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Abstract
In this study, we discuss a cancer model considering discrete time-delay in
tumor-immune interaction and stimulation processes. This study aims to analyze and
observe the dynamics of the model along with variation of vital parameters and the
delay effect on anti-tumor immune responses. We obtain sufficient conditions for the
existence of equilibrium points and their stability. Existence of Hopf bifurcation at
co-axial equilibrium is investigated. The stability of bifurcating periodic solutions is
discussed, and the time length for which the solutions preserve the stability is
estimated. Furthermore, we have derived the conditions for the direction of
bifurcating periodic solutions. Theoretically, it was observed that the system
undergoes different states if we vary the system’s parameters. Some numerical
simulations are presented to verify the obtained mathematical results.
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1 Introduction
Cancer can be classified as abnormal growth and uncontrolled division of normal cells.
The development of cancer is a complex phenomenon. The research community still does
not understand the growth law of cancer and the immune system’s response in a tumor’s
presence. However, research has proven that the immune system can eliminate tumor cells
once they recognize those as malignant. So, in recent years, research on tumor-immune
dynamics has gained more interest for the applied mathematicians, biologists, oncologists,
and scientists. Mathematical modeling is an intelligent tool to gain insight into any real-
world complex system. For example, COVID-19 disease has been creating havoc through-
out the world during the last two years. Rezapour et al. [1] presented an SEIR epidemic
model for the transmission of COVID-19 using the Caputo fractional derivative to find
some remedial measures. Based on actual data and fitted in the model, the authors pre-
dicted the transmission of COVID-19 for the world in general and Iran in particular. In
work [2], Rezapour and Mohammadi studied an AH1N1 influenza model by using the
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Caputo–Fabrizio fractional-order derivative. They calculated the model results for dif-
ferent fractional order and compared those with the results of the integer-order model.
Aydogan et al. [3] examined a Caputo–Fabrizio fractional-order mathematical model of
Rabies disease with the use of the Laplace Adomian decomposition method. A box model
of mumps-induced hearing loss in children using the Caputo–Fabrizio fractional-order
derivative that preserves the system’s historical memory was investigated in [4]. The au-
thors also determined the optimal control problem for the proposed model considering
treatment as a control parameter to reduce the infected population. By examining the sen-
sitivity of basic reproduction numbers to each of the model parameters, they showed that
the basic reproduction number increases with the increase of disease transmission rate
and daily birth rate. Also, it reduces with an increase in the recovery rate, normal mortal-
ity rate.

The tool of mathematical modeling is widely used by researchers in the field of cancer
modeling too. Several significant works [5–9] through mathematical modeling have been
done to understand the response of the immune system with tumor. In [5], the authors
analyzed a cancer model by considering the interactions between cancer cells, tumor an-
giogenesis and endothelial cells. Lopez et al. [6] estimated the decay rate of tumor cells in
the presence of immune response and set a threshold value for which the immune system
can eradicate the tumor. Dong et al. [7] explored the effect of CD4+T cells in a tumor-
immune system incorporated with adoptive cellular immunotherapy (ACI) and suggested
that CD4+T cells play a crucial role in the tumor eradication process under ACI therapy.
Arlotti et al. [8] proposed a bilinear model of integro-differential equations to describe
the dynamics of cellular interaction between tumor and immune cells. By introducing two
phases, namely, the Inter-phase and M-phase at which cells are generally divided, Awang
et al. [9] newly described the interactions between tumor cells and immune system. Zeng
and Ma [10] analyzed a deterministic tumor-immune model under the Allee effect. This
Allee effect disturbed the growth and reproduction of tumor-immune cells. They found a
range of Allee threshold values for which the system can be stabilized.

The cytotoxic T cells are primarily responsible for tumor suppression and are found in
all tissues in the body. Kuznetzov et al. [11] described the response of CTL cells to the
growth of an immunogenic tumor. Quinonez et al. [12] examined a mathematical model
to show the immune response in the presence of synthetic tumor vaccines to mitigate de-
veloping cancer. Li and Li [13] modified the Kuznetsov et al. [11] and Galach model [14]
to a stochastic one by perturbing environmental noise. They found that the reduced rate
of tumors in their model is faster than in the earlier models. Also, their result reveals that
environmental noise is favorable for the extinction of tumor cells under immune surveil-
lance, and noise is ineffective when the immune system’s ability is strong enough. De Pillis
et al. [15] explored the role of natural killer (NK) and CD8+T cells in the immune-tumor
interaction mechanism and tumor surveillance through a mathematical model. Another
mathematical model was developed by Dritschel et al. [16] to investigate the anti-tumor
immune response of helper and cytotoxic T cells. They concluded that the tumor growth
could be reduced if we use treatments like IL-2 therapy, adoptive T cell therapy which
boosts the immune system, and antibody therapy which blocks tumor-induced immuno-
suppression. Recently, Pang et al. [17] proposed a modified model of [18, 19] to reflect the
clinical phenomena of anti-tumor immune responses and observed that the tumor cells
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show initial exponential growth to the final stable position at zero depending upon the
flow rate of mature immune cells.

In many biological complex systems, time delay plays a vital role. The introduction of
time delay forces a system to depend not only on the present state but also on the past state.
In cancer modeling, the time delay can describe the required time for cell differentiation,
cell proliferation, the response of one cell to other cells, etc. Banerjee and Sarkar [20] stud-
ied a delay-induced tumor-immune model to control the growth of malignant cells. They
varied parameters, analyzed the model, and observed that Hopf bifurcation occurs for de-
lay term as the bifurcation parameter. Rihan et al. [21] considered a family of differential
models to explore the effects of ACI therapy to control tumor burden. In a study of Bi and
Xiao [22], they illustrated the bifurcation analysis of a modified version of the Kuznetsov
model [11] with the introduction of two-time delays for immune response into the model.
Khajanchi [23] and Khajanchi et al. [24] analyzed in detail the influence of time delay on
the chaotic dynamics of tumor-immune interaction model [25]. In [23, 24], the authors
presented that in the presence of delay, the model shows long-term chaotic behavior with
Hopf bifurcations. They also estimated the length of the time delay to preserve stability
and direction of Hopf bifurcation. Ghosh et al. [26] described the interaction between tu-
mor cells and micro-environment immune and host cells with the use of two time delays,
one for immune interaction with tumor and the other for immune action on the tumor.
Dong et al. [27] converted their previously proposed model [7] to a delayed one with the
use of two delays, namely the immune activation delay for ECs and immune activation
delay for HTCs. Their results showed that the unstable equilibrium goes to a stable po-
sition for the activation delay of HTCs. In the work [28], the authors modified the model
proposed by Dong et al. [7] with the use of one delay term for the activation of ECs by
HTCs. This delay term induced two effects on the model. The first effect is that stabil-
ity switches to instability, and the second stabilizes tumor-presence equilibrium. Further
modification of the model [7] was carried out by Das et al. [29] with the use of distributed
and discrete-time delay. They observed that uniform activation of helper T-cells can help
in ECs stimulation and tumor control. Considering a reaction-diffusion system, includ-
ing time delay under the Neumann boundary conditions, Kayan et al. [30] modified the
model [11] which described tumor-immune competitions. They studied the Hopf bifur-
cation analysis and found that the effect of diffusion of tumor-immune interaction can
significantly change the dynamics of the model.

In this article, we investigate the model proposed by Pang et al. [17] introducing delay
term for anti-tumor immune responses of matured T lymphocytes to destroy tumor cells.
In Sect. 2, we formulate our proposed model. A qualitative analysis is done in Sect. 3. In
Sect. 4, conditions of Hopf bifurcation of the system are analyzed. Section 5 and Sect. 6
deal with the stability of the limit cycle and direction and stability of Hopf bifurcation.
Numerical examples, discussion, and conclusions are carried out in respective Sects. 7
and 8.

2 The model
Mathematical models can give a better insight into tumor-immune interaction. In the
above literature, we have found that each model is proposed to understand the tumor
cells’ mechanism and reduce the tumor burden in the body. T lymphocytes are the most
important cells in the immune system, capable of killing the tumor cells through kinetic
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processes. However, it is important to note that the tumor cells can also compete with
T lymphocytes and make them functionally inactive. Also, tumor cells secrete cytokines,
which are responsible for tumor cells proliferation. As a result, eradicating all tumor cells
becomes difficult for T lymphocytes, and a time delay occurs for the deactivation of tu-
mor cells by T lymphocytes. This time delay is regarded as an interaction and stimulation
delay of the tumor-immune system. We account for this time delay, the model of Pang et
al.[17] is thus modified into a delay system as follows:

dL1(τ )
dτ

= μ – λ1L1(τ ) + α1
T(τ – �)L2(τ – �)

η + T(τ – �)
,

dL2(τ ))
dτ

= λ1L1(τ ) – α3L2(τ ),

dT(τ )
dτ

= λ2T(τ ) – α2T(τ – �)L2(τ – �),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where L1(τ ), L2(τ ), and T(τ ) are densities of immature T lymphocytes, mature T lympho-
cytes, and tumor cells at any time τ respectively.

In the first equation of (2.1), the first term μ describes the fixed production rate of imma-
ture T lymphocytes by the body in the absence of tumor cells. The second term λ1L1(τ ) is
used for describing the transformation rate of immature T lymphocytes to mature T lym-
phocytes. The third term α1

T(τ–�)L2(τ–�)
η+T(τ–�) describes the recruitment term of anti-tumor

immune response, where α1 is the maximum recruitment rate and η is the half-saturation
constant. Here, � represents the discrete-time delay factor added for interaction and stim-
ulation delay of the tumor-immune system. The second equation describes the dynamics
of mature T lymphocytes where α3 is the inactivation rate of T lymphocytes. The third
equation designates the rate of change of tumor cells in which tumor cells can grow expo-
nentially in the absence of immune response, where λ2 is the exponential tumor growth
rate. The term α2T(τ – �)L2(τ – �) describes the interaction between tumor and mature
T lymphocytes, where α2 is the rate of tumor cells killed by the mature T lymphocytes.

For the sake of discussion of model (2.1), we substitute μ = λ0L0 and use nondimensional
variables and parameters as

(x, y, z) =
(

α2

α1

(

L1 –
λ0

λ1
L0

)

,
α2

λ1
L2,

T
η

)

with t = λ1τ ,

and

(a1, a2, a3, a4) =
(

α1

λ1
,
α3

λ1
,
α2λ0

λ2
1

L0,
λ2

λ1

)

.

The normalized model of (2.1) is

dx
dt

= –x +
y(t – �)z(t – �)

1 + z(t – �)
,

dy
dt

= a1x – a2y + a3,

dz
dt

= a4z – y(t – �)z(t – �),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)
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with initial history:

x(θ ) = φ1(θ ), y(θ ) = φ2(θ ), z(θ ) = φ3(θ ), (2.3)

with φi ≥ 0, ∀i = 1, 2, 3 for θ ∈ [–�, 0], where φi(θ ) ∈ R
3
+ are the continuous functions on

[�, 0) that may display jumps at θ = 0.

3 Qualitative analysis
3.1 Basic properties
The following proposition establishes the nonnegativity of the solutions of (2.2) with (2.3).

Theorem 3.1 The solution (x(t), y(t), z(t)) of system (2.2) is nonnegative under the nonneg-
ative initial conditions (φ(i), i = 1, 2, 3) defined on [0, +∞).

Proof System (2.2) can be written as

Ẋ =

⎛

⎜
⎝

ẋ(t)
ẏ(t)
ż(t)

⎞

⎟
⎠ =

⎛

⎜
⎝

–x + y(t–�)z(t–�)
1+z(t–�)

a1x – a2y + a3

a4z – y(t – �)z(t – �)

⎞

⎟
⎠ =

⎛

⎜
⎝

V1(X)
V2(X)
V3(X)

⎞

⎟
⎠ = V(X), (3.1)

where the function V : R3
+ �→ R

3 for V ∈ C∞(R3
+) is defined in the nonnegative octant

R
3
+. The R.H.S. of system (3.1) is locally Lipschitz, and hence the derivatives are bounded,

satisfy the conditions

Vi(X)|Xi(t), X ∈R
3
+ = Vi(0) ≥ 0 ∀i = 1, 2, 3. (3.2)

According to the lemma by Yang et al. [31], every solution of system (2.2) with initial
values (2.3), φi(t) ∈ R

3
+, say, X(t) = X[t; X(0)], ∀t > 0, that is, it remains positive throughout

the region R
3
+, ∀t > 0. �

System (2.2) without time delay was discussed in [17]. Since inducing time delay does
not affect the existence conditions for equilibria of the system, the system has three
equilibria with E0(0, 0, 0) as a trivial equilibrium, E1(0, a3

a2
, 0) as a tumor-free one, which

always exist, and E2( a2a4–a3
a1

, a4, a2a4–a3
a3+a1a4–a2a4

) as a co-axial equilibrium, which exists for
max{0, (a2 – a1a4)} < a3 < a2a4.

• For a3 > a2a4, the tumor-free equilibrium E1(0, a3
a2

, 0) exists.
• There exists only one equilibrium E1 for a2 > a1 and 0 < a3 < (a2 – a1)a4.
• For a2 < a1 and 0 < a3 < a2a4, two equilibria E1 and E2 exist.
• For a2 > a1 and (a2 – a1)a4 < a3 < a2a4, two equilibria E1 and E2 exist.

3.2 Local stability
In order to check the local stability at each of the equilibrium points, we calculate the
following Jacobian matrix for the system (2.2):

JE =

⎛

⎜
⎝

–1 z
1+z e–λ� y

(1+z)2 e–λ�

a1 –a2 0
0 –ze–λ� a4 – ye–λ�

⎞

⎟
⎠ . (3.3)
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I. The “no living cell” fixed point E0(0, 0, 0) is stable if a4 < 0. As corresponding to E0,
the eigenvalues of the matrix (3.3) are λ0,1 = –1 (< 0), λ0,2 = –a2 (< 0), and λ0,3 = a4.

II. The eigenvalues of the matrix (3.3) are λ1,1 = –1, λ1,2 = –a2, and λ1,3 = – a3–a2a4
a2

corresponding to the tumor-free fixed point E1(0, a3
a2

, 0). So, E1 is stable if a3 > a2a4,
otherwise unstable. For the case of a2 > a1 and 0 < a3 < (a2 – a1)a4, the fixed point
E1 is a saddle-focus point with two negative eigenvalues and one positive eigenvalue.

III. Now, we will investigate the dynamical behavior of the system (2.2) around the
co-axial fixed point E2(x̂ = a2a4–a3

a1
, ŷ = a4, ẑ = a2a4–a3

a3+a1a4–a2a4
) under the influence of

discrete time lag � for both the cases of existence of E2. In this case, the eigenvalues
of matrix (3.3) can be found from the following equation:

λ3 +
(
1 + a2 – a4 + ŷe–λ�

)
λ2

+
{

a2 – a4 – a2a4 +
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

e–λ�

}

λ

+
{

–a2a4 +
(

a1a4ẑ
1 + ẑ

+ a2ŷ
)

e–λ�

}

= 0.

(3.4)

For the case of no time lag (� = 0), equation (3.4) becomes

λ3 + (1 + a2 – a4 + ŷ)λ2

+
(

a2 – a4 – a2a4 + a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

λ

+
(

–a2a4 +
a1a4ẑ
1 + ẑ

+ a2ŷ
)

= 0.

(3.5)

By the use of Routh–Hurwitz criterion to (3.5), E2 is asymptotically stable if the
following conditions are satisfied:

1 + a2 – a4 + ŷ > 0 �⇒ 1 + a2 > 0,
(

–a2a4 +
a1a4ẑ
1 + ẑ

+ a2ŷ
)

> 0 �⇒ a1a4 > 0,

(1 + a2 – a4 + ŷ)
(

a2 – a4 – a2a4 + a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

–
a1a4ẑ
1 + ẑ

> 0

�⇒ (1 + a2)
(

a2 –
a1ẑ

1 + ẑ

)

–
a1a4ẑ
1 + ẑ

> 0

�⇒ (1 + a2)
(

a2 –
a1ẑ

1 + ẑ

)

>
a1a4ẑ
1 + ẑ

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

Now, we shall analyze the dynamical behavior of the system (2.2) with time lag
� 
= 0. For this, we assume that there exists a purely imaginary root for (3.4). Hence,
we substitute λ = im(m > 0) into (3.4) and, separating the real and imaginary parts,
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we have

(1 + a2 – a4)m2 – (–a2a4) =
(

a1a4ẑ
1 + ẑ

+ a2ŷ – ŷm2
)

cos(m�)

+
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

m sin(m�),

and

m3 – (a2 – a2a4 – a4)m =
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

m cos(m�)

–
(

a1a4ẑ
1 + ẑ

+ a2ŷ – ŷm2
)

sin(m�).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

Using the method of cross-multiplication, we solve both the equations of (3.7) and
get

tan(m�) =
c – d
e + f

, (3.8)

where

c =
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

m
{

(1 + a2 – a4)m2 – (–a2a4)
}

,

d =
{

m3 – (a2 – a2a4 – a4)m
}
{

a1a4ẑ
1 + ẑ

+ a2ŷ – ŷm2
}

,

e =
{

(1 + a2 – a4)m2 – (–a2a4)
}
{

a1a4ẑ
1 + ẑ

+ a2ŷ – ŷm2
}

,

f =
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

m
{

m3 – (a2 – a2a4 – a4)m
}

.

By squaring and adding both sides of both the equations of (3.7), we get

m6 + p0m4 + p1m2 + p2 = 0, (3.9)

where

p0 = (1 + a2 – a4)2 – 2(a2 – a2a4 – a4) – ŷ2,

p1 = (a2 – a2a4 – a4)2 – 2(1 + a2 – a4)(–a2a4)

+ 2ŷ
(

a1a4ẑ
1 + ẑ

+ a2ŷ
)

–
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)2

,

p2 = a2
2a2

4 –
{

a1a4ẑ
1 + ẑ

+ a2ŷ
}2

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)

The equation (3.9) will have a positive root if

p0 = (1 + a2 – a4)2 – 2(a2 – a2a4 – a4) – ŷ2 > 0,
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and

p2 = a2
2a2

4 –
{

a1a4ẑ
1 + ẑ

+ a2ŷ
}2

< 0.

Suppose that m0 is a unique non-negative root of the equation (3.9) such that (3.4)
has a pair of purely imaginary roots of the form ±im0. Then from the equation (3.8)
the time lag �k corresponding to m0 is

�k =
1

m0
arctan

[
c0 – d0

e0 + f0

]

+
2kπ

m0
, k = 0, 1, 2, 3, . . . , (3.11)

where

c0 =
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

m0
{

(1 + a2 – a4)m2
0 – (–a2a4)

}
,

d0 =
{

m3
0 – (a2 – a2a4 – a4)m0

}
{

a1a4ẑ
1 + ẑ

+ a2ŷ – ŷm2
0

}

,

e0 =
{

(1 + a2 – a4)m2
0 – (–a2a4)

}
{

a1a4ẑ
1 + ẑ

+ a2ŷ – ŷm2
0

}

,

f0 =
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

m0
{

m3
0 – (a2 – a2a4 – a4)m0

}
.

Therefore, the co-axial equilibrium E2 is locally asymptotically stable under the
conditions (3.6) for �k = 0. So, this point will also remain stable for �k < �0, where
�k = �∗ at k = 0 by Butler’s lemma [24]. This suggest that for �k > �0 the co-axial
equilibrium E2 is unstable. This implies that the tumor cells can proliferate faster if
the interaction time delay crosses a given critical value and the system loses its
stability at E2.

The rest of the work which is discussed in Sect. 4, Sect. 5, and Sect. 6 is inspired and
followed by the previous works [20, 23, 24, 32, 33].

4 Analysis of Hopf bifurcation
As the equation (3.4) has a complex roots of the form λ = im0, it implies that the system
(2.2) may undergo a Hopf bifurcation at � = �k and around the equilibrium E2. Here, we
establish a condition for which the system (2.2) undergoes a Hopf bifurcation by using
Lemma 1 [17]. For this, first we need to verify the transversality condition d(Reλ)

d�
|�=�k > 0.

Differentiating (3.4) with respect to � gives

[
{

3λ2 + 2λ(1 + a2 – a4) + (a2 – a2a4 – a2)
}

+ e–λ�k

{

2λŷ + a2ŷ + ŷ –
a1ẑ

1 + ẑ

}

– �e–λ�k

{

ŷλ2 +
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

λ +
a1a4ẑ
1 + ẑ

+ a2ŷ
}]

dλ

d�k

= λe–λ�k

{

ŷλ2 +
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

λ +
a1a4ẑ
1 + ẑ

+ a2ŷ
}

.

(4.1)
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Simplifying equation (4.1), we have

(
dλ

d�k

)–1

=
2λ3 + (1 + a2 – a4)λ2 + a2a4

–λ2{λ3 + (1 + a2 – a4)λ2 + (a2 – a2a4 – a4)λ – a2a4}

+
ŷλ2 – ( a1a4 ẑ

1+ẑ + a2ŷ)

λ2{ŷλ2 + (a2ŷ + ŷ – a1 ẑ
1+ẑ )λ + a1a4 ẑ

1+ẑ + a2ŷ}

–
�k

λ
.

(4.2)

Therefore, with the increase of the value of �k the direction of motion of λ is given by


 = sign

{

Re

(
dλ

d�k

)–1}

λ=im0

= sign

[

Re

(
2λ3 + (1 + a2 – a4)λ2 + a2a4

–λ2{λ3 + (1 + a2 – a4)λ2 + (a2 – a2a4 – a4)λ – a2a4}

+
ŷλ2 – ( a1a4 ẑ

1+ẑ + a2ŷ)

λ2{ŷλ2 + (a2ŷ + ŷ – a1 ẑ
1+ẑ )λ + a1a4 ẑ

1+ẑ + a2ŷ} –
�k

λ

)]

λ=im0

,


 =
1

m2
0

× sign

[ 2m6
0 + m4

0{(1 + a2 – a4)2 – 2(a2 – a2a4 – a2) – ŷ2} + {( a1a4 ẑ
1+ẑ + a2ŷ)2 – a2

2a2
4}

(a2ŷ + ŷ – a1 ẑ
1+ẑ )2m2

0 + ( a1a4 ẑ
1+ẑ + a2ŷ – ŷm2

0)
2

]

.

(4.3)

For d(Reλ)
d�

|�=�k > 0, from the equation (4.3) we must have

{
(1 + a2 – a4)2 – 2(a2 – a2a4 – a2) – ŷ2}

> 0, and
{(

a1a4ẑ
1 + ẑ

+ a2ŷ
)2

– a2
2a2

4

}

> 0.

⎫
⎪⎪⎬

⎪⎪⎭

(4.4)

Theorem 4.1 The co-axial equilibrium E2 is
(i) asymptotically stable if � ∈ [0,�k),

(ii) unstable if � > �k ,
(iii) Hopf bifurcation occurs around E2 if � = �k .

5 Stability of limit cycle: length of time lag estimation
In this section, we investigate the stability of bifurcating periodic solutions and estimate
the length of time lag preserving the stability of period-1 limit cycle. Consider model (2.2)
and the space of all continuous real-valued functions defined on [–�, +∞), which satisfies
the initial history (2.3) on the interval [–�, 0). First, we linearize model (2.2) around the
co-axial equilibrium point E2(x̂ = a2a4–a3

a1
, ŷ = a4, ẑ = a2a4–a3

a3+a1a4–a2a4
), which gives us

ẋ = –x +
ẑ

1 + ẑ
y(t – �) +

ŷ
(1 + ẑ)2 z(t – �),

ẏ = a1x – a2y,

ż = –ẑy(t – �) + a4z – ŷz(t – �).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5.1)
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Using Laplace transformation into (5.1), we have

(ω + 1)Lx(ω) =
ẑ

1 + ẑ
e–ω�Ly(ω) +

ẑ
1 + ẑ

e–ω�Uy(ω)

+
ŷ

1 + ẑ
e–ω�Lz(ω) +

ŷ
1 + ẑ

e–ω�Uz(ω) + x̄(0),

(ω + a2)Ly(ω) = a1Lx(ω) + ȳ(0),
(
ω – a4 + ŷe–ω�

)
Lz(ω) = –ẑe–ω�Ly(ω) – ẑe–ω�Uy(ω)

– ŷe–ω�Kz(ω) + z̄(0),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

where Uy(ω) =
∫ 0

–�
e–ω�y(t) dt, Uz(ω) =

∫ 0
–�

e–ω�z(t) dt and Lx(ω), Ly(ω), and Lz(ω) are the
Laplace transformations of x(t), y(t), and z(t) respectively.

Now, by using the theory provided by Freedman et al. [34] and the classical Nyquist
criteria, the equilibrium point E2 is asymptotically stable if, for the equation

P(ω) = ω3 +
(
1 + a2 – a4 + ŷe–ω�

)
ω2 +

{

a2 – a4 – a2a4

+
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

e–ω�

}

ω +
{

–a2a4 +
(

a1a4ẑ
1 + ẑ

+ a2ŷ
)

e–ω�

}

,
(5.3)

the following conditions hold:

Re P(iζ0) = 0, (5.4)

Im P(iζ0) = 0, (5.5)

where ζ0 is the minimal nonnegative root of (5.4) and (5.5).
From (5.4),

(1 + a2 – a4)ζ 2
0 = –a2a4 +

(
a1a4ẑ
1 + ẑ

+ a2ŷ
)

cos(ζ0�) – ŷζ 2
0 cos(ζ0�)

+
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

ζ0 sin(ζ0�).
(5.6)

Using the inequalities |cos(ζ0�)| ≤ 1 and |sin(ζ0�)| ≤ 1, we get

∣
∣(1 + a2 – a4)

∣
∣ζ 2

0 ≤ |a2a4| +
∣
∣
∣
∣

(
a1a4ẑ
1 + ẑ

+ a2ŷ
)∣

∣
∣
∣ + |ŷ|ζ 2

0

+
∣
∣
∣
∣

(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)∣
∣
∣
∣ζ0.

(5.7)

From (5.7) we have

ζ+ ≤
|(a2ŷ + ŷ – a1 ẑ

1+ẑ )| +
√

(a2ŷ + ŷ – a1 ẑ
1+ẑ )2 + 4{|(1 + a2 – a4)| – |ŷ|}{|a2a4| + |( a1a4 ẑ

1+ẑ + a2ŷ)|}
2{|(1 + a2 – a4)| – |ŷ|} .

(5.8)
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Hence, ζ0 ≤ ζ+.
From equation (5.5)

ζ 2
0 < (a2 – a2a4 – a4) +

(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

cos(ζ0�)

–
( a1a4 ẑ

1+ẑ + a2ŷ) sin(ζ0�)
ζ0

+ ŷζ0 sin(ζ0�).

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5.9)

Using (5.6), equation (5.9) becomes

{(
a1a4ẑ
1 + ẑ

+ a2ŷ
)

– ŷζ 2
0 – (1 + a2 – a4)

(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)}
[
cos(ζ0�) – 1

]

+
[{

a2ŷ + ŷ –
a1ẑ

1 + ẑ
(1 + a2 – a4)ŷ

}

ζ0 +
(1 + a2 – a4)( a1a4 ẑ

1+ẑ + a2ŷ)
ζ0

]

sin(ζ0�)

< (1 + a2 – a4)(a2 – a2a4 – a4) – (–a2a4)

+ (1 + a2 – a4)
(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

–
(

a1a4ẑ
1 + ẑ

+ a2ŷ
)

+ ŷζ 2
0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

Using the inequality ζ 2
0 < (a2 – a2a4 – a4 + a2ŷ + ŷ – a1 ẑ

1+ẑ ) for � = 0, the above equation
has the form

{(
a1a4ẑ
1 + ẑ

+ a2ŷ
)

– ŷζ 2
0 – (1 + a2 – a4)

(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)}
[
cos(ζ0�) – 1

]

+
[{

a2ŷ + ŷ –
a1ẑ

1 + ẑ
(1 + a2 – a4)ŷ

}

ζ0 +
(1 + a2 – a4)( a1a4 ẑ

1+ẑ + a2ŷ)
ζ0

]

sin(ζ0�)

< (1 + a2 – a4 + ŷ)
(

a2 – a2a4 – a4 + a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

–
{

–a2a4 +
a1a4ẑ
1 + ẑ

+ a2ŷ
}

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.11)

Now the first term and the second term of the L.H.S. of (5.11) can be written respectively
as

{(
a1a4ẑ
1 + ẑ

+ a2ŷ
)

– ŷζ 2
0 – (1 + a2 – a4)

(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)}
[
cos(ζ0�) – 1

]

= 2
[

ŷζ 2
0 + (1 + a2 – a4)

(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

–
(

a1a4ẑ
1 + ẑ

+ a2ŷ
)]

sin2
(

ζ0�

2

)

≤ 1
2
ζ 2

+

∣
∣
∣
∣

{

ŷζ 2
0 + (1 + a2 – a4)

(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

–
(

a1a4ẑ
1 + ẑ

+ a2ŷ
)}∣

∣
∣
∣�

2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
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and

[{

a2ŷ + ŷ –
a1ẑ

1 + ẑ
(1 + a2 – a4)ŷ

}

ζ0 +
(1 + a2 – a4)( a1a4 ẑ

1+ẑ + a2ŷ)
ζ0

]

sin(ζ0�)

≤
[∣

∣
∣
∣

{

a2ŷ + ŷ –
a1ẑ

1 + ẑ
(1 + a2 – a4)ŷ

}∣
∣
∣
∣ζ

2
+ +

∣
∣(1 + a2 – a4)

∣
∣

∣
∣
∣
∣

(
a1a4ẑ
1 + ẑ

+ a2ŷ
)∣

∣
∣
∣

]

�M.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Therefore from (5.11)

χ1�
2 + χ2� ≤ χ3, (5.12)

where

χ1 =
1
2
ζ 2

+

∣
∣
∣
∣

{

ŷζ 2
0 + (1 + a2 – a4)

(

a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

–
(

a1a4ẑ
1 + ẑ

+ a2ŷ
)}∣

∣
∣
∣,

χ2 =
[∣

∣
∣
∣

{

a2ŷ + ŷ –
a1ẑ

1 + ẑ
(1 + a2 – a4)ŷ

}∣
∣
∣
∣ζ

2
+ +

∣
∣(1 + a2 – a4)

∣
∣

∣
∣
∣
∣

(
a1a4ẑ
1 + ẑ

+ a2ŷ
)∣

∣
∣
∣

]

,

χ3 = (1 + a2 – a4 + ŷ)
(

a2 – a2a4 – a4 + a2ŷ + ŷ –
a1ẑ

1 + ẑ

)

–
{

–a2a4 +
a1a4ẑ
1 + ẑ

+ a2ŷ
}

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Now, equation (5.12) gives

�+ =
1

2χ1

[
–χ2 +

√

χ2
2 + 4χ1χ3

]
for 0 ≤ � ≤ �+. (5.13)

Therefore, the system (2.2) preserves the stability around the equilibrium E2 for the
maximum length of the time lag �+ with period-1 limit cycle.

6 Direction and stability of Hopf bifurcation
In the previous sections, we have discussed the conditions for which the periodic solutions
of the system (2.2) bifurcate from co-axial equilibrium E2 at the critical values of �k via
the Hopf bifurcation. In this section, we will analyze the direction, stability, and periods
of the periodic solutions of the system (2.2) using normal theory and the center manifold
theorem developed by Hassard et al. [35].

Let u1(t) = x(t) – x̄, u2(t) = y(t) – ȳ, u3(t) = z(t) – z̄, x(t) = u1(�t), y(t) = u2(�t), z(t) =
u3(�t), and � = �0 + μ, where �0 is defined by (3.11), and μ ∈R. The system (2.2) can be
written as a functional differential equation in C = C([–1, 0],R3) as

X ′ = Lμ(Xt) + f (μ, Xt), (6.1)

where X(t) = (x(t), y(t), z(t))T ∈ R
3, and Lμ : C → R

3, f : R × C → R
3 are given, respec-

tively, as follows: for �(t) = (�1(t),�2(t),�3(t))T ∈C([–�, 0],R3), we define

Lμ(�) = D1�(0) + D2�(–1), (6.2)

and

f (μ,�) = (�0 + μ)M, (6.3)
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where

D1 = (�0 + μ)

⎛

⎜
⎝

–1 0 0
a1 –a2 0
0 0 a4

⎞

⎟
⎠ , D2 = (�0 + μ)

⎛

⎜
⎝

0 z̄
1+z̄

ȳ
(1+z̄)2

0 0 0
0 –z̄ –ȳ

⎞

⎟
⎠ , (6.4)

M =

⎛

⎜
⎝

�2(–1)�3(–1) – �2(–1)�2
3(–1) + HOT

0
–�2(–1)�3(–1)

⎞

⎟
⎠ , (6.5)

HOT → higher order terms.
By the Riesz representation theorem, there exists a matrix function η(θ ,μ) of bounded

variation for θ ∈ [–1, 0] such that

Lμ(�) =
∫ 0

–1
dη(θ ,μ)�(θ ) for � ∈C. (6.6)

For the Dirac delta function δ, choose

η(θ ,μ) = D1δ(θ ) + D2δ(θ + 1), (6.7)

and for � ∈ C
1([–1, 0],R3), define

A(μ)�(θ ) =

⎧
⎨

⎩

d�(θ )
dθ

, θ ∈ [–1, 0),
∫ 0

–1 dη(s,μ)�(s), θ = 0,
(6.8)

and

R(μ)�(θ ) =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

f (μ, θ ), θ = 0.
(6.9)

Hence, system (6.1) is equivalent to the operator equation

X ′ = A(μ)Xt + R(μ)Xt , (6.10)

where Xt(θ ) = X(t + θ ) for θ ∈ [–1, 0).
For � ∈C

1([–1, 0), (R3)∗), define

A∗�(s) =

⎧
⎨

⎩

– d�(s)
ds , s ∈ (0, 1],

∫ 0
–1 dηT (t, 0)�(–t), s = 0,

(6.11)

and the bilinear inner product

〈
�(s),�(θ )

〉
= �̄(0)�(0) –

∫ 0

θ=–1

∫ θ

ξ=0
�̄(ξ – θ ) dη(θ )�(ξ ) dξ , (6.12)

where η(θ ) = η(θ , 0). Then A(0) and A∗ are adjoint operators. We already assume that
±ιω0�k are the eigenvalues of A(0). Hence, the eigenvalues of A∗ are ∓ιω0�k . We need
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to compute the eigenvectors of A(0) and A∗ corresponding to the eigenvalues ιω0�k and
–ιω0�k respectively.

Suppose that v(θ ) = (1, v1, v2)T eιω0�kθ is the eigenvector of A(0) corresponding to ιω0�k .
Then A(0)v(0) = ιω0�kv(0). It follows from the definition of A(0) and (6.3), (6.6) and (6.7)
that

�k

⎛

⎜
⎝

–1 0 0
a1 –a2 0
0 0 a4

⎞

⎟
⎠ v(0) + �k

⎛

⎜
⎝

0 z̄
1+z̄

ȳ
(1+z̄)2

0 0 0
0 –z̄ –ȳ

⎞

⎟
⎠ v(–1) = ιω0�kv(0).

Then, for v(–1) = v(0)e–ιω0�k , we obtain

v1 =
a1

a2 + ιω0
; v2 = –

a1z̄e–ιω0�k

(a2 + ιω0)(ιω0 + ȳe–ιω0�k )
.

In a similar manner, we can obtain the eigenvector v∗(s) = D(1, v∗
1, v∗

2)T e–ιω0�k s of A∗ cor-
responding to –ιω0�k , where

v∗
1 =

1 – ιω0

a1
; v∗

2 = –
ȳ

(1 + ȳ)2(ιω0 – ȳe–ιω0�k )e–ιω0�k
.

In order to guarantee 〈v∗(s), v(θ )〉 = 1, we need to determine the expression of D

〈
v∗(s), v(θ )

〉

= D̄
(
1, v̄1

∗, v̄2
∗)

(1, v1, v2)T

–
∫ 0

θ=–1

∫ θ

ξ=0
D̄

(
1, v̄1

∗, v̄2
∗)

e–ιω0�k (ξ–θ ) dη(θ )(1, v1, v2)T eιω0�kξ dξ

= D̄
{

(
1 + v̄1

∗v1 + v̄2
∗v2

)
–

∫ 0

θ=–1

(
1, v̄1

∗, v̄2
∗)

θeιω0�kθ dη(θ )(1, v1, v2)T
}

= D̄
{

(
1 + v̄1

∗v1 + v̄2
∗v2

)
+

{
z̄

1 + z̄
v1 +

ȳ
(1 + z̄)2 v2 – z̄v̄2

∗v1 – ȳv̄2
∗v2

}

�ke–ιω0�k

}

.

Therefore we can choose D as

D̄ =
[

1
(1 + v̄1

∗v1 + v̄2
∗v2) + { z̄

1+z̄ v1 + ȳ
(1+z̄)2 v2 – z̄v̄2

∗v1 – ȳv̄2
∗v2}�ke–ιω0�k

]

.

On the other hand, due to adjoint property, we can write 〈� , A�〉 = 〈A∗� ,�〉.
We have

–ιω0�k
〈
v∗, v̄

〉
=

〈
v∗, Av̄

〉
=

〈
A∗v∗, v̄

〉

=
〈
–ιω0�kv∗, v̄

〉

= ιω0�k
〈
v∗, v̄

〉
.

Therefore, 〈v∗, v̄〉 = 0.
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Now, we will compute the coordinates describing the center manifold C0 at μ = 0. Let
Xt be the solution of (6.10) when μ = 0. We define

Z(t) =
〈
v∗, Xt

〉
,

W (t, θ ) = Xt – z(t)v(θ ) – z̄(t)v̄(θ ) = Xt(θ ) – 2 Re
{

z(t)v(θ )
}

. (6.13)

On the center manifold C0 we have W (t, θ ) = W (z(t), z̄(t), θ ), where

W (z, z̄, θ ) = W20(θ )
z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ W30(θ )

z3

6
+ · · · , (6.14)

where z and z̄ are the local coordinates for the center manifold C0 in the direction of v̄∗

and v∗. Note that W is real if xt is real. Here, we are only interested in real solutions. From
(6.13), we have

〈
v∗, W

〉
=

〈
v∗, Xt – zv – z̄v̄

〉

=
〈
v∗, Xt

〉
– z

〈
v∗, v

〉
– z

〈
v∗, v̄

〉

= z – z

= 0.

For the solution xt ∈ C0 in (6.10), since μ = 0, hence

ż(t) =
〈
v∗, Ẋt

〉
=

〈
v∗, A(0)Xt + R(0)Xt

〉

=
〈
A∗(0)v∗, Xt

〉
+ v̄∗(0)f (0, Xt)

=
〈
–ιω0�kv∗, Xt

〉
+ v̄∗(0)f0(z, z̄)

= ιω0�kz + v̄∗(0)f0(z, z̄)

= ιω0�kz(t) + g(z, z̄),

where

g(z, z̄) = v̄∗(0)f0(z, z̄)

= g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · .
(6.15)

From (6.13) and (6.14), it follows that

Xt = W (z, z̄, θ ) + zv + z̄v̄.

Thus,

Xt =

⎡

⎢
⎣

X1t(θ )
X2t(θ )
X3t(θ )

⎤

⎥
⎦ =

⎡

⎢
⎣

W (1)(z, z̄, θ )
W (2)(z, z̄, θ )
W (3)(z, z̄, θ )

⎤

⎥
⎦ + z

⎡

⎢
⎣

1
v1

v2

⎤

⎥
⎦ eιω0�kθ + z̄

⎡

⎢
⎣

1
v̄1

v̄2

⎤

⎥
⎦ e–ιω0�kθ ,
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where

X1t(θ ) = zeιω0�kθ + z̄e–ιω0�kθ + W 1
20(θ )

z2

2
+ W 1

11(θ )zz̄ + W 1
02(θ )

z̄2

2
+ · · · ,

X2t(θ ) = v1zeιω0�kθ + v̄1z̄e–ιω0�kθ + W 2
20(θ )

z2

2
+ W 2

11(θ )zz̄ + W 2
02(θ )

z̄2

2
+ · · · ,

X3t(θ ) = v2zeιω0�kθ + v̄2z̄e–ιω0�kθ + W 3
20(θ )

z2

2
+ W 3

11(θ )zz̄ + W 3
02(θ )

z̄2

2
+ · · · .

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Using these values and from (6.3) it follows that

g(z, z̄) = v̄∗(0)f0(z, z̄)

= v̄∗(0)f0(z, Xt)

= �kD̄
[

1, v̄1
∗, v̄2

∗
]

⎡

⎢
⎣

X2t(–1)X3t(–1) – X2t(–1)X2
3t(–1)

0
–X2t(–1)X3t(–1)

⎤

⎥
⎦

= �kD̄
[
X2t(–1)X3t(–1) – X2t(–1)X2

3t(–1) – X2t(–1)X3t(–1)v̄2
∗]

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.16)

Putting the values of X2t(–1), X3t(–1), and X2
3t(–1), computing the above expressions

(6.16), and comparing the coefficients of z2, zz̄, z̄2, and z2z̄ with (6.15), we have

g20 = 2�kD̄
(
v1v2e–2ιω0�k – v1v2v̄∗

2e–2ιω0�k
)
,

g11 = �kD̄
(
v1v̄2 + v̄1v2 – v1v̄2v̄∗

2 – v̄1v2v̄∗
2
)
,

g02 = 2�kD̄
(
v̄1v̄2e2ιω0�k – v̄1v̄2v̄∗

2e2ιω0�k
)
,

g21 = 2�kD̄
[

v1e–ιω0�k W 3
11(–1) +

v̄2

2
eιω0�k W 2

20(–1) + v2e–ιω0�k W 2
11(–1)

+
v̄1

2
eιω0�k W 3

20(–1) – 2v1|v2|2e–ιω0�k – v̄1v2
2e–ιω0�k

– v̄∗
2

{

v1e–ιω0�k W 3
11(–1) +

v̄2

2
eιω0�k W 2

20(–1) + v2e–ιω0�k W 2
11(–1)

+
v̄1

2
eιω0�k W 3

20(–1)
}]

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.17)

and

W20(θ ) =
ιg20

ω0�k
q(0)eιω0�kθ +

ιḡ02

3ω0�k
q̄(0)e–ιω0�kθ + E1e2ιω0�kθ ,

W11(θ ) = –
ιg11

ω0�k
q(0)eιω0�kθ +

ιḡ11

ω0�k
q̄(0)e–ιω0�kθ + E2,

⎫
⎪⎪⎬

⎪⎪⎭

(6.18)

where E1 = (E(1)
1 , E(2)

1 , E(3)
1 ) and E2 = (E(1)

2 , E(2)
2 , E(3)

2 ) are a constant vector in R
3 satisfying the

following equations:

⎛

⎜
⎝

–1 – ιω0
z̄

1+z̄ e–ιω0�k ȳ
(1+z̄)2 e–ιω0�k

a1 –a2 – ιω0 0
0 –z̄e–ιω0�k a4 – ιω0 – ȳe–ιω0�k

⎞

⎟
⎠

⎛

⎜
⎝

E(1)
1

E(2)
1

E(3)
1

⎞

⎟
⎠ = 2

⎛

⎜
⎝

�11

�21

�31

⎞

⎟
⎠ , (6.19)
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⎛

⎜
⎝

–1 z̄
1+z̄

ȳ
(1+z̄)2

a1 –a2 0
0 –z̄ a4 – ȳ

⎞

⎟
⎠

⎛

⎜
⎝

E(1)
2

E(2)
2

E(3)
2

⎞

⎟
⎠ = 2

⎛

⎜
⎝

�12

�22

�32

⎞

⎟
⎠ , (6.20)

�11 = v1v2e–2ιω0�k ,

�12 = v1v̄2 + v̄1v2,

�21 = 0,

�22 = 0,

�31 = –v1v2e–2ιω0�k ,

�32 = –v1v̄2 – v̄1v2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.21)

Furthermore, we can compute g21 with respect to parameters and delay. Hence, from the
above analysis we can conclude that in order to find each gij we have to use the parameters
and delay in system (2.2). Thus we can compute the following values:

c1(0) =
ι

2�kω0

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re{c1(0)}

Re{λ′(�k)} ,

β2 = 2 Re
{

c1(0)
}

,

T2 = –
Im{c1(0)} + μ2 Imλ′(�k)

�kω0
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.22)

Based on our analysis, by the result of Hassard et al. [35], we have the following result.

Theorem 6.1 The sign of μ2, β2, and T2 determines the directions of Hopf bifurcations, sta-
bility of the bifurcating periodic solutions, and the period of bifurcating periodic solutions
respectively for � = �k . In view of (6.22), the following results hold for system (2.2):

(a) If μ2 < 0 (μ2 > 0), the Hopf bifurcation is subcritical (supercritical).
(b) If β2 > 0 (β2 < 0), the bifurcation periodic solutions are unstable (stable).
(c) If T2 < 0 (T2 > 0), the period of the bifurcated periodic solution decreases (increases).

7 Numerical simulations
Through our above analysis, we have gained an analytical understanding of the possible
dynamics of our proposed nonlinear delay differential equation model (2.2). In this sec-
tion, bifurcation analysis and parameter sensitivity will be discussed. The delay model (2.2)
showed that the system exhibited oscillations. Here, we shall discuss the effects of vary-
ing the parameter a1 on generating the oscillatory behavior. In Fig. 1, X is written as a
function of a1. The curves (equilibrium branch) having red and black colors represent the
stable and unstable steady state branches, respectively. Further, the green curve denotes
the maximum and minimum of the limit cycle. The equilibrium branch loses its stability
due to the appearance of a Hopf bifurcation point. In the unstable branch, the system (2.2)
exhibits oscillations, and from the figure, it can be observed that the amplitude of these
oscillations decreases as a1 increases.
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Figure 1 A bifurcation diagram showing X as a function of a1. Parameter values are a1 = 0.3, a2 = 0.6, a3 = 4,
a4 = 10, and � = 0.05

Figure 2 A bifurcation diagram showing X as a function of a2. Parameter values are a1 = 0.3, a2 = 0.6, a3 = 4,
a4 = 10, and � = 0.05

Similar effects of a2 on the steady states of X are discussed in Fig. 2. The red, black
curves represent the stable and unstable steady state branches, whereas the green circle
denotes the stable limit cycles. For low and high values of a2, the system (2.2) has a stable
equilibrium point. The system (2.2), however, does not converge to a steady-state when
a1 = 0 or a2 = 0. These are shown by arrows in Figs. 1 and 2. The reason for this is because
the equilibrium expression E1 is divided by a2 and E2 is divided by a1. Hence, E1, E2 → ∞.

After discussing the effects of a1 and a2 on generating limit cycle oscillations, we need
to investigate how the interplay between the two parameters a1 and a2 can alter these os-
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Figure 3 A two-parameter plot a1 vs a2 showing the effects of these two parameters on the oscillations.
Parameter values are similar to Fig. 1

Figure 4 A two-parameter plot a2 vs a3 showing the effects of these two parameters on the oscillations.
Parameter values are similar to Fig. 1

cillations. To address this question, we shall track the two parameters on a two-parameter
plot.

Figure 3 shows a two-parameter plot. Within the cusp, the system (2.2) exhibits oscil-
lations. Outside the cusp, the model (2.2) only has a single stable steady-state. In the ab-
sence of a1 or a2, the system cannot generate limit cycle oscillations. For the model (2.2)
to generate an oscillatory response, it must have a “well” balance between a1 and a2. If this
balance is biased, the oscillatory response cannot be achieved.

When selecting values of a1 and a2 from the region of oscillations of the figure, the
model (2.2) shows oscillation. We shall focus on the effects of a3 on these oscillations. In
other words, how does it alter this response? Figure 4 shows a two-parameter bifurcation
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Figure 5 The interplay between a1 and � in order to generate oscillations. Parameter values are similar to
Fig. 1

Figure 6 A two-parameter plot showing the role of a2 and � on generating limit cycle oscillations.
Parameter values are similar to Fig. 1

diagram, and it shows that if either of these two parameters increases beyond a critical
level, the oscillations will be destroyed. Additionally, in the absence of a3, the model (2.2)
can generate an oscillatory behavior.

Here, we shall focus numerically on the effects of the delay term on the limit cycle os-
cillations. Figure 5 illustrates the relationship between a1 and � on generating limit cycle
oscillations. In this Figure, in the absence of the delay term, the system (2.2) can generate
oscillations if a1 is increased beyond the blue vertical line (the Hopf locus).

We shall consider the role of a2 and the delay term on generating oscillations and this can
observe in Fig. 6. The system (2.2) can generate an oscillatory behavior even without the
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Figure 7 A two-parameter plot showing the role of a3 and � on generating limit cycle oscillations.
Parameter values are similar to Fig. 1

Figure 8 A two-parameter plot showing the role of a4 and � on generating limit cycle oscillations.
Parameter values are similar to those in Fig. 1

delay term as shown in Pang et al. model [17]. Figure 5 and Fig. 6 suggests that the system
(2.2) requires greater a2 value than a1 value in order to be able to generate oscillations.

Figure 7 highlights the contribution of the parameters a3 and � on destabilizing the
stable steady state branch. For the model (2.2) to generate oscillations, it requires greater
a3 values than a1 and a2. Thus, the system (2.2) can cross the Hopf locus and generate an
oscillatory behavior.

Figure 8 shows that the model (2.2) requires greater a4 values in order to exhibit oscil-
lations that a1, a2, and a3.
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Figure 9 Time evaluation curve and three-dimensional phase portrait of the system for the parameter values
a1 = 0.3, a2 = 0.6, a3 = 4.0, a4 = 10.0, � = 0.01

Figure 10 Time evaluation curve and three-dimensional phase portrait of the system for the parameter
values a1 = 0.3, a2 = 0.6, a3 = 4.0, a4 = 10.0, � = 0.05

However, suitable parameter values often give a meaningful biological scenario of the
system (2.2). Therefore, we perform some simulation works for a better understanding
of our analytical treatment. We consider different values of the parameters and the delay
factor (�) to observe biologically plausible different dynamical scenarios of the model
(2.2), enough to merit the mathematical study.

Choosing a1 = 0.3, a2 = 0.6, a3 = 4.0, a4 = 10.0, then a2 > a1 and (a2 – a1)a4 < a3 < a2a4,
which implies the existence of equilibria E1 and E2. Using the conditions of local stability,
we get that both the equilibria E1 and E2 are unstable. Also, there occurs a periodic solution
at E2. Figures 9 and 10 show the oscillating behavior as well as the periodic solutions for the
system (2.2). Existence of periodic solutions is relevant in cancer models. It implies that
the tumor levels may oscillate around a fixed point even in absence of any treatment. Such
a phenomenon, which is known as Jeff’s phenomenon, has been observed clinically. We
observe that � is beneficial for tumor cells. We observe no stability switch in the system
(2.2) as the delay factor � increases.

Choosing a1 = 0.4, a2 = 0.6, a3 = 3.5, a4 = 7.0, then a2 > a1 and (a2 – a1)a4 < a3 < a2a4,
which implies the existence of equilibria E1 and E2. Using the conditions of local stability,
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Figure 11 Time evaluation curve and three-dimensional phase portrait of the system for the parameter
values a1 = 0.4, a2 = 0.6, a3 = 3.5, a4 = 7.0, � = 0.01

Figure 12 Time evaluation curve and three-dimensional phase portrait of the system for the parameter
values a1 = 0.4, a2 = 0.6, a3 = 3.5, a4 = 7.0, � = 0.05

Figure 13 Time evaluation curve and three-dimensional phase portrait of the system for the parameter
values a1 = 0.3, a2 = 0.6, a3 = 1.0, a4 = 5.0, � = 0.01

we get tumor-free equilibrium E1 as unstable and co-axial equilibrium E2 as stable in na-
ture. From Figs. 11 and 12, we observe a stability switch in the system (2.2) as the delay
factor � crosses a threshold.
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Figure 14 Time evaluation curve and three-dimensional phase portrait of the system for the parameter
values a1 = 0.3, a2 = 0.6, a3 = 1.0, a4 = 5.0, � = 0.05

Figure 15 Time evaluation curve and three-dimensional phase portrait of the system for the parameter
values a1 = 0.3, a2 = 0.6, a3 = 0.5, a4 = 0.7, � = 0.01

Figure 16 Time evaluation curve and three-dimensional phase portrait of the system for the parameter
values a1 = 0.3, a2 = 0.6, a3 = 0.5, a4 = 0.7, � = 0.05

Choosing a1 = 0.4, a2 = 0.6, a3 = 3.5, a4 = 7.0, then a2 > a1 and 0 < a3 < (a2 – a1)a4,
which indicates the existence of tumor-free equilibrium E1. At this equilibrium the system
(2.2) shows unstable behavior. Figures 13 and 14 indicate that the number of tumor cells
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increases without restriction, which is in accordance with the immune escape phenomena
of tumor which is observed clinically.

Choosing a1 = 0.3, a2 = 0.6, a3 = 0.5, a4 = 0.7, then a3 > a2a4, which suggests the exis-
tence of the stable tumor-free equilibrium E1. Figures 15 and 16 clarify that the tumor-free
equilibrium is asymptotically stable, which is in accordance with the spontaneous tumor
regression phenomena observed clinically.

8 Conclusion
In this paper, we aimed to investigate the dynamical behavior of the modified Pang et
al. model [17]. In their model [17], it was shown that with the increase of normal flow
rate of mature immune cells, the system exhibits different states such as tumor dormant,
periodic tumor oscillation, immune escape of tumor, and so on. However, the effects of
the delay term on the oscillatory behavior were not considered in their model. Therefore,
a delay term was included in our model, and we investigated the system behavior with
varying system parameters. As a result, the modified model showed that the system (2.2)
could generate an oscillatory response even with a delay term. Moreover, it illustrated that
these oscillations were persistent and could not be destroyed by the additional delay term.
Our bifurcation analysis and numerical simulations revealed that a “careful” selection of
the model’s parameters must be obtained so that the stable steady-state loses its stability.
We showed that the delay term was not necessary to generate oscillations because our
model can generate these oscillations even without the delay term. From the bifurcation
analysis, in addition to Figs. 9 and 10, it can be shown that � neither affects generating
of oscillations nor the amplitude of these oscillations. However, varying other parameters
such as but not limited to a1, a2 leads to the stabilization of the unstable equilibrium point.
A set of realistic parameter values gives us a better insight into the model, which we leave
as our future work.

In our entire discussion, the major goal was to have a dynamical analysis of the consid-
ered model with the incorporation of a delay term. The numerical results were obtained
by applying standard MATLAB software. The aspects of numerical stability, CPU time,
minimum error, etc. of the adopted numerical techniques were not investigated. The in-
terested readers and researchers are referred to [36, 37] for such kinds of investigations.
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