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Abstract
In this work, we consider a generalized quantum fractional Sturm–Liouville–Langevin
difference problem with terminal boundary conditions. The relevant results rely on
Mönch’s fixed point theorem along with a theoretical method by terms of Kuratowski
measure of noncompactness (MNC) and the Banach contraction principle (BCP).
Furthermore, two dynamical notions of Ulam–Hyers (UH) and generalized
Ulam–Hyers (GUH) stability are addressed for solutions of the supposed
Sturm–Liouville–Langevin quantum boundary value problem (q-FBVP). Two
examples are presented to show the validity and also the effectiveness of theoretical
results. In the last part of the paper, we conclude our exposition with some final
remarks and observations.
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1 Introduction
The topics of fractional calculus and (quantum) q-calculus in general and fractional dif-
ferential equations, especially, have appeared extensively, and they are one of the applied
branches in mathematical analysis which have enormous impact in exact description of
existing real phenomena. In the meantime, in 1910, q-difference equations were intro-
duced by Jackson [1]. Next, the research on such q-difference equations was implemented
in most of the works, more specifically, by Carmichael and Al-Salam in [2, 3]. Regarding
several earlier manuscripts on this topic, we cite [4, 5], while the initial ideas on q-FC can
be observed in [6]. To review other applications on this field, see for instance [7–9]. Also,
some new papers in this regard are [10, 11].

By making use of techniques of nonlinear analysis, many researchers have turned to
the existence and uniqueness of solutions to nonlinear fractional differential equations
equipped with a variety of boundary conditions as special cases, since they are considered
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as accurate procedures to describe the actual processes [12–34]. On the other hand, some
other imperative and extra extremely good studies, which have these days attracted greater
interest, have been dedicated to the qualitative investigation of differential equations of
non-integer orders [35–39]. The primary effort was made by Ulam in 1940 and later by
Hyers [40], and the notion of stability was developed by Rassias. Finally, in comparison to
other works, Obloza [41] was the first researcher who investigated the U–H stability for a
given differential equation in 1993.

The Langevin equation (designed in 1908 by Langevin for elaborate interpretation of
Brownian motions) is introduced to be an applied mathematical model to describe the
cases of the evolution of every physical phenomenon in the environments having fluctu-
ations [42]. On the other side, the Sturm–Liouville problems involve various applications
in some fields of engineering and science [43]. Recently, Kiataramkul along with a group
of mathematicians presented a new structure of Hadamard FBVP in the fractional settings
by combining the Langevin and Sturm–Liouville equations [44]. This combination would
be an appropriate description in relation to each dynamical process defined in a fractal
medium in which both properties of the fractal and memory via a dissipative memory
kernel are incorporated.

Regarding the novelty of the present manuscript, no contributions exist, as far as we
know, concerning the existence theory on the Caputo q-difference equations with the help
of the technique of Kuratowski measure on noncompactness (KMNC-method) combined
with Mönch’s fixed point theorem. As a result, the goal of this paper is to enrich this aca-
demic area via new techniques based on a special notion of Kuratowski measure. Our pro-
posed method is essentially based on the result given by Banas̀ et al. [45]. Some authors
utilized similar methods via the KMNC technique to different types of FBVPs, including
[46–54]. Therefore, it is emphasized that the KMNC technique is implemented for the
first time on the generalized fractional q-Caputo Sturm–Liouville–Langevin q-difference
problems.

To be more precise, in this paper, we propose the following problem of the generalized
fractional q-Caputo Sturm–Liouville–Langevin q-difference equations:

⎧
⎨

⎩

cDα
q ([ρ(t)cDβ

q + r(t)])w(t) = σ (t, w(t)), (t ∈ I),

w(0) = 0, cDβ
q w(T) + r(T)

ρ(T) w(T) = 0,
(1)

where I := [0, T], 0 < α, β ≤ 1, and cDε
q is a q-derivative of q-Caputo type of order ε ∈ {α,β},

σ : I×R →R is continuous, ρ ∈ C(I,R\{0}) and r ∈ C(I,R).
Our suggested model in the context of quantum operators is not only new in the existing

structure but also is equivalent to some known physical models pertinent to the specific
values of the functions and parameters involved in q-FBVP (1). In spite of some similar
research implemented by Berhail et al. [55] based on Hadamard operators and also by
Kiataramkul et al. [44] based on anti-periodic boundary conditions, more precisely, our
q-FBVP (1) is formulated in a generalized form which combines both Langevin equations
and Sturm–Liouville problems in the context of q-operators for the first time. Indeed, we
have:

• By choosing r(t) ≡ 0 and q → 1, the nonlinear generalized fractional q-Caputo
Sturm–Liouville–Langevin q-difference BVP (1) is converted to the standard
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nonlinear Sturm–Liouville equation

cDα
[
ρ(t)cDβ

]
w(t) = σ

(
t, w(t)

)
.

• By choosing ρ(t) ≡ 1 and r(t) = –μ, μ ∈R and q → 1, the nonlinear generalized
fractional q-Caputo Sturm–Liouville–Langevin q-difference BVP (1) is converted to
the standard nonlinear Langevin equation

cDα
[

cDβ – μ
]
w(t) = σ

(
t, w(t)

)
.

In fact, in this paper, we aim to show that one can model some known equations with
respect to q-operators, because these operators have discrete structures and give accurate
numerical results in different simulations. Here is a brief outline of the arrangement of the
paper. The next section provides definitions and preliminary lemmas that will be needed
to prove the main theorems. In Sect. 3, we establish existence and uniqueness of solutions
to the given problem of the generalized Sturm–Liouville–Langevin q-difference equation
by following the KMNC-method. In Sect. 4, we discuss some types of fractional Ulam
stability. In Sect. 5, we give an example to illustrate numerical findings. In the last part of
the paper, we conclude our exposition with some final remarks and observations.

2 Preliminary notions
We follow the present section by recalling and assembling some required notions for fur-
ther arguments and developments.

Consider the Banach space of all real-valued continuous functions U = C(I, E) (here E is
assumed to be the space of real numbers) with the supremum norm

‖w‖∞ = sup
{∣
∣w(t)

∣
∣ : t ∈ I

}
,

and MU represents the class of all bounded mappings in U .
Consider L1(I, E) as a Banach space of all measurable Bochner integrable mappings like

w : I → E which are furnished with the integral norm

‖w‖L1 =
∫

I

∣
∣w(s)

∣
∣ds.

In what follows, we recollect some elementary definitions and properties related to frac-
tional q-calculus. Refer to [1, 2]. Let q ∈ (0, 1) be a real number. For each c ∈ R, we define

[c]q =
1 – qc

1 – q
.

The q-power function (c – d)m is defined by

(c – d)(0) = 1, (c – d)(m) =
m–1∏

k=0

(
c – dqk), c, d ∈ R, m ∈N,

and

(c – d)(δ) = cδ

∞∏

k=0

(
c – dqk

c – dqk+δ

)

, c, d, δ ∈R.
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Definition 1 ([1, 2]) The q-gamma function is given by

Γq(δ) =
(1 – q)(δ–1)

(1 – q)δ–1 , δ ∈R –
(
Z– ∪ {0}),

and

Γq(1 + δ) = [δ]qΓq(δ).

Definition 2 ([1, 2, 6]) Let σ : I →R be a suitable mapping. We define the q-derivative of
integer–order m ∈ N for σ by D0

qσ (t) = σ (t),

Dqσ (t) := D1
qσ (t) =

σ (t) – σ (qt)
(1 – q)t

, (t 	= 0), Dqσ (0) = lim
t→0

Dqσ (t),

and

Dm
q σ (t) = DqDm–1

q σ (t), t ∈ I, m ∈N.

Definition 3 ([1, 2, 6]) For a given mapping σ : It →R, the expression defined by

Iqσ (t) =
∫ t

0
σ (s) dqs =

∞∑

m=0

t(1 – q)qmσ
(
tqm)

is called q-integral if the series is convergent, in which It := {tqm : n ∈N} ∪ {0}.

Definition 4 ([5, 6]) The integral of a function σ : I →R given as

RLI0
q σ (t) = σ (t),

and

RLIδ
qσ (t) =

1
Γq(δ)

∫ t

0
(t – qs)(δ–1)σ (s) dqs, t ∈ I,

is named the Riemann–Liouville q-integral of order δ ∈R+, if the integral exists.

Lemma 5 ([6, 9]) Let δ ∈ R+ and β ∈ (–1,∞). One has

RLIδ
q tβ =

	q(β + 1)
	q(δ + β + 1)

tδ+β , δ ≥ 0, t > 0.

In particular, if σ ≡ 1, then

RLIδ
q 1(t) =

1
Γq(1 + δ)

t(δ) for all t > 0.

Definition 6 ([6, 9]) The Riemann–Liouville q-derivative of order δ ∈R+ of the mapping
σ : I →R is defined by

RLDδ
qσ (t) = D[δ]

q RLI [δ]–δ
q σ (t),

where [δ] is the integer part of δ.
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Definition 7 ([56]) The δth-q-Caputo derivative for an absolutely continuous mapping σ

is given by

cDδ
qσ (t) = RLI [δ]–δ

q D[δ]
q σ (t),

where [δ] is the integer part of δ and the integral exists.

Remark 1 Note that if q → 1, then both Definition 6 and Definition 7 are converted to the
standard Riemann–Liouville and Caputo fractional derivatives.

Lemma 8 ([9, 57]) Let m – 1 < δ < m. Then

RLIδ
q cDδ

qσ (t) = σ (t) –
m–1∑

i=0

ti

	q(i + 1)
Di

qσ (0).

Lemma 9 ([57]) Let σ be a function defined on I and suppose that δ, β are two real non-
negative numbers. Then the following hold:

RLIδ
q RLIβ

q σ (t) = RLIδ+β
q σ (t) = RLIβ

q RLIδ
qσ (t),

cDδ
qRLIδ

qσ (t) = σ (t).

Now we review some properties of the concept of Kuratowski measure of noncompact-
ness (KMNC).

Definition 10 ([45, 46]) The mapping κ : MU → [0,∞) denoted by κ(C) for C ∈ MU is
named the Kuratowski MNC if

κ(C) := inf

{

r > 0 : ∃ finitely many sets Ci s.t. C =
m⋃

i=1

Ci and D(Ci) ≤ r

}

,

where D(Ci) = sup{|w – ŵ| : w, ŵ ∈ Ci}.

Proposition 11 ([45, 46]) The Kuratowski MNC satisfies the following:
1 C ⊂ G ⇒ κ(C) ≤ κ(G),
2 κ(C) = 0 if and only if A is relatively compact,
3 κ(C) = κ(C) = κ(conv(C)), where C and conv(C) are the closure and the convex hull of

C, respectively,
4 κ(C + G) ≤ κ(C) + κ(G),
5 κ(pC) = |p|κ(C), p ∈R.

Notation 12 Let � be the set of functions w : I → E. Set

�(t) =
{

w(t) : w ∈ �
}

, (∀t ∈ I), �(I) =
{

w(t) : w ∈ �, t ∈ I
}

.

Theorem 13 ([48, 54]) Let the subset W 	= ∅ be convex and bounded, and in the Banach
space U with 0 ∈ W , σ : W → W be continuous. If ∀� ⊂ W ,

� = convσ (�) or � = σ (�) ∪ {0} ⇒ κ(�) = 0, (2)
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then σ has a fixed point.

Lemma 14 ([48]) Let the subset W be convex, bounded, and closed in the Banach space
U , G ∈ C(I× I), σ : I× W → U be Caratheodory, and there exists p ∈ L1(I,R+) such that,
for each t ∈ I and every bounded set B ⊂ W ,

lim
h→0+

κ
(
σ (It,h × B)

) ≤ p(t)κ(B); It,h = [t – h, t] ∩ I.

By assuming � as an equicontinuous set of mappings I → W , we have

κ

({∫

I

G(s, t)σ
(
s, w(s)

)
ds : w ∈ �

})

≤
∫

I

∥
∥G(t, s)

∥
∥p(s)κ

(
�(s)

)
ds.

3 Main theorems
In this section, we are concerned with the existence of solutions of the given generalized
Sturm–Liouville–Langevin q-difference FBVP (1).

Definition 15 By a solution of the generalized Sturm–Liouville–Langevin q-difference
FBVP (1), we mean a measurable function w ∈ U such that w(0) = 0, cDβ

q w(T)+ r(T)
ρ(T) w(T) =

0, and the FDEq

cDα
q
([

ρ(t)cDβ
q + r(t)

])
w(t) = σ

(
t, w(t)

)

is satisfied on I.

In what follows, we present the characterization of solutions in relation to suggested
generalized Sturm–Liouville–Langevin q-difference FBVP (1).

Lemma 16 Let K (t) ∈ U , 0 < α,β ≤ 1, ρ ∈ C(I,R\{0}), and r ∈ C(I,R). Then the solution
of the following linear generalized Sturm–Liouville–Langevin q-difference FBVP

⎧
⎨

⎩

cDα
q ([ρ(t)cDβ

q + r(t)])w(t) = K(t), t ∈ I,

w(0) = 0, cDβ
q w(T) + r(T)

ρ(T) w(T) = 0,
(3)

is given by

w(t) = RLIβ
q

(
1
ρ

RLIα
q K

)

(t) – RLIβ
q

(
r
ρ

w
)

(t) – RLIα
q K(T)RLIβ

q

(
1
ρ

)

(t). (4)

Proof Taking the αth-q-Riemann–Liouville integral to the FDEq of (3), we get

cDβ
q w(t) =

RLIα
q K(t) + c0 – r(t)w(t)

ρ(t)
, (5)

where c0 ∈R. The second BCs of system (3) gives

c0 = –RLIα
q K(T).
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Taking the β th-q-Riemann–Liouville integral to (5), we obtain

w(t) = RLIβ
q

(
1
ρ

RLIα
q K

)

(t) – RLIβ
q

(
r
ρ

w
)

(t) – RLIα
q K(T)RLIβ

q

(
1
ρ

)

(t) + c1, (6)

where c1 ∈R. Using the condition w(0) = 0 of (3), we have

c1 = 0.

Substituting the obtained value for c1, we derive the q-integral equation (4), and the proof
is completed. �

Note that, on the other side, if we apply the Caputo β th-q-derivative and αth-q-derivative
to both sides of (4) and use Lemma 9, then the given system (3) immediately is established.

Now, consider the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP
(1). On the basis of Lemma 16, the solutions of (1) correspond to q-integral equation in
the following form:

w(t) = RLIβ
q

(
1
ρ

RLIασ

)
(
t, w(t)

)
– RLIβ

(
r
ρ

w
)

(t)

– RLIασ
(
T , w(T)

)
RLIβ

q

(
1
ρ

)

(t).
(7)

3.1 Existence result via the KMNC-method
We further will use the following hypotheses.

(H1) σ : I× U → U is Caratheodory;
(H2) There exists p ∈ C(I,R+) such that

∥
∥σ

(
t, w(t)

)∥
∥ ≤ p(t)‖w‖, ∀t ∈ I,∀w ∈ U ;

(H3) For each t ∈ I and each bounded measurable set B ⊂ U ,

lim
h→0+

κ
(
σ (It,h × B), 0

) ≤ p(t)κ(B),

where κ is the Kuratowski MNC and It,h = [t – h, t] ∩ I.
Set

p∗ = sup
t∈I

∣
∣p(t)

∣
∣, ρ∗ = inf

t∈I
∣
∣ρ(t)

∣
∣, r∗ = sup

t∈I

∣
∣r(t)

∣
∣. (8)

Theorem 17 Suppose that conditions (H1)–(H3) hold. If

� < 1, (9)

with

� := μp∗ + ν,
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where

μ =
1
ρ∗

{
Tα+β

	q(α + β + 1)
+

Tβ

	q(1 + β)
Tα

	q(α + 1)

}

, (10)

ν =
{

r∗

ρ∗
Tβ

	q(β + 1)

}

, (11)

then the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1) has a so-
lution on I.

Proof Firstly, for w ∈ U , we consider the operator G : U → U defined by

Gw = RLIβ
q

(
1
ρ

RLIασ

)
(
t, w(t)

)
– RLIβ

(
r
ρ

w
)

(t) – RLIασ
(
T , w(T)

)
RLIβ

q

(
1
ρ

)

(t). (12)

Evidently, the fixed points of G are solutions of the nonlinear generalized Sturm–
Liouville–Langevin q-difference FBVP (1). We take

DR =
{

w ∈ U : ‖w‖ ≤ R
}

.

DR is convex, closed, and bounded. We shall follow the proof in three steps.
STEP 1: G is sequentially continuous:
Let {wn}n be a sequence with wn → w in U . Then, for each t ∈ I, one may write

∣
∣(Gwn)(t) – (Gw)(t)

∣
∣ ≤ RLIβ

q

(
1

ρ(t) RLIα
q
∣
∣σ (t, wn) – σ

(
t, w(t)

)∣
∣

)

+ RLIβ
q

(
r
ρ

|wn – w|
)

(t)

+ RLIα
q
∣
∣σ

(
T , wn(T)

)
– σ

(
T , w(T)

)∣
∣RLIβ

q

(
1
ρ

)

(t).

Since the function σ is continuous and satisfies (H1), so σ (t, wn(t)) tends uniformly to
σ (t, w(t)). In accordance with Lebesgue’s dominated convergence theorem, {G(wn)(t)}
tends uniformly to G(w)(t), that is, Gwn → Gw. Hence G : DR → DR is sequentially con-
tinuous.

STEP 2: G(DR) ⊆ DR:
Take w ∈DR. By (H2) and for each t ∈ I, let G(w)(t) 	= 0. Then

∣
∣Gw(t)

∣
∣ ≤

∣
∣
∣
∣RLIβ

q

(
1
ρ

RLIα
q σ

)
(
t, w(t)

)
∣
∣
∣
∣ +

∣
∣
∣
∣RLIβ

q

(
r
ρ

w
)

(t)
∣
∣
∣
∣

+
∣
∣
∣
∣RLIα

q σ
(
T , w(T)

)
RLIβ

q

(
1
ρ

)

(t)
∣
∣
∣
∣

≤ RLIβ
q

(
1

|ρ|RLIα
q
∣
∣σ

(
t, w(t)

)∣
∣

)

(t) + RLIβ
q

( |r|
|ρ|

∣
∣w(t)

∣
∣

)

(t)

+ RLIα
q
∣
∣σ

(
T , w(T)

)∣
∣RLIβ

q

(
1

|ρ|
)

(t)

≤ RLIβ
q

(
1
ρ∗ RLIα

q
[‖w‖p(t)

]
)

(t) + RLIβ
q

(
r∗

ρ∗
∣
∣w(t)

∣
∣

)

(t)



Boutiara et al. Advances in Difference Equations        (2021) 2021:454 Page 9 of 17

+
tβ

	q(1 + β)

(
1
ρ∗ RLIα

q
[‖w‖p(t)

]
)

(T)

≤ p∗R
{

RLIβ
q

(
1
ρ∗ RLIα

q (1)(t)
)

+
tβ

	q(1 + β)
1
ρ∗ RLIα

q (1)(T)
}

+ RRLIβ
q

(
r∗

ρ∗ (1)
)

(t)

≤ R
p∗

ρ∗

{
Tα+β

	q(α + β + 1)
+

Tβ

	q(1 + β)
Tα

	q(α + 1)

}

+ R
{

r∗

ρ∗
Tβ

	q(β + 1)

}

= R
(
μp∗ + ν

)
.

Hence we get

∥
∥G(w)

∥
∥
U ≤ R

(
μp∗ + ν

)
= R� ≤ R. (13)

STEP 3: G(DR) is equicontinuous:
By considering STEP 2, it is known that G(DR) ⊂ U is bounded uniformly. In relation to

the equicontinuity of G(DR), we take t1, t2 ∈ I, t1 < t2, and w ∈ DR. Then

∣
∣Gw(t2) – Gw(t1)

∣
∣ ≤ RLIβ

q

(
1
ρ∗ RLIα

q
∣
∣σ

(
t2, w(t2)

)
– σ

(
t1, w(t1)

)∣
∣

)

+ RLIβ
q

(
r∗

ρ∗
∣
∣w(t2) – w(t1)

∣
∣

)

+ RLIα
q
∣
∣σ

(
T , w(T)

)∣
∣

(
1
ρ∗

)
∣
∣RLIβ

q (1)(t2) – RLIβ
q (1)(t1)

∣
∣

≤ p∗R
{

RLIβ
q

(
1
ρ∗

∣
∣RLIα

q (1)(t2) – RLIα
q (1)(t1)

∣
∣

)}

+ R
(

r∗

ρ∗
(

RLIβ
q (1)(t2) – RLIβ

q (1)(t1)
)
)

+
p∗

ρ∗ R
Tα

	q(α + 1)
∣
∣RLIβ

q (1)(t2) – RLIβ
q (1)(t1)

∣
∣

≤ R
ρ∗

p∗

	q(α + β + 1)
{(

tα+β
2 – tα+β

1
)

+ 2(t2 – t1)α+β
}

+
r∗

ρ∗
R

	q(β + 1)
{(

tβ
2 – tβ

1
)

+ 2(t2 – t1)β
}

+
p∗

ρ∗
RTα

	q(α + 1)	q(β + 1)
{(

tβ
2 – tβ

1
)

+ 2(t2 – t1)β
}

. (14)

As t1 → t2, the right-hand side of (14) goes to 0 independent of w, and thus |Gw(t2) –
Gw(t1)| → 0. The equicontinuity of G is confirmed.

The implication (2) is proved in the last step:
Let � ⊂ DR be such that � = conv(G(�) ∪{0}). Since � is equicontinuous and bounded,

the mapping t �→ w(t) = κ(�(t)) has the continuity property on I. From (H2) and some
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given properties of the Kuratowski MNC κ , for any t ∈ I, we get

w(t) ≤ κ
(
G(�)(t) ∪ {0}) ≤ κ

(
(G�)(t)

)

≤ RLIβ
q

(
1
ρ

RLIα
q pκ(�)

)

(t) + RLIβ
q

(
r
ρ

κ(�)
)

(t)

+ RLIα
q p(T)κ

(
�(T)

)
RLIβ

q

(
1
ρ

)

(t)

≤ p∗‖w‖
{

RLIβ
q

(
1
ρ

RLIα
q (1)

)

(t) + RLIα
q (1)(T)RLIβ

q

(
1
ρ

)

(t)
}

+ ‖w‖
{

RLIβ
q

(
r
ρ

(1)
)

(t)
}

≤ p∗‖w‖
{

1
ρ∗

{
Tα+β

	q(α + β + 1)
+

Tβ

	q(1 + β)
Tα

	q(α + 1)

}}

+ ‖w‖
{

r∗

ρ∗
Tβ

	q(β + 1)

}

≤ p∗‖w‖μ + ‖w‖ν.

This means that

‖w‖(1 – p∗μ – ν
) ≤ 0.

By (9) it follows that ‖w‖ = 0, that is, w(t) = 0 for any t ∈ I, so κ(�) = 0, and then �(t) is
relatively compact in U . From the Ascoli–Arzela theorem, � has the relative compactness
in DR. By Theorem 13, we find out that G has a fixed point, which is the same solution of
the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1). �

3.2 Uniqueness criterion
Theorem 18 Let:

(G1) σ : I× U → U be continuous.
(G2) There exists the constant M > 0 such that

∣
∣σ (t, w) – σ (t, v)

∣
∣ ≤ M‖w – v‖, ∀t ∈ I,∀w, v ∈ U . (15)

Then the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1) has a
unique solution on I such that

� = μM + ν < 1, (16)

where μ and ν are given by Equations (10) and (11), respectively.

Proof In the first place, we show GBω ⊂ Bω , where the operator G : U → U is defined by
Equation (7), and for ω > 0, Bω = {w ∈ U ,‖w‖ ≤ ω} such that

ω ≥ μσ0

1 – �
,
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and σ0 = sup0≤t≤T |σ (t, 0)|. For any w ∈ Bω , using (G2), we write

∣
∣Gw(t)

∣
∣ ≤

∣
∣
∣
∣RLIβ

q

(
1
ρ

RLIα
q σ

)
(
t, w(t)

)
∣
∣
∣
∣ +

∣
∣
∣
∣RLIβ

q

(
r
ρ

w
)

(t)
∣
∣
∣
∣

+
∣
∣
∣
∣RLIα

q σ
(
T , w(T)

)
RLIβ

q

(
1
ρ

)

(t)
∣
∣
∣
∣

≤ RLIβ
q

(
1
ρ∗ RLIα

q
∣
∣σ

(
t, w(t)

)
– σ (t, 0)

∣
∣ +

∣
∣σ (t, 0)

∣
∣

)

(t) + RLIβ
q

(
r∗

ρ∗
∣
∣w(t)

∣
∣

)

(t)

+
tβ

	q(1 + β)

(
1
ρ∗ RLIα

q
∣
∣σ

(
t, w(t)

)
– σ (t, 0)

∣
∣ +

∣
∣σ (t, 0)

∣
∣

)

(T)

≤ RLIβ
q

(
1
ρ∗ RLIα

q
(
M‖w‖ + σ0

)
)

(t) +
(

r∗

ρ∗

)

RLIβ
q ‖w‖(t)

+
tβ

ρ∗	q(1 + β)
(

RLIα
q
(
M‖w‖ + σ0

))
(T)

≤ 1
ρ∗

{
Tα+β

	q(α + β + 1)
+

Tβ

	q(1 + β)
Tα+1

	q(α + 1)

}
(
M

(‖w‖) + σ0
)

+
{

r∗

ρ∗
Tβ

	q(β + 1)

}

‖w‖

≤ μ
(
M

(‖w‖) + σ0
)

+ ν‖w‖ ≤ ω,

which implies ‖G(w)‖ ≤ ω after taking the supremum on I. Thus, G corresponds Bω to
itself.

Next, we investigate that G(w) is a contraction. For w, v ∈ U , and by utilizing the nota-
tions of (10) and (11), we have

∣
∣Gw(t) – Gv(t)

∣
∣

≤ RLIβ
q

(
1

|ρ|RLIα
q
∣
∣σ

(
t, w(t)

)
– σ

(
t, v(t)

)∣
∣

)

(t) + RLIβ
q

( |r|
|ρ|

∣
∣w(t) – v(t)

∣
∣

)

(t)

+
tβ

|ρ|	q(1 + β)
(

RLIα
q
∣
∣σ

(
t, w(t)

)
– σ

(
t, v(t)

)∣
∣
)
(T)

≤ RLIβ
q

(
1
ρ∗ RLIα

q
(
M

∣
∣w(t) – v(t)

∣
∣
)
)

(t) +
(

r∗

ρ∗

)

RLIβ
q
(∣
∣w(t) – v(t)

∣
∣
)
(t)

+
Tβ

ρ∗	q(1 + β)
(

RLIα
q
(
M

∣
∣w(t) – v(t)

∣
∣
))

(T)

≤ 1
ρ∗

{
Tα+β

	q(α + β + 1)
+

Tβ

	q(1 + β)
Tα

	q(α + 1)

}
(
M

∣
∣w(t) – v(t)

∣
∣
)

+
{

r∗

ρ∗
Tβ

	q(β + 1)

}
∣
∣w(t) – v(t)

∣
∣ ≤ (μM + ν)‖w – v‖.

Consequently, we get

‖Gw – Gv‖ ≤ (μM + ν)‖w – v‖ = �‖w – v‖,
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which states that G is a contraction by (16). By the Banach contraction principle, G has
a unique fixed point, which is the unique solution of the nonlinear generalized Sturm–
Liouville–Langevin q-difference FBVP (1) on I. �

4 Stability results
In the recent section, we are interested in studying UH and GHR stability of the given
nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1).

Definition 19 The nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP
(1) is UH stable if there is cσ ∈R

+ such that, for each ε ∈R
+ and for each w ∈ U satisfying

⎧
⎨

⎩

|cDα
q ([ρ(t)cDβ

q + r(t)])w(t) – σ (t, w(t))| ≤ ε, (t ∈ I),

w(0) = 0, cDβ
q w(T) + r(T)

ρ(T) w(T) = 0,
(17)

a unique solution w̃ ∈ U of (1) exists with

‖w – w̃‖ ≤ cσ ε.

Definition 20 The nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP
(1) is generalized UH stable (GUH) if there exists Cσ ∈ C(R+,R+), Cσ (0) = 0 such that, for
each ε ∈R

+ and for each w ∈ U satisfying (17), a unique solution w̃ ∈ U of (1) exists with

‖w – w̃‖ ≤ Cσ (ε).

Remark 2 A function w̃ ∈ C(I,R) is a solution of (19) if and only if there exists ψ ∈ C(I,R)
(which depends on w̃) such that

1. |ψ(t)| ≤ ε, t ∈ I.
2. cDα

q ([ρ(t)cDβ
q + r(t)])w(t) = σ (t, w(t)) + ψ(t), t ∈ I.

Here we review the UH and GUH stability of solutions to the nonlinear generalized
Sturm–Liouville–Langevin q-difference FBVP (1).

Theorem 21 Let (G2) and (16) be fulfilled. Then the nonlinear generalized Sturm–
Liouville–Langevin q-difference FBVP (1) is UH and GUH stable.

Proof Let ε > 0, let w̃ ∈ C(I,R) satisfy (17), and let w ∈ C(I,R) be the unique solution of
the generalized Sturm–Liouville–Langevin q-difference FBVP

⎧
⎨

⎩

cDα
q ([ρ(t)cDβ

q + r(t)])w(t) = σ (t, w(t)), (t ∈ I),

w(0) = 0, cDβ
q w(T) + r(T)

ρ(T) w(T) = 0.
(18)

By Lemma 16, we have

w(t) = RLIβ
q

(
1
ρ

RLIασ

)
(
t, w(t)

)
– RLIβ

(
r
ρ

w
)

(t)

– RLIασ
(
T , w(T)

)
RLIβ

q

(
1
ρ

)

(t).
(19)
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Since we have supposed that w̃ satisfies (19), hence, by Remark 2, we get

⎧
⎨

⎩

cDα
q ([ρ(t)cDβ

q + r(t)])w̃(t) = σ (t, w̃(t)) + ψ(t), (t ∈ I),

w̃(0) = 0, cDβ
q w̃(T) + r(T)

ρ(T) w̃(T) = 0.
(20)

Again by Lemma 16, we have

w̃(t) = RLIβ
q

(
1
ρ

RLIασ

)
(
t, w̃(t)

)
– RLIβ

(
r
ρ

w̃
)

(t)

– RLIασ
(
T , w̃(T)

)
RLIβ

q

(
1
ρ

)

(t)

+ RLIβ
q

(
1
ρ

RLIαψ

)

(t) – RLIαψ(T)RLIβ
q

(
1
ρ

)

(t).

(21)

For each t ∈ I,

∣
∣Gw(t) – Gw̃(t)

∣
∣

≤ RLIβ
q

(
1
ρ∗ RLIα

q
∣
∣σ

(
t, w(t)

)
– σ

(
t, w̃(t)

)∣
∣

)

(t) + RLIβ
q

(
r∗

ρ∗
∣
∣w(t) – w̃(t)

∣
∣

)

(t)

+
tβ

ρ∗	q(1 + β)
(

RLIα
q
∣
∣σ

(
t, w(t)

)
– σ

(
t, w̃(t)

)∣
∣
)
(T)

+ RLIβ
q

(
1
ρ

RLIαg
)

(t) + RLIαg(T)RLIβ
q

(
1
ρ

)

(t).

In view of part 1 of Remark 2 and (G2), we obtain

|w̃ – w| ≤ 1
ρ∗

{
Tα+β

	q(α + β + 1)
+

Tβ

	q(1 + β)
Tα

	q(α + 1)

}

ε + �‖w – w̃‖

≤ με + �‖w – w̃‖,

in which � is illustrated in (16). In accordance with the above, it gives

‖w̃ – w‖ ≤ μ

1 – �
ε.

If we set cσ = μ

1–�
> 0, then the UH stability of the nonlinear generalized Sturm–Liouville–

Langevin q-difference FBVP (1) is fulfilled. In addition, for Cσ (ε) = μ

1–�
ε, Cσ (0) = 0, the

nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1) is GUH stable.
This completes the proof. �

5 Example
In this part, two examples are presented to show the validity and also the effectiveness of
theoretical results.

Example 1 Based on the nonlinear generalized Sturm–Liouville–Langevin q-difference
FBVP (1), we fix ρ(t) ≡ 1 and r(t) = –λ, λ ∈ R. In this case, (1) is reduced to Langevin
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q-difference FBVP

⎧
⎪⎪⎨

⎪⎪⎩

cD1/4
1/4(cD1/3

1/4 – 1
27 )w(t) =

√
3|w| cos2(2π t)

3(27–t) ,

t ∈ I = [0, 1],

w(0) = 0, cD1/3
1/4w(1) – 1

27 w(1) = 0,

(22)

where

α = 1/4, β = 1/3, q = 1/4, λ = –1/27, q = 1/4, T = 1,

and

σ (t, w) =
√

3|w| cos2(2π t)
3(27 – t)

.

The function σ is continuous on I. On the other hand, ∀w ∈R and t ∈ I, we get

∣
∣σ (t, w)

∣
∣ ≤

√
3

81
|w|.

Accordingly, (H2) is satisfied for p∗ =
√

3
81 . To check condition (9), we simply obtain

� := μp∗ + ν � 0.8226 < 1.

All of the above results confirm that Theorem 17 is fulfilled, and it gives that the Langevin
q-difference FBVP (22) possesses at least a solution formulated on I.

Example 2 Consider the nonlinear generalized Sturm–Liouville–Langevin q-difference
FBVP

⎧
⎨

⎩

cD
1
2
1/4((1 + t)cD

4
5
1/4 + t3

100 )w(t) = 1
20 + t

16
|w|

1+|w| , t ∈ I = [0, 1]

w(0) = 0, cD
4
5
1/4w(1) + 1

200 w(1) = 0,

where

α = 1/2, β = 4/5, q = 1/4, T = 1,

and

ρ(t) = t + 1, r(t) =
t3

100
, σ

(
t, w(t)

)
=

1
20

+
t

16
|w|

1 + |w| .

Using the given data, we find that

∣
∣σ (t, w) – σ (t, v)

∣
∣ ≤ 1

16
(|w – v|) (23)

for any t ∈ [0, 1]. Then σ satisfies (H1) and (H2) with M = 1
16 . Now, we find that

μ = 10.597, ν = 0.0189.
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Hence

� = μM + ν � 0.68121 < 1.

All conditions of Theorem 18 are satisfied. Then there exists a unique solution to the non-
linear generalized Sturm–Liouville–Langevin q-difference FBVP (23) in I. Moreover, The-
orem 21 guarantees the UH and GUH stability for mentioned q-FBVP (23).

6 Conclusion
In this paper, we provided required criteria for the existence/uniqueness of solutions to a
new category of nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1).
To arrive at such an aim, we dealt with a technique involving the Kuratowski measure of
noncompactness (KMNC) along with a fixed point theorem of Mönch type. Although the
used method based on KMNC-Mönch is considered as a standard method, its application
in the current context is new yet, while the uniqueness property was derived with the help
of BCP. Subsequently, the Ulam–Hyers (UH) and generalized Ulam–Hyers (GUH) stabil-
ity were established for the proposed nonlinear generalized Sturm–Liouville–Langevin
q-difference FBVP (1). Moreover, two examples were presented for the illustration of the
obtained theory. Regarding next research projects, we are going to continue the analysis of
such combined structures of physical and mathematical models by using nonsingular frac-
tional operators which give more accurate numerical results. In particular, the Caputo–
Fabrizio derivative is clearly well known in the field of fractional differential equations.
The appearance of this derivative helps us to deal with some complicated phenomena.
We will follow this study on the Caputo–Fabrizio derivative.
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