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Abstract
The purpose of this paper is to provide sufficient conditions for the local and global
existence of solutions for the general nonlinear distributed-order fractional differential
equations in the time domain. Also, we provide sufficient conditions for the
uniqueness of the solutions. Furthermore, we use operational matrices for the
fractional integral operator of the second kind Chebyshev wavelets and shifted
fractional-order Jacobi polynomials via Gauss–Legendre quadrature formula and
collocation methods to reduce the proposed equations into systems of nonlinear
equations. Also, error bounds and convergence of the presented methods are
investigated. In addition, the presented methods are implemented for two test
problems and some famous distributed-order models, such as the model that
describes the motion of the oscillator, the distributed-order fractional relaxation
equation, and the Bagley–Torvik equation, to demonstrate the desired efficiency and
accuracy of the proposed approaches. Comparisons between the methods proposed
in this paper and the existing methods are given, which show that our numerical
schemes exhibit better performances than the existing ones.
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1 Introduction
Distributed-order fractional derivatives indicate fractional derivatives that are inte-
grated over the order of the differentiation within a given range [55]. In recent decades,
distributed-order fractional differential equations (DOFDEs) have been used to model
more phenomena in various fields such as visco-elastic [4, 6], dielectrics [10], diffusions
[11, 24, 26, 28, 40, 42, 49, 52], signal processing [29], biosciences [17, 30], finance [16, 32],
electrochemistry [44], and optimal control [54, 56]. The motivation of DOFDEs is the
generalization of single-order and multi-term fractional differential equations [27].
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In [5], Atanacković et al. studied the existence and uniqueness of solutions for DOFDEs
of the form

D2f (t) = λ

∫ 2

0
p(q)C

0 Dq
t f (t) dq = G

(
t, f (t)

)
, t > 0,

f (i)(0) = f (i)
0 , i = 0, 1,

in L1
loc(R) ∩ C1([0,∞)). Such equations arise in distributed derivative models of system

identification theory and visco-elasticity.
In this research study, we consider general nonlinear DOFDEs in the time domain � =

[0, tf ] as follows:

∫ β

α

G1
(
q, C

0 Dq
t f (t)

)
dq + G2

(
t, f (t), C

0 Dα1
t f (t), . . . , C

0 Dαr
t f (t)

)
= g(t), (1)

with the initial conditions

f (k)(0) = f (k)
0 , k = 0, 1, . . . , max

{�αr�, �β�} – 1. (2)

Here, G1(·) is a linear or nonlinear function,

G2
(
t, f (t),C0 Dα1

t f (t), . . . ,C0 Dαr
t f (t)

)
= κ0f (t) +

r∑
i=1

κi
C
0 Dαi

t f (t),

where κi ∈ R; and α, β , αi(α1 < · · · < αr) for i = 0, 1, . . . , r are positive real numbers. Also,
�β� denotes the ceiling function and is the smallest integer greater than or equal to β .

Note that Eq. (1) is the general form of DOFDEs in the time domain which for the case
G1(q, C

0 Dq
t f (t)) = �(q)C

0 Dq
t f (t), g(t) = 0, κj = 0, j = 1, . . . , r, leads to the distributed-order frac-

tional relaxation equation [31]. When G1(q, C
0 Dq

t f (t)) = b�(q)C
0 Dq

t f (t) with a constant b,
α1 = 2, κj = 0, j = 2, . . . , r, Eq. (1) is the Bagley–Torvik equation [7, 8]. Also, for the case∫ 1

0 aqC
0 Dq

t σ (t) dq = γ
∫ 1

0 bqC
0 Dq

t f (t) dq, α1 = 2, κ0 = ω2, κ1 = 1, κj = 0, j = 2, . . . , r, we have the
model that describes the motion of the oscillator [20], where γ , a, b are constants; ω is the
eigen frequency of the undamped system; g(t) is the external forcing function; and f (t),
σ (t) are the displacement and the dissipation force.

As the realm of DOFDEs describing the real-life response of physical systems grows, the
demand for numerical solutions to analyze the behavior of these equations becomes more
pronounced in order to overcome the mathematical complexity of analytical solutions.
Therefore, the development of effective and easy-to-use numerical schemes for solving
such equations acquires an increasing interest. While several numerical techniques have
been proposed to solve many different problems (see, for instance, [1–3, 13, 15, 25, 33–
35, 43, 45, 48] and the references therein), there have been few research studies that de-
veloped numerical methods to solve general DOFDEs (see [19, 21, 36, 38, 47, 50, 53]).
The development, however, for efficient numerical methods to solve DOFDEs is still an
important issue [21].

The aim of this paper is to provide sufficient conditions for the existence and unique-
ness of solutions for Eqs. (1) and (2). Also, we are going to approximate solutions for the
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mentioned equations with high precision. To do this, in Sect. 2, we present a review of frac-
tional calculus, an introduction of the second kind Chebyshev wavelets (SKCWs), shifted
fractional-order Jacobi polynomials (SFOJPs), function approximations, and operational
matrices for the Riemann–Liouville fractional integral operator. In Sect. 3, we provide suf-
ficient conditions for the existence and uniqueness of solutions for general DOFDEs. In
Sect. 4, by using operational matrices, mentioned in Sect. 2, we approximate the solu-
tion of Eqs. (1) and (2). In Sect. 5, we obtain the error bounds for the approximations. In
Sect. 6, we solve two test problems and some famous distributed-order models, such as the
model that describes the motion of the oscillator, the distributed-order fractional relax-
ation equation, and the Bagley–Torvik equation, to show that our approaches will increase
the accuracy of the methods used for such operational matrices. Finally, a conclusion is
given in Sect. 7.

2 Preliminaries
2.1 Fractional calculus
Definition 2.1 ([41]) The Riemann–Liouville integral of fractional order ι > 0 is defined
as follows:

R
0 Iι

t f (t) =

⎧⎨
⎩

1
�(ι)
∫ t

0 (t – τ )ι–1f (τ ) dτ = 1
�(ι) tι–1 ∗ f (t), �ι� – 1 < ι ≤ �ι�,

f (t), ι = 0,

where ∗ and �(·) are the convolution product and gamma function, respectively.

Definition 2.2 ([41]) The Caputo derivative of fractional order ι > 0 is defined as follows:

C
0 Dι

t f (t) =

⎧⎨
⎩

1
�(�ι�–ι)

∫ t
0 (t – τ )�ι�–1–ιf (�ι�)(τ ) dτ , �ι� – 1 < ι < �ι�,

f (�ι�)(t), ι = �ι�,

with the following properties:

C
0 Dι

t
R
0 Iι

t f (t) = f (t),

R
0 Iι

t
C
0 Dι

t f (t) = f (t) –
�ι�–1∑
j=0

f (j)
0
j!

tj, (3)

C
0 Dι

t f (t) = R
0 I�ι�–ι

t
C
0 D�ι�

t f (t),
C
0 Dμ

t
R
0 Iι

t f (t) = R
0 Iι–μ

t f (t), ι ≥ μ,
C
0 Dμ

t c = 0 for constant c, (4)

C
0 Dι

tt
k =

�(k + 1)
�(k + 1 – ι)

tk–ι, k ≥ �ι�. (5)

Definition 2.3 ([18]) The distributed-order fractional derivative is defined as follows:

C
0 Dp(υ)

t f (t) =
∫ υ2

υ1

p(υ)C
0 Dυ

t f (t) dυ ,

where υ1, υ2 ∈R
+, and p(υ) is distribution of order υ ∈ [υ1,υ2].
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2.2 SKCWs and function approximation
SKCWs are as follows:

ψi,j(t) =

⎧⎨
⎩
√

2k+3
tf π

T∗
j ( 2k

tf
t – i + 1), i–1

2k tf ≤ t < i
2k tf ,

0, otherwise,

where i = 1, 2, . . . , 2k , j = 0, 1, . . . , M – 1. Here, T∗
j (t) is the shifted Chebyshev polynomial of

the second kind of degree j ≥ 0, defined on the interval [0, 1] by

T∗
j (t) =

j∑
k=0

ck,jtj–k ,

where

ck,j =
(–1)k22j–2k�(2j – k + 2)
�(k + 1)�(2j – 2k + 2)

.

Let w(t) =
√

t – t2 be the weight function. A function f (t) ∈ L2
ω([0, tf )) can be expanded by

SKCWs as follows:

f (t) =
∞∑
i=1

∞∑
j=0

f̂i,jψi,j(t), (6)

where

f̂i,j =
∫ tf

0
f (t)ψi,j(t)ω(t) dt.

and ω(t) = w( 2k

tf
t – i + 1). We truncate the infinite series given in Eq. (6), and then we ap-

proximate a function f (t) in the following form:

f (t) � f2k ,M–1(t) =
2k∑
i=1

M–1∑
j=0

f̂i,jψi,j(t) = F̂T�(t), (7)

where

F̂ = [f̂1,0, . . . , f̂1,M–1, . . . , f̂2k ,0, . . . , f̂2k ,M–1]T ,

�(t) =
[
ψ1,0(t), . . . ,ψ1,M–1(t), . . . ,ψ2k ,0(t), . . . ,ψ2k ,M–1(t)

]T ,

are 2kM × 1 vectors.

2.3 SFOJPs and function approximation
SFOJPs of order i are defined on the interval [0, tf ] by the following formula [22]:

J (λ,θ ,ϑ)
tf ,i (t) =

i∑
k=0

(–1)i–k �(i + ϑ + 1)�(i + k + θ + ϑ + 1)
�(k + ϑ + 1)�(i + θ + ϑ + 1)(i – k)!k!tkλ

f
tkλ,

where θ ,ϑ ∈R and 0 < λ < 1.
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The orthogonality property of J (λ,θ ,ϑ)
tf ,i (t) is as follows:

∫ tf

0
J (λ,θ ,ϑ)

tf ,i (t)J (λ,θ ,ϑ)
tf ,i′ (t)w(λ,θ ,ϑ)

tf (t) dt = h(λ,θ ,ϑ)
tf ,i δii′ ,

where δii′ and w(λ,θ ,ϑ)
tf (t) = λtλϑ+λ–1(tλ

f – tλ)θ are Kronecker delta and weight functions, re-
spectively. Also,

h(λ,θ ,ϑ)
tf ,i =

t(θ+ϑ+1)λ
f �(i + θ + 1)�(i + ϑ + 1)

(2i + θ + ϑ + 1)i!�(i + θ + ϑ + 1)
.

By using SFOJPs, a function f (t) ∈ L2
w(λ,θ ,ϑ)

tf

([0, tf ]) can be approximated as follows:

f (t) � fN (t) =
N∑

i=0

f̃iφi(t) = F̃T�(t), (8)

where

f̃i =
1

h(λ,θ ,ϑ)
tf ,i

∫ tf

0
f (t)φi(t)w(λ,θ ,ϑ)

tf (t) dt.

Also, F̃ and �(t) are (N + 1) × 1 vectors given by

F̃ = [f̃0, f̃1, . . . , f̃N ]T ,

�(t) =
[
J (λ,θ ,ϑ)

tf ,0 (t),J (λ,θ ,ϑ)
tf ,1 (t), . . . ,J (λ,θ ,ϑ)

tf ,N (t)
]T .

2.4 Operational matrices of the Riemann–Liouville fractional integral operator
Following [23, 51], we can obtain the operational matrix of the Riemann–Liouville frac-
tional integral operator based on SKCWs for t ∈ [0, tf ) in the following theorem.

Theorem 2.1 Let �(t) be the vector of SKCWs. Then

R
0 Iq

t �(t) � Iq�(t) = �̂(t, q), (9)

where

Iq = �Pq�–1.

Also,

� �
[
�

(
tf

2k+1M

)
,�
(

3tf

2k+1M

)
, . . . ,�

(
(2k+1M – 1)tf

2k+1M

)]
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is a 2kM × 2kM matrix and

Pq =
(

tf

2kM

)q 1
�(q + 2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 η1 η2 . . . η2k M–1

0 1 η1 . . . η2k M–2

0 0 1 . . . η2k M–3
...

...
...

. . .
...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is the operational matrix of fractional integral operator for the block-pulse functions, where

ηl = (l + 1)q+1 – 2lq+1 + (l – 1)q+1, l = 1, 2, . . . , 2kM – 1.

According to our previous work [37], we have the following theorem.

Theorem 2.2 Let �(t) be the vector of SFOJPs. Then

R
0 Iq

t �(t) � Itf ,q�(t) = �̂(t, q),

where Itf ,q is the operational matrix of the Riemann–Liouville integral operator of frac-
tional order q with entries

I
tf ,q
kl =

k∑
j=0

(
(–1)k–j �(k + ϑ + 1)�(k + j + θ + ϑ + 1)�(jλ + 1)

�(j + ϑ + 1)�(k + θ + ϑ + 1)(k – j)!j!�(q + jλ + 1)

×
l∑

i=0

(–1)l–i (2l + θ + ϑ + 1)l!�(l + i + θ + ϑ + 1)tq
f B(θ + 1, i + j + ϑ + 1 + q

λ
)

�(l + θ + 1)�(i + ϑ + 1)(l – i)!i!

)
.

Here, B(., .) is a beta function and k, l = 0, 1, . . . , N .

3 Existence and uniqueness of solutions
In the following theorem, by using Schauder’s fixed point theorem [57], we prove the local
existence of solutions for general DOFDEs in a Banach space.

Theorem 3.1 Let G1 be Lipschitz with the constant ς . Suppose that
(C1) G1 ∈ C(� ×R

n,Rn) and g, g1, f , v ∈ C(�,Rn);
(C2) |g(t) – g1(t)| < |κ0|ε

3 ;
(C3) |G1(q,C0 Dq

t f (t)) – G1(q,C0 Dq
t v(t))| < |κ0|ε

3(β–α) ;
(C4) |C0 Dαi

t f (t) – C
0 Dαi

t v(t)| ≤ ζi.
Also, suppose that

∑r
i=1 | κi

κ0
|ζi ≤ ε

3 . Then general DOFDEs have at least one solution on �.

Proof Consider D = {(t, f ) : t ∈ �, |f (t)| ≤ b}. Suppose that |g(t)| ≤ |κ0|b
3 , |G1(q,C0 Dq

t f (t))| ≤
ξ , |C0 Dαi

t f (t)| ≤ ηi on D. Choose (β–α)ξ
|κ0| ≤ b

3 ,
∑r

i=1 | κi
κ0

|ηi ≤ b
3 , and let �0 = {f : f ∈

C(�0,Rn),‖f ‖ ≤ b}, where ‖f ‖ = maxt∈�0 |f (t)| and �0 = [0, τf ]. It is clear that the set �0

is convex, closed, and bounded.
Define the operator

Tf (t) =
1
κ0

g(t) –
1
κ0

∫ β

α

G1
(
q,C0 Dq

t f (t)
)

dq –
r∑

i=1

κi

κ0

C
0 Dαi

t f (t), t ∈ �0,
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for any f ∈ �0. Clearly, we have

∣∣Tf (t)
∣∣≤ 1

|κ0|
∣∣g(t)

∣∣ +
1

|κ0|
∫ β

α

∣∣G1
(
q,C0 Dq

t f (t)
)∣∣dq +

r∑
i=1

∣∣∣∣ κi

κ0

∣∣∣∣
∣∣C
0 Dαi

t f (t)
∣∣≤ b.

Therefore, ‖Tf ‖ ≤ b, and we can deduce T(�0) ⊂ �0. Furthermore, for any t1, t2 ∈ �0

such that t2 > t1, we have

Tf (t2) – Tf (t1) =
1
κ0

(
g(t2) – g(t1)

)
–

1
κ0

∫ β

α

(
G1
(
q,C0 Dq

t f (t2)
)

– G1
(
q,C0 Dq

t f (t1)
))

dq

–
r∑

i=1

κi

κ0

(C
0 Dαi

t f (t2) – C
0 Dαi

t f (t1)
)
.

Since G1 is Lipschitz with the constant ς , we get

∣∣G1
(
q,C0 Dq

t f (t2)
)

– G1
(
q,C0 Dq

t f (t1)
)∣∣≤ ς

∣∣C
0 Dq

t f (t2) –C
0 Dq

t f (t1)
∣∣.

Now we can write

∣∣Tf (t2) – Tf (t1)
∣∣

≤ 1
|κ0|
∣∣g(t2) – g(t1)

∣∣ +
1

|κ0|
∫ β

α

∣∣G1
(
q,C0 Dq

t f (t2)
)

– G1
(
q,C0 Dq

t f (t1)
)∣∣dq

+
r∑

i=1

∣∣∣∣ κi

κ0

∣∣∣∣
∣∣C
0 Dαi

t f (t2) – C
0 Dαi

t f (t1)
∣∣

≤ 1
|κ0|
∣∣g(t2) – g(t1)

∣∣ +
ς (β – α)

|κ0|
∣∣C
0 Dq

t f (t2) –C
0 Dq

t f (t1)
∣∣

+
r∑

i=1

∣∣∣∣ κi

κ0

∣∣∣∣
∣∣C
0 Dαi

t f (t2) – C
0 Dαi

t f (t1)
∣∣. (10)

Note that if t2 → t1, then the right-hand side of (10) tends to zero. Therefore, T : �0 → �0

is equicontinuous, and consequently, from the Arzela–Ascoli theorem [12], the closure of
T(�0) is compact.

Let

Tv(t) =
1
κ0

g1(t) –
1
κ0

∫ β

α

G1
(
q,C0 Dq

t v(t)
)

dq –
r∑

i=1

κi

κ0

C
0 Dαi

t v(t),

where v ∈ �0. We need to show that T is continuous. Clearly, we have

∣∣Tf (t) – Tv(t)
∣∣≤ 1

|κ0|
∣∣g(t) – g1(t)

∣∣ +
1

|κ0|
∫ β

α

∣∣G1
(
q,C0 Dq

t f (t)
)

– G1
(
q,C0 Dq

t v(t)
)∣∣dq

+
r∑

i=1

∣∣∣∣ κi

κ0

∣∣∣∣
∣∣C
0 Dαi

t f (t) – C
0 Dαi

t v(t)
∣∣.
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Suppose that, for any ε > 0, there exists δ > 0 such that |f (t) – v(t)| < δ. Assume that as-
sumptions (C1)–(C4) hold, therefore

∣∣Tf (t) – Tv(t)
∣∣≤ ε,

and the proof is completed. �

Now, by using Tychonoff’s fixed point theorem [57], we are going to discuss a global
existence result for general DOFDEs.

Theorem 3.2 Assume that
(D1) G1 ∈ C(R+ ×R

n,Rn) and K ∈ C(R2
+,Rn);

(D2) K(q,C0 Dq
t u(t)) is monotone nondecreasing in u for each t ∈ R+;

(D3) |G1(q,C0 Dq
t f )| ≤ K(q, |C0 Dq

t f |) for (q,C0 Dq
t f ) ∈ R+ ×R

n;
(D4) |C0 Dq

t f (t)| ≤ C
0 Dq

t u(t) and |C0 Dαi
t f (t)| ≤ C

0 Dαi
t u(t) for i = 1, 2, . . . , r.

Then the following DOFDE

u(t) =
1
κ ′

0
x(t) +

1
κ0

∫ β

α

K
(
q,C0 Dq

t u(t)
)

dq +
r∑

i=1

κ ′
i

κ ′
0

C
0 Dαi

t u(t), (11)

has a solution u(t) which exists for every t ≥ 0, where κ ′
0 ≤ |κ0| and |κi| ≤ κ ′

i for i = 1, 2, . . . , r.
Also, then for every x(t) ∈ R+ such that |g(t)| ≤ x(t), there exists a solution f (t) for Eq. (1)
which satisfies |f (t)| ≤ u(t).

Proof Let V be a real space of all continuous functions from (0,∞) into R
n. The topol-

ogy on V being that induced by the family of pseudo-norms {Vm(f )}∞m=1, where Vm(f ) =
sup0≤t≤m |f (t)|, for f ∈ V . Let {Sm}∞m=1 be a set of neighborhoods, where Sm = {f ∈ V :
Vm(f ) ≤ 1}. Under this topology, V is a linear space, locally convex and complete.

Now consider

V0 =
{

f ∈ V :
∣∣f (t)

∣∣≤ u(t), t ≥ 0
}⊆ V ,

where u(t) is a solution of (11). Clearly, in the topology of V , V0 is bounded, convex, and
closed.

Consider (11) whose fixed point corresponds to a solution of (1). Evidently, in the topol-
ogy of V , the map T is compact. Hence, in view of the boundedness of V0, the closure of
T(V0) is compact.

Considering assumptions (D1)–(D4) yields

∣∣Tf (t)
∣∣≤ 1

|κ0|
∣∣g(t)

∣∣ +
1

|κ0|
∫ β

α

∣∣G1
(
q, C

0 Dq
t f (t)

)∣∣dq +
r∑

i=1

∣∣∣∣ κi

κ0

∣∣∣∣
∣∣C
0 Dαi

t f (t)
∣∣

≤ 1
|κ0|
∣∣g(t)

∣∣ +
1

|κ0|
∫ β

α

K
(
q,
∣∣C
0 Dq

t f (t)
∣∣)dq +

r∑
i=1

∣∣∣∣ κi

κ0

∣∣∣∣
∣∣C
0 Dαi

t f (t)
∣∣

≤ 1
κ ′

0
x(t) +

1
κ ′

0

∫ β

α

K
(
q, C

0 Dq
t u(t)

)
dq +

r∑
i=1

κ ′
i

κ ′
0

C
0 Dαi

t u(t) = u(t).
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Since u(t) is a solution of (11), using the definition of V0 gives |Tf (t)| ≤ u(t). Thus, T(V0) ⊂
V0, and from Tychonoff’s fixed point theorem [57], T has a fixed point in V0. Therefore,
the proof of this theorem is completed. �

Now we are going to prove the uniqueness of the solution for general DOFDEs.

Theorem 3.3 Let G1 ∈ C(R × R
n,Rn), f ∈ C(�,Rn). Assume that there exists 0 < Lj < 1

(j = 0, 1, . . . , r) such that

∣∣G1
(
q, C

0 Dq
t f (t)

)
– G1

(
q, C

0 Dq
t f1(t)

)∣∣≤ L0
∣∣f (t) – f1(t)

∣∣,
∣∣C
0 Dαi

t f (t) – C
0 Dαi

t f1(t)
∣∣≤ Li

∣∣f (t) – f1(t)
∣∣.

If ( L0(β–α)
|κ0| +

∑r
i=1 | κi

κ0
|Li) < 1, then the general DOFDE has a unique solution.

Proof Let

Tf1(t) =
1
κ0

g(t) –
1
κ0

∫ β

α

G1
(
q, C

0 Dq
t f1(t)

)
dq –

r∑
i=1

κi

κ0

C
0 Dαi

t f1(t), t ∈ �.

Then we have

∣∣Tf (t) – Tf1(t)
∣∣≤ 1

|κ0|
∫ β

α

∣∣G1
(
q, C

0 Dq
t f (t)

)
– G1

(
q, C

0 Dq
t f1(t)

)∣∣dq

+
r∑

i=1

∣∣∣∣ κi

κ0

∣∣∣∣
∣∣C
0 Dαi

t f (t) – C
0 Dαi

t f1(t)
∣∣

≤ L0(β – α)
|κ0|

∣∣f (t) – f1(t)
∣∣ +

r∑
i=1

∣∣∣∣ κi

κ0

∣∣∣∣Li
∣∣f (t) – f1(t)

∣∣

<

(
L0(β – α)

|κ0| +
r∑

i=1

∣∣∣∣ κi

κ0

∣∣∣∣Li

)∣∣f (t) – f1(t)
∣∣

for any t ∈ � and f , f1 ∈ C(�,Rn). Therefore,

∥∥Tf (t) – Tf1(t)
∥∥≤

(
L0(β – α)

|κ0| +
r∑

i=1

∣∣∣∣ κi

κ0

∣∣∣∣Li

)
‖f – f1‖.

Since ( L0(β–α)
|κ0| +

∑r
i=1 | κi

κ0
|Li) < 1, then T is a contraction map in C(�,Rn). Consequently,

it has a unique fixed point, and therefore the general DOFDE has a unique solution f ∈
C(�,Rn). �

4 The methods of solution
4.1 Explanation of the SKCWs method
In this section, without loss of generality we suppose that β ≥ αr . Now we approximate
C
0 Dβ

t f (t) by the SKCWs as follows:

C
0 Dβ

t f (t) � F̂T�(t).
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By applying Eqs. (3) and (9), one can obtain

f (t) � F̂T�̂(t,β) +
�β�–1∑

j=0

f (j)
0
j!

tj. (12)

Now we take the operator C
0 Dq

t of Eq. (12). So, we have

C
0 Dq

t f (t) � F̂T�̂(t,β – q) +
�β�–1∑

j=0

f (j)
0
j!

C
0 Dq

t
(
tj).

Note that from properties (4) and (5), C
0 Dq

t (tj) can be determined.
Also, we take the operator C

0 Dαi
t , i = 1, 2, . . . , r, of Eq. (12). Using the obtained results in

(1) gives

∫ β

α

G1

(
q, F̂T�̂(t,β – q) +

�β�–1∑
j=0

f (j)
0
j!

C
0 Dq

t
(
tj)
)

dq + G2

(
t, F̂T�̂(t,β)

+
�β�–1∑

j=0

f (j)
0
j!

tj, F̂T�̂(t,β – α1) +
�β�–1∑

j=0

f (j)
0
j!

C
0 Dα1

t
(
tj), . . . , F̂T�̂(t,β – αr)

+
�β�–1∑

j=0

f (j)
0
j!

C
0 Dαr

t
(
tj)
)

� g(t).

Using the Gauss–Legendre formula and collocating the obtained equation at

tm =
(m – 0.5)tf

2kM
, m = 1, 2, . . . , 2kM,

leads to

N ′∑
n=1

β – α

2
wnG1

(
β + α

2
+

β – α

2
τn, F̂T�̂

(
tm,β –

(
β + α

2
+

β – α

2
τn

))

+
�β�–1∑

j=0

f (j)
0
j!
(C

0 D( β+α
2 + β–α

2 τn)
t

(
tj))

t=tm

)
+ G2

(
tm, F̂T�̂(tm,β)

+
�β�–1∑

j=0

f (j)
0
j!

tj
m, F̂T�̂(tm,β – α1) +

�β�–1∑
j=0

f (j)
0
j!
(C

0 Dα1
t
(
tj))

t=tm
, . . . , F̂T�̂(tm,β – αr)

+
�β�–1∑

j=0

f (j)
0
j!
(C

0 Dαr
t
(
tj))

t=tm

)
� g(tm),

where wn and τn are weights and nods of Gauss–Legendre quadrature rule [9], respectively.
By using the “fsolve” command of Maple 2018, we solve the arising system, and then we
determine F̂ . Finally, from Eq. (7), an approximate solution for Eqs. (1) and (2) can be
obtained.
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4.2 Explanation of the SFOJPs method
Now similar to Sect. 4.1, by using SFOJPs, we convert Eqs. (1) and (2) to a system of equa-
tions as follows:

N ′′∑
n′=1

β – α

2
wn′G1

(
β + α

2
+

β – α

2
τn′ , F̃T�̂

(
tm′ ,β –

(
β + α

2
+

β – α

2
τn′
))

+
�β�–1∑

j=0

f (j)
0
j!
(C

0 D( β+α
2 + β–α

2 τn′ )
t

(
tj))

t=tm′

)
+ G2

(
tm′ , F̃T�̂(tm′ ,β)

+
�β�–1∑

j=0

f (j)
0
j!

tj
m′ , F̃T�̂(tm′ ,β – α1) +

�β�–1∑
j=0

f (j)
0
j!
(C

0 Dα1
t
(
tj))

t=tm′ , . . . , F̃T�̂(tm′ ,β – αr)

+
�β�–1∑

j=0

f (j)
0
j!
(C

0 Dαr
t
(
tj))

t=tm′

)
� g(tm′ ),

where tm′ , m′ = 0, 1, . . . , N , are roots of SFOJPs. Also, wn′ and τn′ are weights and nods
of Gauss–Legendre quadrature rule [9], respectively. By the “fsolve” command of Maple
2018, we solve the above system, and then the unknown vector F̃ can be determined. Fi-
nally, from Eq. (8), we obtain an approximate solution for Eqs. (1) and (2).

5 Error bounds
5.1 Error bounds for the SKCWs method
In this subsection, we present error bounds for the SKCWs method. To do this, we define

〈u, v〉ω =
∫ tf

0
u(t)v(t)ω(t) dt, ∀u, v ∈ L2

ω

(
[0, tf )

)
,

‖u‖ω =
(∫ tf

0
u2(t)ω(t) dt

) 1
2

, ∀u ∈ L2
ω

(
[0, tf )

)
,

which are inner product and norm on the space L2
ω([0, tf )), respectively.

Now we recall the following theorems from our previous work [47].

Theorem 5.1 Let f (t) ∈ L2
ω([0, tf )) with |f ′′(t)| ≤ L. The Eq. (7) converges uniformly to f (t)

and the coefficients in (6) explicitly satisfy

|f̂i,j| < 4
√

2tf πL
1

i 5
2 (j + 1)2

, i ≥ 1, j ≥ 0.

Theorem 5.2 Let f (t) ∈ L2
ω([0, tf )). Then we have

‖f – f2k ,M–1‖ω < 4
√

2tf πL

( ∞∑
i=0

∞∑
j=M

1
i5(j + 1)4 +

∞∑
i=2k +1

∞∑
j=0

1
i5(j + 1)4

) 1
2

.
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Theorem 5.3 Let C
0 Dαl

t f (t) ∈ L2
ω([0, tf )) and |C0 Dαl+2

t f (t)| ≤ Ll for l = 1, 2, . . . , r. Then we
have

∥∥C
0 Dαl

t f –
(C

0 Dαl
t f
)

2k ,M–1

∥∥
ω

< 4
√

2tf πLl

( ∞∑
i=0

∞∑
j=M

1
i5(j + 1)4 +

∞∑
i=2k +1

∞∑
j=0

1
i5(j + 1)4

) 1
2

.

5.2 Error bounds for the SFOJPs method
Here, we discuss error bounds for the SFOJPs method. To do this, first, we define the
following inner product and norm on the weighted space L2

w(λ,θ ,ϑ)
tf

([0, tf ]):

〈u, v〉w(λ,θ ,ϑ)
tf

=
∫ tf

0
u(t)v(t)w(λ,θ ,ϑ)

tf (t) dt, ∀u, v ∈ L2
w(λ,θ ,ϑ)

tf

(
[0, tf ]

)
,

‖u‖w(λ,θ ,ϑ)
tf

=
(∫ tf

0
u2(t)w(λ,θ ,ϑ)

tf (t) dt
) 1

2
, ∀u ∈ L2

w(λ,θ ,ϑ)
tf

(
[0, tf ]

)
.

Let

�N = span
{
J (λ,θ ,ϑ)

i (t), 0 ≤ i ≤ N
}

, (13)

be the fractional-polynomial space of finite dimension.

Theorem 5.4 Let C
0 Djλ

t f (t) ∈ C([0, tf ]), for j = 0, 1, . . . , N . If fN (t) is the best approximation
to f (t) from �N , then

‖f – fN‖w(λ,θ ,ϑ)
tf

≤ L
�((N + 1)λ + 1)

√
t(2N+3+ϑ+θ )λ
f �(1 + θ )�(2N + 3 + ϑ)

�(4 + 2N + θ + ϑ)
, (14)

where L≥ |C0 D(N+1)λ
t f (t)|, for t ∈ [0, tf ].

Proof Since fN (t) is the best approximation to f (t) from �N , defined in (13), we have

‖f – fN‖w(λ,θ ,ϑ)
tf

≤ ‖f – u‖w(λ,θ ,ϑ)
tf

, ∀u(t) ∈ �N .

Considering the generalized Taylors formula u(t) =
∑N

j=0
tjλ

�(jλ+1) (C
0 Djλ

t u)(0+) yields

∣∣f (t) – u(t)
∣∣ =

∣∣∣∣∣f (t) –
N∑

j=0

tjλ

�(jλ + 1)
(C

0 Djλ
t u
)(

0+)
∣∣∣∣∣≤L t(N+1)λ

�((N + 1)λ + 1)
. (15)

Taking L2
w(λ,θ ,ϑ)

tf

-norm in both sides of inequality (15) leads to

‖f – u‖2
w(λ,θ ,ϑ)

tf
≤ L2

(�((N + 1)λ + 1))2

∫ tf

0
t2(N+1)λw(λ,θ ,ϑ)

tf dt

=
L2

(�((N + 1)λ + 1))2 λ

∫ tf

0
tλ(2N+3+ϑ)–1(tλ

f – tλ
)θ dt. (16)
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Let z = tλ
f – tλ. Then we obtain

λ

∫ tf

0
tλ(2N+3+ϑ)–1(tλ

f – tλ
)θ dt =

∫ tλf

0

(
tλ
f – z

)2N+2+ϑzθ dz. (17)

Now setting s = z
tλf

gives

∫ tλf

0

(
tλ
f – z

)2N+2+ϑzθ dz = t(2N+3+ϑ+θ )λ
f

∫ 1

0
(1 – s)2N+2+ϑ sθ ds

= t(2N+3+ϑ+θ )λ
f

�(1 + θ )�(2N + 3 + ϑ)
�(4 + 2N + θ + ϑ)

. (18)

By substituting the above relation into (17) and from (16), we can write

‖f – u‖2
w(λ,θ ,ϑ)

tf
≤ L2

(�((N + 1)λ + 1))2 t(2N+3+ϑ+θ )λ
f

�(1 + θ )�(2N + 3 + ϑ)
�(4 + 2N + θ + ϑ)

. (19)

By taking the square root of (19), we obtain inequality (14). �

Theorem 5.5 Let C
0 Djλ+αl

t f (t) ∈ C([0, tf ]). If (C
0 Dαl

t f )N (t) is the best approximation to
C
0 Dαl

t f (t) from �N , then

∥∥C
0 Dαl

t f –
(C

0 Dαl
t f
)

N

∥∥
w(λ,θ ,ϑ)

tf

≤ Ll

�((N + 1)λ + 1)

√
t(2N+3+ϑ+θ )λ
f �(1 + θ )�(2N + 3 + ϑ)

�(4 + 2N + θ + ϑ)
, (20)

where Ll ≥ |C0 D(N+1)λ+αl
t f (t)|, for l = 1, 2, . . . , r and t ∈ [0, tf ].

Proof Since (C
0 Dαl

t f )N (t) is the best approximation to C
0 Dαl

t f (t) from �N , we have

∥∥C
0 Dαl

t f –
(C

0 Dαl
t f
)

N

∥∥
w(λ,θ ,ϑ)

tf
≤ ∥∥C

0 Dαl
t f –C

0 Dαl
t u
∥∥

w(λ,θ ,ϑ)
tf

, ∀u(t) ∈ �N .

Considering the generalized Taylor formula C
0 Dαl

t u(t) =
∑N

j=0
tjλ

�(jλ+1) (C
0 Djλ+αl

t u)(0+) yields

∣∣C
0 Dαl

t f (t) –C
0 Dαl

t u(t)
∣∣ =

∣∣∣∣∣C0 Dαl
t f (t) –

N∑
j=0

tjλ

�(jλ + 1)
(C

0 Djλ+αl
t u

)(
0+)
∣∣∣∣∣

≤Ll
t(N+1)λ

�((N + 1)λ + 1)
. (21)

Taking L2
w(λ,θ ,ϑ)

tf

-norm in both sides of inequality (21) leads to

∥∥C
0 Dαl

t f –C
0 Dαl

t u
∥∥2

w(λ,θ ,ϑ)
tf

≤ L2
l

(�((N + 1)λ + 1))2

∫ tf

0
t2(N+1)λw(λ,θ ,ϑ)

tf dt

=
L2

l

(�((N + 1)λ + 1))2 λ

∫ tf

0
tλ(2N+3+ϑ)–1(tλ

f – tλ
)θ dt. (22)
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From (17), (18), and (22), we can write

∥∥C
0 Dαl

t f –C
0 Dαl

t u
∥∥2

w(λ,θ ,ϑ)
tf

≤ L2
l

(�((N + 1)λ + 1))2

∫ tf

0
t2(N+1)λw(λ,θ ,ϑ)

tf dt

=
L2

l t(2N+3+ϑ+θ )λ
f �(1 + θ )�(2N + 3 + ϑ)

(�((N + 1)λ + 1))2�(4 + 2N + θ + ϑ)
. (23)

Now we take the square root of both sides of (23), and therefore inequality (20) can be
obtained. �

Theorem 5.6 Let C
0 Djλ

t f (t), C
0 Djλ+q

t f (t), C
0 Djλ+αl

t f (t) ∈ C([0, tf ]). Suppose that |C0 Djλ
t f (t)| ≤L,

|C0 Djλ+q
t f (t)| ≤Lq, |C0 Djλ+αl

t f (t)| ≤Ll , for l = 1, 2, . . . , r. In Eq. (1), let G1 be Lipschitz with the
constant μ. Therefore, the error bound of the SFOJPs method for the modified equation is

∥∥EM
k
∥∥

w(λ,θ ,ϑ)
tf

≤ (μ(β – α) + (r + 1)κ)ρ
�((N + 1)λ + 1)

√
t(2N+3+ϑ+θ )λ
f �(1 + θ )�(2N + 3 + ϑ)

�(4 + 2N + θ + ϑ)
,

where κ = maxj=0,...,r{κj} and ρ = maxl=1,...,r{L,Lq,Ll}.

Proof Since G1 is Lipschitz with the constant μ, we can write

|EN | =
∣∣∣∣
∫ β

α

G1
(
q,
(C

0 Dq
t f
)

N (t)
)

dq

+ G2
(
t, fN (t),

(C
0 Dα1

t f
)

N (t), . . . ,
(C

0 Dαr
t f
)

N (t)
)

– g(t)
∣∣∣∣

=
∣∣∣∣
∫ β

α

G1
(
q,
(C

0 Dq
t f
)

N (t)
)

dq + G2
(
t, fN (t),

(C
0 Dα1

t f
)

N (t), . . . ,
(C

0 Dαr
t f
)

N (t)
)

–
∫ β

α

G1
(
q, C

0 Dq
t f (t)

)
dq – G2

(
t, f (t), C

0 Dα1
t f (t), . . . , C

0 Dαr
t f (t)

)∣∣∣∣

≤ μ

∫ β

α

∣∣C
0 Dq

t f (t) –
(C

0 Dq
t f
)

N (t)
∣∣dq + κ

∣∣f (t) – fN (t)
∣∣

+ κ
∣∣C
0 Dα1

t f (t) –
(C

0 Dα1
t f
)

N (t)
∣∣ + · · · + κ

∣∣C
0 Dαr

t f (t) –
(C

0 Dαr
t f
)

N (t)
∣∣

≤ μ

∫ β

α

∥∥C
0 Dq

t f –
(C

0 Dq
t f
)

N

∥∥
w(λ,θ ,ϑ)

tf
dq + κ‖f – fN‖w(λ,θ ,ϑ)

tf

+ κ
∥∥C

0 Dα1
t f –

(C
0 Dα1

t f
)

N

∥∥
w(λ,θ ,ϑ)

tf
+ · · · + κ

∥∥C
0 Dαr

t f –
(C

0 Dαr
t f
)

N

∥∥
w(λ,θ ,ϑ)

tf
.

By using Theorems 5.4 and 5.5, we obtain

‖EN‖w(λ,θ ,ϑ)
tf

≤ μ(β – α)Lq + κ(L + L1 + · · · + Lr)
�((N + 1)λ + 1)

√
t(2N+3+ϑ+θ )λ
f �(1 + θ )�(2N + 3 + ϑ)

�(4 + 2N + θ + ϑ)
.

Let

ρ = max
l=1,...,r

{L,Lq,Ll}.
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Table 1 Absolute errors at the interval [0, 1) with M = 3, for Example 6.1

t SKCWs

k = 1, m̂ = 6 k = 2, m̂ = 12

0.1 3.294606e-4 1.549570e-5
0.2 4.790596e-4 2.219229e-4
0.3 2.300451e-3 1.478095e-5
0.4 1.480546e-3 2.725903e-4
0.5 1.591482e-2 1.821096e-3
0.6 1.669851e-3 3.456476e-4
0.7 2.919086e-3 4.227610e-5
0.8 1.593268e-3 3.777966e-4
0.9 5.069659e-4 1.134724e-4

Therefore, we get

‖EN‖w(λ,θ ,ϑ)
tf

≤ (μ(β – α) + (r + 1)κ)ρ
�((N + 1)λ + 1)

√
t(2N+3+ϑ+θ )λ
f �(1 + θ )�(2N + 3 + ϑ)

�(4 + 2N + θ + ϑ)
. �

6 Illustrative examples
In this section, we present five problems which are tested by Maple 2018. Also, we obtain
the absolute errors by

∣∣f (t) – fk,M(t)
∣∣ and

∣∣f (t) – fN (t)
∣∣, t ∈ [0, tf ), k, M, N ∈N.

Note that, in all tables, m̂ denotes the numbers of bases.

Example 6.1 Consider the following nonlinear DOFDE:

∫ 3

0

(
�(4.5 – q)

105
√

π

C
0 Dq

t f (t)
) 1

2
dq =

4√t(t
√

t – 1)
2 ln(t)

,

f (0) = f ′(0) = f ′′(0) = 0,

with the exact solution f (t) = t3√t.
In the above problem, the distributed-order term is discretized with the seven-point

Gauss–Legendre quadrature rule. The numerical results at the interval [0, 1), obtained
by the SKCWs method, are reported in Table 1 by selecting m̂ = 2kM = 6, 12. Graphs of
the exact and approximate solutions and also absolute errors, obtained by the mentioned
method with k = 2, M = 3, are plotted in Fig. 1. This figure and Table 1 illustrate the effi-
ciency and accuracy of the method.

Example 6.2 Consider the DOFDE in the following form [14, 19, 21, 39]:

∫ 2

0

�(6 – q)
120

C
0 Dq

t f (t) dq =
t5 – t3

ln t
,

f (0) = f ′(0) = 0,

with the exact solution f (t) = t5.
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Figure 1 Graphs of the obtained results at the interval [0, 1) by the SKCWs method with k = 2, M = 3, for
Example 6.1

Table 2 Absolute errors at the interval [0, 1), for Example 6.2

t SFOJPs (λ = 1
2 , θ = 3

2 , ϑ = 3) SKCWs HLBP [39] BPFs [39]

N = 8, m̂ = 9 N = 11, m̂ = 12 k = 1,M = 8, m̂ = 16 k = 1,M = 10, m̂ = 20 M = 3,N = 8, m̂ = 24 N = 32, m̂ = 32

0.1 9.548407e-6 1.047112e-12 3.937368e-6 2.322781e-6 4.4538e-7 5.9470e-6
0.2 6.250375e-6 1.531553e-12 2.021002e-5 1.209247e-5 1.3319e-5 1.3073e-5
0.3 1.705950e-7 1.176192e-12 5.028661e-5 3.032198e-5 8.6726e-5 1.9812e-4
0.4 6.318599e-6 1.094817e-12 9.335682e-5 5.654374e-5 2.6389e-4 1.4000e-3
0.5 4.719573e-6 1.183008e-12 1.479691e-4 8.987633e-5 5.5607e-4 4.7000e-3
0.6 4.864510e-6 7.238237e-13 2.126070e-4 1.293900e-4 9.2704e-4 5.4000e-3
0.7 9.045018e-6 6.241959e-13 2.858959e-4 1.742388e-4 1.3000e-3 2.7000e-3
0.8 1.511866e-7 9.814239e-13 3.666613e-4 2.236985e-4 1.6000e-3 7.6000e-3
0.9 1.864086e-5 3.293418e-14 4.539275e-4 2.771667e-4 1.6000e-3 3.1300e-2

In the above problem, we discretize the distributed-order term with the eight-point
Gauss–Legendre quadrature rule. In Table 2, we report the absolute errors at the inter-
val [0, 1) for the SKCWs method by selecting m̂ = N + 1 = 9, 12 with λ = 1

2 , θ = 3
2 , ϑ = 3; for

the SFOJPs method by selecting m̂ = 2kM = 16, 20; for the hybrid of Legendre polynomi-
als and block-pulse functions (HLBP) method [39] by selecting m̂ = NM = 24; and for the
block-pulse functions (BPFs) method [39] by selecting m̂ = N = 32. Graphs of the exact
and approximate solutions and also absolute errors, obtained by the SKCWs and SFOJPs
methods with k = 1, M = 10, N = 11, λ = 1

2 , θ = 3
2 , ϑ = 3, are plotted in Fig. 2. This figure

and Table 2 show the efficiency and accuracy of the new methods in comparison with the
other methods reported in [39].

Example 6.3 Consider the DOFDE in the following form [19–21, 38, 50, 53]:

f ′′(t) + ω2f (t) + σ (t) = g(t), f (0) = f ′(0) = 0,
∫ 1

0
aqC

0 Dq
t σ (t) dq = γ

∫ 1

0
bqC

0 Dq
t f (t) dq.

The above equations describe the motion of the oscillator, where γ , a, b are constants; ω

is the eigen frequency of the undamped system; g(t) is the external forcing function; f (t)
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Figure 2 Graphs of the obtained results at the interval [0, 1) by the SKCWs and SFOJPs methods with k = 1,
M = 10, N = 11, λ = 1

2 , θ = 3
2 , ϑ = 3, for Example 6.2

Table 3 Absolute errors at the interval [0, 10), for Example 6.3

t SFOJPs (λ = 1
2 , θ = ϑ = 0) SKCWs [47] MLWs (ν = 1) [36]

N = 39, m̂ = 40 N = 49, m̂ = 50 k = 2,M = 13, m̂ = 52 k = 3,M = 15, m̂ = 60

1 3.565546e-6 4.583174e-10 1.320582e-7 4.581149e-9
2 1.609513e-6 2.347220e-10 4.245111e-7 1.822323e-8
3 3.562010e-6 1.458788e-10 2.178349e-5 1.097018e-6
4 5.346519e-7 1.887288e-10 2.208436e-5 1.110414e-6
5 4.216773e-7 5.229296e-10 2.241317e-5 1.121390e-6
6 3.034043e-7 8.984458e-11 2.196957e-5 1.106670e-6
7 8.445049e-7 4.972243e-10 2.118251e-5 1.069842e-6
8 3.841176e-6 3.062962e-10 5.110080e-5 2.290284e-6
9 1.904467e-6 4.402973e-10 5.188183e-5 2.326670e-6

and σ (t) are the displacement and the dissipation force, respectively. In this problem, the
forced vibrations of the distributed-order oscillator subjected to the harmonic excitation
g(t) = g0 sin(�t) are studied. The solution of this problem is obtained with g0 = 1, � = 1.2ω,
ω = 3, and γ = 1. If a = b, the solution is identical to the elastic with ωel =

√
1 + ω2 =

√
10,

and the exact solution is

f (t) =
g0

ω2
el – �2

(
sin�t –

�

ωel
sinωelt

)
.

In Table 3, we report the absolute errors at the interval [0, 10) for the SFOJPs method by
selecting m̂ = N + 1 = 39, 49 with λ = 1

2 , θ = ϑ = 0; for the second kind Chebyshev wavelets
(SKCWs) method [47] by selecting m̂ = N(M + 1) = 52; and for the Müntz–Legendre
wavelets (MLWs) method [36] by selecting m̂ = N(M + 1) = 60. We emphasize that the re-
sults reported in [36, 47] have been compared with the results reported in [19, 38, 39, 53],
and it was concluded that the methods in [36, 47] are more accurate than the other meth-
ods. Therefore, here, we just compare our method with the methods of [36, 47]. Graphs
of the exact and approximate solutions and also absolute errors, obtained by the SKCWs
and SFOJPs with k = 4, M = 5, N = 49, λ = 1

2 , θ = ϑ = 0, are plotted in Fig. 3. This figure
and Table 3 show the efficiency and accuracy of the SFOJPs method in comparison with
the methods reported in [36, 47].



Eftekhari et al. Advances in Difference Equations        (2021) 2021:461 Page 18 of 22

Figure 3 Graphs of the obtained results at the interval [0, 10) by the SKCWs and SFOJPs methods with k = 4,
M = 5, N = 49, λ = 1

2 , θ = ϑ = 0, for Example 6.3

Table 4 Absolute errors at the interval [0, 10), for Example 6.4

s SFOJPs (λ = 1
2 , θ = 3

2 , ϑ = 3) MLWs (ν = 1) [36]

N = 3, m̂ = 4 N = 8, m̂ = 9 k = 4,M = 2, m̂ = 16

2 3.144616e-3 2.097341e-4 3.514551e-3
3 2.531630e-3 1.746139e-4 2.757827e-3
4 2.143702e-3 1.533629e-4 2.286212e-3
5 1.871068e-3 1.388309e-4 1.941673e-3
6 1.667009e-3 1.281428e-4 1.673715e-3
7 1.507569e-3 1.198746e-4 1.459252e-3
8 1.379004e-3 1.132319e-4 1.284616e-3
9 1.272802e-3 1.077350e-4 1.140532e-3

Example 6.4 Consider the following distributed-order fractional relaxation equation [18,
31, 50]:

C
0 Dp(q)

t f (t) + 0.1f (t) = 0, p(q) = 6q(1 – q), 0 ≤ q ≤ 1,

f (0) = 1,

with the exact solution [31]

F(s) = L
{

f (t)
}

=
�(s)/s

0.1 + �(s)
,

in the Laplace domain, where

�(s) =
ln(s)(6s + 6) – 12s + 12

(ln(s))3 .

In the above problem, we discretize the distributed-order term with the three-point
Gauss–Legendre quadrature rule. In Table 4, we report the absolute errors at the inter-
val [0, 10) for the SFOJPs method by selecting m̂ = N + 1 = 4, 9 with λ = 1

2 , θ = 3
2 , ϑ = 3;

and for the Müntz–Legendre wavelets (MLWs) method [36] with m̂ = 2k–1M = 16, 32. Fig-
ure 4 shows that by using 8 number of SFOJPs the obtained results are better than the
results of [50] that obtained by using 1000 BPFs for solving this problem.
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Figure 4 Graphs of the obtained results at the interval [0, 10) by the SFOJPs method with N = 8, λ = 1
2 , θ = 3

2 ,
ϑ = 3, for Example 6.4

Figure 5 The approximate solution at the interval [0,
30) by the SKCWs method with k = 5, M = 3, for
Example 6.5

Example 6.5 Consider the following Bagley–Torvik equation [7, 8], where the damping
term is expressed in terms of distributed-order derivatives [46]:

af ′′(t) + bC
0 Dp(q)

t f (t) + cf (t) =

⎧⎨
⎩

8, 0 ≤ t ≤ 1,

0, t > 1,
p(q) = 6q(1 – q), 0 ≤ q ≤ 1,

f (0) = 0, f ′(0) = 0.

This equation is called fractional oscillator equation, when the order of damping term is
constant.

In the above problem, the distributed-order term is discretized with the three-point
Gauss–Legendre quadrature rule. The graph of the approximate solution at the interval
[0, 30) is plotted in Fig. 5 by using the SKCWs method with k = 5, M = 3, a = b = c = 1. This
figure has a good agreement with Fig. 8, reported in [46].
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7 Conclusion
In this research paper, based on Schauder’s and Tychonoff’s fixed point theorems, suffi-
cient conditions for the local and global existence of solutions were provided for general
DOFDEs. Also, sufficient conditions were provided for the uniqueness of the solutions.
Furthermore, we proposed new methods to solve DOFDEs of the general form in the time
domain. By using these methods, the mentioned equations were reduced to systems of al-
gebraic equations. We solved these systems by using the “fsolve” command of Maple 2018.
The error bounds of the methods have been discussed. In addition, the presented meth-
ods were implemented for two test problems and some famous distributed-order models,
such as the model that describes the motion of the oscillator, the distributed-order frac-
tional relaxation equation, and the Bagley–Torvik equation. It showed that by applying
the SKCWs and SFOJPs methods, the obtained results are better than the other existing
methods. We deduce that the proposed methods are efficient numerical tools for solving
DOFDEs.
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