎧⎨
⎩
G

∗
1(T , t)W –1(γ̂ ), t ∈ [0,T + λ],

G
∗
2(T , t)W –1(γ̂ ), t ∈ [T + λ,T ],

(22)

G1(T , t) =
[

(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C,

G1(T , t) = +
∫ 0

–h

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
,

G2(T , t) =
[
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
C
]
,

γ̂ = 1/2

[
zT –

ρ–1∑
r=0

zr(0)T rEη1–η2,1+r
(
BT η1–η2

)

+
μ–1∑
r=0

zr(0)T η1–η2+rEη1–η2,η1–η2+1+r
(
BT η1–η2

)

–
∫ 0

–h

[∫ 0

λ

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)
D(ω – λ,λ)

× ϑ(ω) dω

]
dDλ –

∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

–
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
f
(
ω, z(ω)

)]
. (23)

We assume the following hypotheses.
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(H1) The linear fractional damped stochastic dynamical system with distributed delay
(5)–(7) is controllable on J .

(H2) The functions f and σ are continuous and satisfy the usual linear growth
condition, that is, there exist positive real constants Ñ , L̃ such that

∥∥f(t, z)
∥∥2 ≤ Ñ

(
1 + ‖z‖2), ∥∥σ (t, z)

∥∥2 ≤ L̃
(
1 + ‖z‖2).

(H3) The functions f, σ satisfy the following Lipschitz condition, and for every t ≥ 0
and z, y ∈R

n, there exist positive real constants N , L such that

∥∥f(t, z) – f(t, y)
∥∥2 ≤ N‖z – y‖2,

∥∥σ (t, z) – σ (t, y)
∥∥2 ≤ L‖z – y‖2.

For brevity, let us introduce the following notations:

u1 =
∥∥trEη1–η2,1+r

(
Btη1–η2

)∥∥2,

u2 =
∥∥Btη1–η2+rEη1–η2,η1–η2+1+r

(
Btη1–η2

)∥∥2,

u = ‖ϑ(ω)‖2,

v =
∫ 0

λ

E‖(t – (ω – λ)
)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dω‖2,

G =
∫ 0

–h
vu dDλ, l =

∥∥W –1∥∥,

u3 =
∥∥Eη1–η2,η1

(
B(t – ω)η1–η2

)∥∥2,

M =
∥∥∥∥
[

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

+
∫ 0

–h

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]∥∥∥∥
2

M̃ =
∥∥(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C
∥∥2. (24)

Theorem 4.1 Assume that hypotheses (H1)–(H3) hold, then the nonlinear system (18)–
(20) is controllable on J .

Proof For arbitrary initial data, we can define a nonlinear operator � from I to I as follows:

(�z)(t) =
ρ–1∑
r=0

zr(0)trEη1–η2,1+r
(
Btη1–η2

)
–

μ–1∑
r=0

zr(0)tη1–η2+rEη1–η2,η1–η2+1+r
(
Btη1–η2

)

+
∫ 0

–h

[∫ 0

λ

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)

×D(ω – λ,λ)ϑ(ω) dω

]
dDλ

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
f
(
ω, z(ω)

)
dω

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω
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+
∫ t+λ

0

[
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

+
∫ 0

–h

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)

×D(ω – λ,λ) dDλ

]
u(ω) dω

+
∫ t

t+λ

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
Cu(ω) dω, (25)

where u(t) is defined by (22).
By Theorem 3.2, control (22) transfers (21) from the initial state z0 to the final state zT

provided that the operator � has a fixed point in I . So, if the operator � has a fixed point,
then system (18)–(20) is controllable. As mentioned before, to prove the controllability of
system (18)–(20), it is enough to show that � has a fixed point in I . To do this, we can
employ the contraction mapping principle. In the following, we will divide the proof into
two steps.

Firstly, we show that � maps I into itself. From (25) we have

sup
0≤t≤T

E
∥∥(�z)(t)

∥∥2

= 7 sup
0≤t≤T

E

∥∥∥∥∥
ρ–1∑
r=0

zr(0)trEη1–η2,1+r
(
Btη1–η2

)∥∥∥∥∥
2

+ 7 sup
0≤t≤T

E

∥∥∥∥∥
μ–1∑
r=0

zr(0)tη1–η2+rEη1–η2,η1–η2+1+r
(
Btη1–η2

)∥∥∥∥∥
2

+ 7 sup
0≤t≤T

E

∥∥∥∥
∫ 0

–h

[∫ 0

λ

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)

×D(ω – λ,λ)ϑ(ω)dω

]
dDλ

∥∥∥∥
2

+ 7 sup
0≤t≤T

E

∥∥∥∥
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
f
(
ω, z(ω)

)
dω

∥∥∥∥
2

+ 7 sup
0≤t≤T

E

∥∥∥∥
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

∥∥∥∥
2

+ 7 sup
0≤t≤T

E

∥∥∥∥
∫ t+λ

0

[
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

+
∫ 0

–h

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
u(ω) dω

∥∥∥∥
2

+ 7 sup
0≤t≤T

E

∥∥∥∥
∫ t

t+λ

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
Cu(ω) dω

∥∥∥∥
2

�
7∑

b=1

Rb. (26)
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Using Holder’s inequality, Burkholder–Davis–Gundy’s inequality (here C1 = 4), and (24),

we have the following estimates:

R1 ≤ 7
ρ–1∑
r=0

E
∥∥zrtrEη1–η2,1+r

(
Btη1–η2

)∥∥2 ≤ 7u1

ρ–1∑
r=0

E‖zr‖2, (27)

R2 ≤ 7
μ–1∑
r=0

E
∥∥zrBtη1–η2+rEη1–η2,η1–η2+1+r

(
Btη1–η2

)∥∥2 ≤ 7u2

μ–1∑
r=0

E‖zr‖2, (28)

R3 ≤ 7E
∥∥∥∥
∫ 0

–h

[∫ 0

λ

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)

×D(ω – λ,λ)ϑ(ω)dω

]
dDλ

∥∥∥∥
2

≤ 7G, (29)

R4 ≤ 7E‖
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
f
(
ω, z(ω)

)
dω‖2

≤ 7u3
T 2η1–1

2η1 – 1
ÑT

∫ T

0

(
1 + E‖z(ω)‖2)dω, (30)

R5 ≤ 28E
∥∥∥∥
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ η

0
σ
(
θ , z(θ )

)
dw(θ )

)
dω

∥∥∥∥
2

≤ 28u3
T 2η1–1

2η1 – 1
Lσ L̃

∫ T

0

(∫ η

0

(
1 + E

∥∥z(θ )
∥∥2)dθ

)
dω, (31)

R6 ≤ 7E
∥∥∥∥
∫ t+λ

0

[
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

+
∫ 0

–h

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
u(ω) dω

∥∥∥∥
2

≤ 14E

∥∥∥∥∥
∫ t+λ

0

[
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

+
∫ 0

–h

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]

×
[

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C +

∫ 0

–h

(
t – (ω – λ)

)η1–1

× Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]∗
W –11/2

[
zT –

ρ–1∑
r=0

zr(0)T r

× Eη1–η2,1+r
(
BT η1–η2

)
+

μ–1∑
r=0

zr(0)T η1–η2+rEη1–η2,η1–η2+1+r
(
BT η1–η2

)

–
∫ 0

–h

[∫ 0

λ

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)

×D(ω – λ,λ)ϑ(ω) dω

]
dDλ

–
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω
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–
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
f
(
ω, z(ω)

)]
dω

∥∥∥∥∥
2

≤ 84M2l2(T + λ)

{
1/2

[
E‖zT ‖2 + u1

ρ–1∑
r=0

E‖zr‖2 + u2

μ–1∑
r=0

E‖zr‖2

+ G + u3
T 2η1–1

2η1 – 1
ÑT

∫ T

0

(
1 + E‖z(ω)‖2)dω

+ 4u3Lσ L̃
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
1 + E

∥∥z(θ )
∥∥2)dθ

)
dω

]}

≤ 42M2l2(T + λ)

[
E‖zT ‖2 + u1

ρ–1∑
r=0

E‖zr‖2 + u2

μ–1∑
r=0

E‖zr‖2

+ G + u3
T 2η1–1

2η1 – 1
ÑT

∫ T

0

(
1 + E‖z(ω)‖2)dω

+ 4u3Lσ L̃
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
1 + E

∥∥z(θ )
∥∥2)dθ

)
dω

]
, (32)

R7 ≤ 7E

∥∥∥∥∥
[∫ t

t+λ

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

]

×
[∫ t

t+λ

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

]∗

× W –11/2

[
zT –

ρ–1∑
r=0

zr(0)T rEη1–η2,1+r
(
BT η1–η2

)

+
μ–1∑
r=0

zr(0)T η1–η2+rEη1–η2,η1–η2+1+r
(
BT η1–η2

)

–
∫ 0

–h

[∫ 0

λ

(
T – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
T – (ω – λ)

)η1–η2)

D(ω – λ,λ)ϑ(ω) dω

]
dDλ

–
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(∫ η

0
σ (θ ) dw(θ )

)
dω

–
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
f
(
ω, z(ω)

)]
dω

∥∥∥∥∥
2

≤ 21M̃2l2

[
E‖zT ‖2 + u1

ρ–1∑
r=0

E‖zr‖2 + u2

μ–1∑
r=0

E‖zr‖2

+ G + u3
T 2η1–1

2η1 – 1
ÑT

∫ T

0

(
1 + E‖z(ω)‖2)dω

+ 4u3Lσ L̃
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
1 + E

∥∥z(θ )
∥∥2)dθ

)
dω

]
(33)
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From (27)–(33), we have

sup
0≤t≤T

E
∥∥(�z)(t)

∥∥2 ≤ 7u1

ρ–1∑
r=0

E‖zr‖2 + 7u2

μ–1∑
r=0

E‖zr‖2

+ 7G + 7u3
T 2η1–1

2η1 – 1
ÑT

∫ T

0

(
1 + E‖z(ω)‖2)dω

+ 28u3
T 2η1–1

2η1 – 1
Lσ L̃

∫ T

0

(∫ η

0

(
1 + E

∥∥z(θ )
∥∥2)dθ

)
dω

+ 42M2l2(T + λ)

[
E‖zT ‖2 + u1

ρ–1∑
r=0

E‖zr‖2 + u2

μ–1∑
r=0

E‖zr‖2

+ G + u3
T 2η1–1

2η1 – 1
ÑT

∫ T

0

(
1 + E‖z(ω)‖2)dω

+ 4u3Lσ L̃
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
1 + E

∥∥z(θ )
∥∥2)dθ

)
dω

]

+ 21M̃2l2[E‖zT ‖2 + u1

ρ–1∑
r=0

E‖zr‖2 + u2

μ–1∑
r=0

E‖zr‖2

+ G + u3
T 2η1–1

2η1 – 1
ÑT

∫ T

0

(
1 + E‖z(ω)‖2)dω

+ 4u3Lσ L̃
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
1 + E

∥∥z(θ )
∥∥2)dθ

)
dω]

≤ C(1 + T )
[∫ T

0

(
1 + E

∥∥z(ω)
∥∥2)dω

]

≤ C
(

1 + T sup
0≤t≤T

E
∥∥z(ω)

∥∥2
)

(34)

for all t ∈ [0,T ], where C is constant. This implies that � maps I into itself.
Secondly, we prove that � is a contraction mapping on I , for any z, y ∈ I ,

E
∥∥(�z)(t) – (�y)(t)

∥∥2

≤ 6 sup
0≤t≤T

E

∥∥∥∥G1(T , t)GT
1 (T , t)W –1

×
[∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)

×
(∫ η

0

[
σ
(
θ , z(θ )

)
– σ

(
θ , y(θ )

)]
dw(θ )

)
dω

+
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(
f
(
ω, z(ω)

)
– f
(
ω, y(ω)

))
dω

]

+ G2(T , t)GT
2 (T , t)W –1

×
[∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)
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×
(∫ η

0

[
σ
(
θ , z(θ )

)
– σ

(
θ , y(θ )

)]
dw(θ )

)
dω

+
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)(
f
(
ω, z(ω)

)
– f
(
ω, y(ω)

))
dω

]

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(∫ η

0

[
σ
(
θ , z(θ )

)
– σ

(
θ , y(θ )

)]
dw(θ )

)
dω

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)(
f
(
ω, z(ω)

)
– f
(
ω, y(ω)

))
dω

∥∥∥∥
2

≤ 6M2l2
{∥∥∥∥
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)

×
[∫ η

0

(
σ
(
θ , z(θ )

)
– σ

(
θ , y(θ )

))
dw(θ )

]
dω

∥∥∥∥
2

+
∥∥∥∥
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)[
f
(
ω, z(ω)

)
– f
(
ω, y(ω)

)]
dω

∥∥∥∥
2}

+ 6M̃2l2
{∥∥∥∥
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)

×
[∫ η

0

(
σ
(
θ , z(θ )

)
– σ

(
θ , y(θ )

))
dw(θ )

]
dω

∥∥∥∥
2

+
∥∥∥∥
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)[
f
(
ω, z(ω)

)
– f
(
ω, y(ω)

)]
dω

∥∥∥∥
2}

+ 6E
∥∥∥∥
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)

×
[∫ η

0

(
σ
(
θ , z(θ )

)
– σ

(
θ , y(θ )

))
dw(θ )

]
dω

∥∥∥∥
2

+ 6E
∥∥∥∥
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)[
f
(
ω, z(ω)

)
– f
(
ω, y(ω)

)]
dω

∥∥∥∥
2

� 6M2l2
2∑

b=1

Sb + 6M̃2l2
4∑

b=3

Sb +
6∑

b=5

Sb. (35)

Using the Lipschitz condition, we have the following estimates:

S1 ≤ 24M2l2
∥∥∥∥
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)

×
[∫ η

0

(
σ
(
θ , z(θ )

)
– σ

(
θ , y(θ )

))
dw(θ )

]
dω

∥∥∥∥
2

≤ 24M2l2u3Lσ L
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
E
∥∥z(θ ) – y(θ )

∥∥2)dθ

)
dω, (36)

S2 ≤ 6M2l2
∥∥∥∥
∫ T

0
(T – ω)η1–1Eη1–η2,η1

(
B(T – ω)η1–η2

)[
f
(
ω, z(ω)

)
– f
(
ω, y(ω)

)]
dω

∥∥∥∥
2

≤ 6M2l2u3T N
T 2η1–1

2η1 – 1

∫ T

0
E
∥∥z(ω) – y(ω)

∥∥2 dω, (37)
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S3 ≤ 24M̃2l2u3Lσ L
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
E
∥∥z(θ ) – y(θ )

∥∥2)dθ

)
dω, (38)

S4 ≤ 6M̃2l2u3T N
T 2η1–1

2η1 – 1

∫ T

0
E
∥∥z(ω) – y(ω)

∥∥2 dω, (39)

S5 ≤ 24u3Lσ L
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
E
∥∥z(θ ) – y(θ )

∥∥2)dθ

)
dω, (40)

S6 ≤ 6u3T N
T 2η1–1

2η1 – 1

∫ T

0
E
∥∥z(ω) – y(ω)

∥∥2 dω. (41)

Together with inequalities (36)–(41), we get

E
∥∥(�z)(t) – (�y)(t)

∥∥2

≤ 24M2l2u3Lσ L
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
E
∥∥z(θ ) – y(θ )

∥∥2)dθ

)
dω

+ 6M2l2u3T N
T 2η1–1

2η1 – 1

∫ T

0
E
∥∥z(ω) – y(ω)

∥∥2 dω

+ 24M̃2l2u3Lσ L
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
E
∥∥z(θ ) – y(θ )

∥∥2)dθ

)
dω

+ 6M̃2l2u3T N
T 2η1–1

2η1 – 1

∫ T

0
E
∥∥z(ω) – y(ω)

∥∥2 dω

+ 24u3Lσ L
T 2η1–1

2η1 – 1

∫ T

0

(∫ η

0

(
E
∥∥z(θ ) – y(θ )

∥∥2)dθ

)
dω

+ 6u3T N
T 2η1–1

2η1 – 1

∫ T

0
E
∥∥z(ω) – y(ω)

∥∥2 dω

≤ 24u3Lσ L
T 2η1–1

2η1 – 1
(
M2l2 + M̃2l2 + 1

)∫ T

0

(∫ η

0

(
E
∥∥z(θ ) – y(θ )

∥∥2)dθ

)
dω

+ 6u3T N
T 2η1–1

2η1 – 1
(
M2l2 + M̃2l2 + 1

)∫ T

0
E
∥∥z(ω) – y(ω)

∥∥2 dω

≤ 6u3
T 2η1–1

2η1 – 1
(
M2l2 + M̃2l2 + 1

)[
4Lσ L

∫ T

0

(∫ η

0

(
E
∥∥z(θ ) – y(θ )

∥∥2)dθ

)
dω

+ T N
∫ T

0
E
∥∥z(ω) – y(ω)

∥∥2 dω

]

≤ 6u3
T 2η1–1

2η1 – 1
(
M2l2 + M̃2l2 + 1

)
(4Lσ L + T N) sup

0≤t≤T
E
∥∥z(t) – y(t)

∥∥2 dω. (42)

Therefore we conclude that if 6u3
T 2η1–1

2η1–1 (M2l2 + M̃2l2 + 1)(4Lσ L + T N) ≤ 1, then � is a
contraction mapping on I , which implies that the mapping � has a unique fixed point.

Hence we have

z(t) =
ρ–1∑
r=0

zr(0)trEη1–η2,1+r
(
Btη1–η2

)
–

μ–1∑
r=0

zr(0)tη1–η2+rEη1–η2,η1–η2+1+r
(
Btη1–η2

)

+
∫ 0

–h

[∫ 0

λ

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
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×D(ω – λ,λ)ϑ(ω) dω

]
dDλ

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
f
(
ω, z(ω)

)
dω

+
∫ t

0
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)

×
(∫ η

0
σ (θ ) dw(θ )

)
dω +

∫ t+λ

0

[
(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
C

+
∫ 0

–h

(
t – (ω – λ)

)η1–1Eη1–η2,η1

(
B
(
t – (ω – λ)

)η1–η2)
D(ω – λ,λ) dDλ

]
u(ω) dω

+
∫ t

t+λ

(t – ω)η1–1Eη1–η2,η1

(
B(t – ω)η1–η2

)
Cu(ω) dω. (43)

Thus z(t) is the solution of system (18)–(20), and it is easy to verify that z(T ) = zT . Further
the control function u(t) steers system (18)–(20) from the initial state to the final state zT
on J . Hence system (18)–(20) is controllable on J . �

Remark 4.2 If η1 ∈ (1, 2], η2 ∈ (0, 1], ρ = 2, and σ = 0, then system (5)–(7) reduces to the
system which was discussed in [3]. When η1 ∈ (1, 2], η2 ∈ (0, 1], ρ = 2, and C = σ = 0, sys-
tem (18)–(20) reduces to the system studied in [4]. Controllability of the linear system is
obtained by the Gramian matrix. Further, under the assumption that the linear control
system is controllable and by using the successive approximation technique, the control-
lability of nonlinear systems was obtained. If we choose η1 ∈ (0, 1], η2 = 0, D = 0, and ρ = 1
in (18)–(20), Theorem 3.3 in [31] can be regarded as a special case of our result.

Remark 4.3 It should be noted that the results in [21] have been derived for linear
fractional-order systems, and the results in [6, 18] have been obtained for nonlinear
fractional-order systems. However, in comparison with [13, 32], the results proposed in
this paper are more general ones, as the results presented are applicable for higher-order
fractional damped stochastic systems with distributed delays.

5 Examples
Two examples are provided to demonstrate the controllability results for the proposed
criteria.

Example 5.1 The problem of linear fractional damped stochastic dynamical system with
distributed delay is as follows:

C
0 Dη1

t z(t) – B
C
0 Dη2

t z(t) = Cu(t) +
∫ 0

–h
dλD(t,λ)u(t + λ) + σ (t)

dw(t)
dt

, (44)

z(0) = z0, z′(0) = z1, z′′(0) = z2, z′′′(0) = z3, (45)

where 3 < η1 ≤ 4, 2 < η2 ≤ 3,

B =

⎡
⎢⎣

0 1 0
–1 0 0
0 0 –1

⎤
⎥⎦ , C =

⎡
⎢⎣

0
1
0

⎤
⎥⎦ , D =

⎡
⎢⎣

eλ

0
eλ

⎤
⎥⎦ , and σ (t) =

⎡
⎢⎣

sin(t)
cos(t)

– sin(t)

⎤
⎥⎦ .
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To show that linear system (44) is controllable, it is enough to show that the controlla-
bility Gramian matrix W is positive definite by Theorem 3.2.

The Mittag-Leffler matrix of the given system is

Eη1–η2,η1

(
B(t – ω)η1–η2

)

=

⎡
⎢⎢⎢⎣

∑∞
k=0

(–1)k (t–ω)2k(η1–η2)

�(2k(η1–η2)+η1)
∑∞

k=0
(–1)k (t–ω)(2k+1)(η1–η2)

�((2k+1)(η1–η2)+η1)
1

�(η1)

–
∑∞

k=0
(–1)k (t–ω)(2k+1)(η1–η2)

�((2k+1)(η1–η2)+η1)
∑∞

k=0
(–1)k (t–ω)2k(η1–η2)

�(2k(η1–η2)+η1)
1

�(η1)
1

�(η1)
1

�(η1)
∑∞

k=0
(–1)k (t–ω)k(η1–η2)

�(k(η1–η2)+η1)

⎤
⎥⎥⎥⎦ ,

E1,3.5
(
B(t – ω)

)

=

⎡
⎢⎢⎢⎣

∑∞
k=0

(–1)k (t–ω)2k

�(2k+3.5)
∑∞

k=0
(–1)k (t–ω)(2k+1)

�[2k+4.5]
1

�(3.5)

–
∑∞

k=0
(–1)k (t–ω)(2k+1)

�[2k+4.5]
∑∞

k=0
(–1)k (t–ω)2k

�(2k+3.5)
1

�(3.5)
1

�(3.5)
1

�(3.5)
∑∞

k=0
(–1)k (t–ω)k

�(k+3.5)

⎤
⎥⎥⎥⎦ ,

(T – ω)2.5E1,3.5
(
B(T – ω)

)

=

⎡
⎢⎢⎢⎣

∑∞
k=0

(–1)k (T –ω)2k+2.5

�(2k+3.5)
∑∞

k=0
(–1)k (T –ω)2k+3.5

�[2k+4.5]
(T –ω)2.5

�(3.5)

–
∑∞

k=0
(–1)k (T –ω)2k+3.5

�[2k+4.5]
∑∞

k=0
(–1)k (T –ω)2k+2.5

�(2k+3.5)
(T –ω)2.5

�(3.5)
(T –ω)2.5

�(3.5)
(T –ω)2.5

�(3.5)
∑∞

k=0
(–1)k (T –ω)k+2.5

�(k+3.5)

⎤
⎥⎥⎥⎦ ,

(T – ω)2.5E1,3.5
(
B(T – ω)

)
C =

⎡
⎢⎣

P1 P2 P3

P2 P1 P3

P3 P3 P9

⎤
⎥⎦
⎡
⎢⎣

0
1
0

⎤
⎥⎦ =

⎡
⎢⎣

P2

P1

P3

⎤
⎥⎦ ,

where

P1 = P5 =
∞∑

k=0

(–1)k(T – ω)2k+2.5

�(2k + 3.5)
,

P2 = –P4 =
∞∑

k=0

(–1)k(T – ω)2k+3.5

�[2k + 4.5]
,

P9 =
∞∑

k=0

(–1)k(T – ω)k+2.5

�(k + 3.5)
,

P3 = P6 = P7 = P8 =
(T – ω)2.5

�(3.5)
,

[
(T – ω)2.5E1,3.5

(
B(T – ω)

)
C
][

(T – ω)2.5E1,3.5
(
B(T – ω)

)
C
]∗

=

⎡
⎢⎣

P2

P1

P3

⎤
⎥⎦
[

P2 P1 P3

]

=

⎡
⎢⎣

P2
2 P1P2 P2P3

P1P2 P2
1 P1P3

P2P3 P1P3 P2
3

⎤
⎥⎦ .
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Similarly,

∫ 0

–1

(
T – (ω – λ)

)2.5E1,3.5
(
B
(
T – (ω – λ)

))
D(ω – λ,λ) dDλ

=

⎡
⎢⎣

Q1 Q2 Q3

Q2 Q1 Q3

Q3 Q3 Q9

⎤
⎥⎦
⎡
⎢⎣

eλ

0
eλ

⎤
⎥⎦ =

⎡
⎢⎣

Q1eλ + Q3eλ

Q2eλ + Q3eλ

Q3eλ + Q9eλ

⎤
⎥⎦ ,

where

Q1 = Q5 =
∞∑

k=0

(–1)k(T – (ω – λ))2k+2.5

�(2k + 3.5)
,

Q2 = –Q4 =
∞∑

k=0

(–1)k(T – (ω – λ))2k+3.5

�[2k + 4.5]
,

Q9 =
∞∑

k=0

(–1)k(T – (ω – λ))k+2.5

�(k + 3.5)
,

Q3 = Q6 = Q7 = Q8 =
(T – (ω – λ))2.5

�(3.5)
,

[
(T – ω)2.5E1,3.5

(
B(T – ω)

)
C

+
∫ 0

–1

(
T – (ω – λ)

)2.5E1,3.5
(
B
(
T – (ω – λ)

))
D(ω – λ,λ)dDλ

]

=

⎡
⎢⎣

P2

P1

P3

⎤
⎥⎦ +

⎡
⎢⎣

Q1eλ + Q3eλ

Q2eλ + Q3eλ

Q3eλ + Q9eλ

⎤
⎥⎦ =

⎡
⎢⎣

P2 + Q1eλ + Q3eλ

P1 + Q2eλ + Q3eλ

P3 + Q3eλ + Q9eλ

⎤
⎥⎦ ,

[
(T – ω)2.5E1,3.5

(
B(T – ω)

)
C

+
∫ 0

–1

(
T – (ω – λ)

)2.5E1,3.5
(
B
(
T – (ω – λ)

))
D(ω – λ,λ)dDλ

]

×
[

(T – ω)2.5E1,3.5
(
B(T – ω)

)
C

+
∫ 0

–1

(
T – (ω – λ)

)2.5E1,3.5
(
B
(
T – (ω – λ)

))
D(ω – λ,λ)dDλ

]∗

=

⎡
⎢⎣

P2 + Q1eλ + Q3eλ

P1 + Q2eλ + Q3eλ

P3 + Q3eλ + Q9eλ

⎤
⎥⎦
[
P2 + Q1eλ + Q3eλ P1 + Q2eλ + Q3eλ P3 + Q3eλ + Q9eλ

]

=

⎡
⎢⎣

(P2 + Q1eλ + Q3eλ)2 α1 α2

α1 (P1 + Q2eλ + Q3eλ)2 α3

α2 α3 (P3 + Q3eλ + Q9eλ)2

⎤
⎥⎦ ,

where

α1 =
(
P2 + Q1eλ + Q3eλ

)(
P1 + Q2eλ + Q3eλ

)
,
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α2 =
(
P2 + Q1eλ + Q3eλ

)(
P3 + Q3eλ + Q9eλ

)
,

α3 =
(
P1 + Q2eλ + Q3eλ

)(
P3 + Q3eλ + Q9eλ

)
.

Hence, the controllability matrix W for the system is found by

W =
∫ T +λ

0

⎡
⎢⎣

(P2 + Q1eλ + Q3eλ)2 α1 α2

α1 (P1 + Q2eλ + Q3eλ)2 α3

α2 α3 (P3 + Q3eλ + Q9eλ)2

⎤
⎥⎦ ds

+
∫ T

T +λ

⎡
⎢⎣

P2
2 P1P2 P2P3

P1P2 P2
1 P1P3

P2P3 P1P3 P2
3

⎤
⎥⎦ ds

> 0,

which is positive definite for any T > 0. Therefore the corresponding linear higher-order
fractional damped stochastic system with distributed delay is controllable.

Example 5.2 The problem of nonlinear fractional damped stochastic dynamical system
with distributed delay is as follows:

C
0 Dη1

t z(t) – B
C
0 Dη2

t z(t) = Cu(t) +
∫ 0

–h
dλD(t,λ)u(t + λ) + f

(
t, z(t)

)
+ σ (t)

dw(t)
dt

, (46)

z(0) = z0, z′(0) = z1, z′′(0) = z2, z′′′(0) = z3, (47)

where 3 < η1 ≤ 4, 2 < η2 ≤ 3,

B =

⎡
⎢⎣

0 1 0
–1 0 0
0 0 –1

⎤
⎥⎦ , C =

⎡
⎢⎣

0
1
0

⎤
⎥⎦ , D =

⎡
⎢⎣

eλ

0
eλ

⎤
⎥⎦ ,

f
(
t, z(t)

)
=

⎡
⎢⎣

7z5
1

9z3
3

z2
1 + z2

2

⎤
⎥⎦ and σ

(
t, z(t)

)
=

⎡
⎢⎣

sin(z1)
z2 cosec(z2)

tanh(z3)

⎤
⎥⎦ .

Since the linear system is controllable and the nonlinear functions f and σ satisfy the
Lipschitz condition and the linear growth condition, nonlinear system (46)–(47) is con-
trollable on [0,T ].

6 Conclusion
In this paper, the controllability Gramian matrix is used to derive the controllability results
for a linear fractional stochastic system with damping behavior and distributed delays.
New sufficient conditions for controllability of the nonlinear damped fractional stochastic
system with distributed delays have been deduced by using the fixed point theory and
stochastic analysis techniques. Finally, examples are given to demonstrate the effectiveness
of the obtained results. Further, the method and technique presented in this paper can be
applied to solve other fractional-order systems containing various effects like impulsive
behavior and several types of delays.
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