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Abstract
Simpson inequalities for differentiable convex functions and their fractional versions
have been studied extensively. Simpson type inequalities for twice differentiable
functions are also investigated. More precisely, Budak et al. established the first result
on fractional Simpson inequality for twice differentiable functions. In the present
article, we prove a new identity for twice differentiable functions. In addition to this,
we establish several fractional Simpson type inequalities for functions whose second
derivatives in absolute value are convex. This paper is a new version of fractional
Simpson type inequalities for twice differentiable functions.
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1 Introduction
Simpson’s inequality plays a considerable role in several branches of mathematics. For four
times continuously differentiable functions, the classical Simpson’s inequality is expressed
as follows.

Theorem 1 Suppose that F : [ρ1,ρ2] →R is a four times continuously differentiable map-
ping on (ρ1,ρ2), and let ‖F (4)‖∞ = sup

κ∈(ρ1,ρ2)
|F (4)(κ)| < ∞. Then one has the inequality
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∣
∣
∣

1
3

[F (ρ1) + F (ρ2)
2

+ 2F
(

ρ1 + ρ2

2

)]

–
1

ρ2 – ρ1

∫ ρ2

ρ1

F (κ) dκ

∣
∣
∣
∣

≤ 1
2880

∥
∥F (4)∥∥∞(ρ2 – ρ1)4.

Since the convex theory is an effective way to solve a large number of problems from dif-
ferent branches of mathematics, many authors have studied the results of Simpson type
for convex mapping. To be more precise, some inequalities of Simpson type for s-convex
functions are proved by using differentiable functions [4]. In the papers [34, 36], the new
variants of Simpson type inequalities are established based on differentiable convex map-
ping. Moreover, some papers were devoted to Simpson type inequalities for various convex
classes [11, 18, 27, 30, 31].
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The Simpson inequalities for differentiable functions are extended to Riemann–Liouville
fractional integrals in the papers [8] and [17]. Hence, several paper focused on fractional
Simpson inequalities for various fractional integral operators [1–3, 7, 9, 12, 15, 19, 21, 25,
26, 28, 32, 33, 37, 39]. For further information and unexplained subjects about Simpson
type inequalities, we refer the reader to [5, 10, 14, 16, 22–24, 38] and the references therein.
Besides, Sarikaya et al. established several Simpson type inequalities for functions whose
second derivatives are convex [35].

The purpose of this paper is to extend the results given in [35] for twice differentiable
functions to Riemann–Liouville fractional integrals. The general structure of the paper
consists of four chapters including an introduction. The remaining part of the paper pro-
ceeds as follows: In Sect. 2, after giving a general literature survey and the definition of
Riemann–Liouville fractional integral operators, we prove an equality for twice differen-
tiable functions. In the next section, for utilizing this equality, we establish several Simpson
type inequalities for a mapping whose second derivatives are convex. In the last section,
some conclusions and further directions of research are discussed.

Definition 1 Consider F ∈ L1[ρ1,ρ2]. The Riemann–Liouville integrals Jα
ρ1+F and Jα

ρ2–F
of order α > 0 with ρ1 ≥ 0 are defined by

Jα
ρ1+F (κ) =

1
�(α)

∫ κ

ρ1

(κ – τ )α–1F (τ ) dτ , κ > ρ1

and

Jα
ρ2–F (κ) =

1
�(α)

∫ ρ2

κ

(τ – κ)α–1F (τ ) dτ , κ < ρ2,

respectively. Here, �(α) is the gamma function and J0
ρ1+F (κ) = J0

ρ2–F (κ) = F (κ).

For more information and several properties of Riemann–Liouville fractional integrals,
please refer to [13, 20, 29].

The first result on fractional Simpson inequality for twice differentiable functions was
proved by Budak et al. in [6] as follows.

Theorem 2 Assume that the assumptions of Lemma 1 hold. Assume also that the mapping
|F ′′| is convex on [ρ1,ρ2]. Then we have the following inequality:

∣
∣
∣
∣
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F (ρ1) + 4F
(

ρ1 + ρ2
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)

+ F (ρ2)
]

(1.1)

–
2α–1�(α + 1)

(ρ2 – ρ1)α
[

Jα

( ρ1+ρ2
2 )+F (ρ2) + Jα

( ρ1+ρ2
2 )–F (ρ1)

]
∣
∣
∣
∣

≤ (ρ2 – ρ1)2

6
A(α)

[∣
∣F ′′(ρ1)

∣
∣ +

∣
∣F ′′(ρ2)

∣
∣
]

,

where

A(α) =
1

4(α + 2)

(

α

(
α + 1

3

) 2
α

+
3

α + 1

)

–
1
8

. (1.2)

In this paper, we prove a new version of inequality (1.1).
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2 Some equalities
In this section, we give equalities on twice differentiable functions for using the main re-
sults.

Lemma 1 If F : [ρ1,ρ2] → R is an absolutely continuous mapping (ρ1,ρ2) such that F ′′ ∈
L1([ρ1,ρ2]), then the following equality

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

(2.1)

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]

=
(ρ2 – ρ1)2

8(α + 1)

∫ 1

0

(
1 – 2α

3
+

2(α + 1)
3

τ – τα+1
)

×
[

F ′′
(

1 + τ

2
ρ2 +

1 – τ

2
ρ1

)

+ F ′′
(

1 + τ

2
ρ1 +

1 – τ

2
ρ2

)]

dτ

is valid.

Proof By using integration by parts, we obtain

ϒ1 =
∫ 1

0

(
1 – 2α

3
+

2(α + 1)
3

τ – τα+1
)

F ′′
(

1 + τ

2
ρ2 +

1 – τ

2
ρ1

)

dτ (2.2)

= –2
(1 – 2α)

3(ρ2 – ρ1)
F ′

(
ρ1 + ρ2

2

)

–
2

(ρ2 – ρ1)

∫ 1

0

(
2(α + 1)

3
– (α + 1)τα

)

F ′
(

1 + τ

2
ρ2 +

1 – τ

2
ρ1

)

dτ

= –2
(1 – 2α)

3(ρ2 – ρ1)
F ′

(
ρ1 + ρ2

2

)

+
4(α + 1)

3(ρ2 – ρ1)2 F (ρ2) +
8(α + 1)

3(ρ2 – ρ1)2 F
(

ρ1 + ρ2

2

)

–
4α(α + 1)
ρ2 – ρ1

∫ 1

0
τα–1F

(
1 + τ

2
ρ2 +

1 – τ

2
ρ1

)

dτ .

By using equation (2.2), the change of the variable κ = 1+τ
2 ρ2 + 1–τ

2 ρ1 for τ ∈ [0, 1] can be
rewritten as follows:

ϒ1 = –2
(1 – 2α)

3(ρ2 – ρ1)
F ′

(
ρ1 + ρ2

2

)

+
4(α + 1)

3(ρ2 – ρ1)2 F (ρ2) +
8(α + 1)

3(ρ2 – ρ1)2 F
(

ρ1 + ρ2

2

)

(2.3)

–
2α+2(α + 1)�(α + 1)

(ρ2 – ρ1)α+2 Jα
ρ2–F

(
ρ1 + ρ2

2

)

.

Similarly, we have

ϒ2 =
∫ 1

0

(
1 – 2α

3
+

2(α + 1)
3

τ – τα+1
)

F ′′
(

1 + τ

2
ρ1 +

1 – τ

2
ρ2

)

dτ (2.4)

= 2
(1 – 2α)

3(ρ2 – ρ1)
F ′

(
ρ1 + ρ2

2

)

+
4(α + 1)

3(ρ2 – ρ1)2 F (ρ1) +
8(α + 1)

3(ρ2 – ρ1)2 F
(

ρ1 + ρ2

2

)

–
2α+2(α + 1)�(α + 1)

(ρ2 – ρ1)α+2 Jα
ρ1+F

(
ρ1 + ρ2

2

)

.
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From equations (2.3) and (2.4), we get

ϒ1 + ϒ2 =
4(α + 1)

3(ρ2 – ρ1)2

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

(2.5)

–
2α+2(α + 1)�(α + 1)

(ρ2 – ρ1)α+2

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]

.

Multiplying both sides of (2.5) by (ρ2–ρ1)2

8(α+1) , we obtain equation (2.1). This ends the proof of
Lemma 1. �

Lemma 2 Let us consider the function � : [0, 1] →R by � (τ ) = 1–2α
3 + 2(α+1)

3 τ – τα+1 with
α > 0.

(1) If 0 < α ≤ 1
2 , then we have

∫ 1

0

∣
∣� (τ )

∣
∣dτ =

1 – α2

3(α + 2)
.

(2) If α > 1
2 , then there exists a real number ςα such that 0 < ςα < 1, and we have

∫ 1

0

∣
∣� (τ )

∣
∣dτ = 2

(
(ςα)α+2

α + 2
–

(1 – 2α)ςα + (α + 1)(ςα)2

3

)

+
1 – α2

3(α + 2)
.

Proof Let us note that 0 < α ≤ 1
2 . Then � (τ ) ≥ 0 for all τ ∈ [0, 1]. Thus, it can be easily

seen that

∫ 1

0

∣
∣� (τ )

∣
∣dτ =

∫ 1

0
� (τ ) dτ =

1 – α2

3(α + 2)
.

If α > 1
2 , then there exists a real number ςα ∈ (0, 1) such that � (τ ) ≤ 0 for 0 ≤ τ ≤ ςα and

� (τ ) ≥ 0 for ςα ≤ τ ≤ 1. Therefore, we obtain

∫ 1

0

∣
∣� (τ )

∣
∣dτ =

∫ ςα

0

(

–� (τ )
)

dτ +
∫ 1

ςα

� (τ ) dτ

= 2
(

(ςα)α+2

α + 2
–

(1 – 2α)ςα + (α + 1)(ςα)2

3

)

+
1 – α2

3(α + 2)
. �

Lemma 3 Define the function � : [0, 1] →R by � (τ ) = 1–2α
3 + 2(α+1)

3 τ – τα+1 with α > 0.
(1) Let us consider 0 < α ≤ 1

2 . Then we have

∫ 1

0

∣
∣� (τ )

∣
∣τ dτ =

3 – α – 2α2

18(α + 3)
.

(2) If we take α > 1
2 , then there exists a real number ςα so that 0 < ςα < 1, and we get

∫ 1

0

∣
∣� (τ )

∣
∣τ dτ = 2

(
(ςα)α+3

α + 3
–

3(1 – 2α)(ςα)2 + 4(α + 1)(ςα)3

18

)

+
3 + α – 2α2

18(α + 3)
.

Proof The proof can be done similar to the proof of Lemma 2. �
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3 New Simpson type inequalities for twice differentiable functions
In this section, we prove several Simpson type inequalities for a mapping whose second
derivatives are convex.

Theorem 3 Let us note that the assumptions of Lemma 1 are valid. Let us also note that
the mapping |F ′′| is convex on [ρ1,ρ2]. Then we have the following inequality:

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]∣
∣
∣
∣

≤ (ρ2 – ρ1)2

8(α + 1)

1(α)

[∣
∣F ′′(ρ1)

∣
∣ +

∣
∣F ′′(ρ2)

∣
∣
]

,

where 
1 is defined by


1(α) =

⎧

⎨

⎩

1–α2

3(α+2) , if 0 < α ≤ 1
2 ,

2( (ςα )α+2

α+2 – (1–2α)ςα+(α+1)(ςα )2

3 ) + 1–α2

3(α+2) , if α > 1
2 .

Proof By taking modulus in Lemma 1, we have

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

(3.1)

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]∣
∣
∣
∣

≤ (ρ2 – ρ1)2

8(α + 1)

∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣
dτ

×
[∣
∣
∣
∣
F ′′

(
1 + τ

2
ρ2 +

1 – τ

2
ρ1

)∣
∣
∣
∣

+
∣
∣
∣
∣
F ′′

(
1 + τ

2
ρ1 +

1 – τ

2
ρ2

)∣
∣
∣
∣

]

dτ .

By using the convexity of |F ′′|, we obtain

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]∣
∣
∣
∣

≤ (ρ2 – ρ1)2

8(α + 1)

[∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

×
[(

1 + τ

2

)
∣
∣F ′′(ρ2)

∣
∣ +

(
1 – τ

2

)
∣
∣F ′′(ρ1)

∣
∣

]

dτ

+
(

1 + τ

2

)
∣
∣F ′′(ρ1)

∣
∣ +

(
1 – τ

2

)
∣
∣F ′′(ρ2)

∣
∣

]

dτ
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=
(ρ2 – ρ1)2

8(α + 1)

∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣
dτ

[∣
∣F ′′(ρ2)

∣
∣ +

∣
∣F ′′(ρ1)

∣
∣
]

=
(ρ2 – ρ1)2

8(α + 1)

1(α)

[∣
∣F ′′(ρ1)

∣
∣ +

∣
∣F ′′(ρ2)

∣
∣
]

.

This completes the proof of Theorem 3. �

Theorem 4 Let us consider that the assumptions of Lemma 1 hold. If the mapping |F ′′|q,
q > 1 is convex on [ρ1,ρ2], then we have the following inequality:

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]∣
∣
∣
∣

≤ (ρ2 – ρ1)2

8(α + 1)
�(α, p)

[∣
∣F ′′(ρ1)

∣
∣
q +

∣
∣F ′′(ρ2)

∣
∣
q] 1

q .

Here, 1
p + 1

q = 1 and � is defined by

�(α, p) =
(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

p

dτ

) 1
p

.

Proof With the help of Hölder’s inequality in inequality (3.1), we get

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]∣
∣
∣
∣

≤ (ρ2 – ρ1)2

8(α + 1)

{(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

p

dτ

) 1
p

×
(∫ 1

0

∣
∣
∣
∣
F ′′

(
1 + τ

2
ρ2 +

1 – τ

2
ρ1

)∣
∣
∣
∣

q

dτ

) 1
q

+
(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

p

dτ

) 1
p

×
(∫ 1

0

∣
∣
∣
∣
F ′′

(
1 + τ

2
ρ1 +

1 – τ

2
ρ2

)∣
∣
∣
∣

q

dτ

) 1
q
}

.

By using the convexity of |F ′′|q, we obtain

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]∣
∣
∣
∣

≤ (ρ2 – ρ1)2

8(α + 1)

(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

p

dτ

) 1
p
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×
[(∫ 1

0

[(
1 + τ

2

)
∣
∣F ′′(ρ2)

∣
∣
q +

(
1 – τ

2

)
∣
∣F ′′(ρ1)

∣
∣
q
]

dτ

) 1
q

+
(∫ 1

0

[(
1 + τ

2

)
∣
∣F ′′(ρ1)

∣
∣
q +

(
1 – τ

2

)
∣
∣F ′′(ρ2)

∣
∣
q
]

dτ

) 1
q
]

=
(ρ2 – ρ1)2

8(α + 1)

(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

p

dτ

) 1
p

×
[(

3|F ′′(ρ2)|q + |F ′′(ρ1)|q
4

) 1
q

+
( |F ′′(ρ2)|q + 3|F ′′(ρ1)|q

4

) 1
q
]

.

This finishes the proof of Theorem 4. �

Theorem 5 Suppose that the assumptions of Lemma 1 hold. If the mapping |F ′′|q, q ≥ 1
is convex on [ρ1,ρ2], then we have the following inequality:

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]∣
∣
∣
∣

≤ (ρ2 – ρ1)2

8(α + 1)
(


1(α)
)1– 1

q

×
{(

(
1(α) + 
2(α))|F ′′(ρ2)|q + (
1(α) – 
2(α))|F ′′(ρ1)|q
2

) 1
q

+
(

(
1(α) + 
2(α))|F ′′(ρ1)|q + (
1(α) – 
2(α))|F ′′(ρ2)|q
2

) 1
q
}

,

where 
1 is defined as in Theorem 3 and 
2 is defined by


2(α) =

⎧

⎨

⎩

3–α–2α2

18(α+3) , if 0 < α ≤ 1
2 ,

2( (ςα )α+3

α+3 – 3(1–2α)(ςα )2+4(α+1)(ςα )3

18 ) + 3+α–2α2

18(α+3) , if α > 1
2 .

Proof By applying the power-mean inequality in (3.1), we get
∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

(3.2)

–
2α–1�(α + 1)

(ρ2 – ρ1)α

[

Jα
ρ2–F

(
ρ1 + ρ2

2

)

+ Jα
ρ1+F

(
ρ1 + ρ2

2

)]∣
∣
∣
∣

≤ (ρ2 – ρ1)2

8(α + 1)

[(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣
dτ

)1– 1
q

×
(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

∣
∣
∣
∣
F ′′

(
1 + τ

2
ρ2 +

1 – τ

2
ρ1

)∣
∣
∣
∣

q

dτ

) 1
q

+
(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣
dτ

)1– 1
q

×
(∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

∣
∣
∣
∣
F ′′

(
1 + τ

2
ρ1 +

1 – τ

2
ρ2

)∣
∣
∣
∣

q

dτ

) 1
q
]

.
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Since |F ′′|q is convex, we obtain

∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

∣
∣
∣
∣
F ′′

(
1 + τ

2
ρ2 +

1 – τ

2
ρ1

)∣
∣
∣
∣

q

dτ

≤
∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

[
1 + τ

2
∣
∣F ′′(ρ2)

∣
∣
q +

1 – τ

2
∣
∣F ′′(ρ1)

∣
∣
q
]

dτ

=
(
1(α) + 
2(α))|F ′′(ρ2)|q + (
1(α) – 
2(α))|F ′′(ρ1)|q

2
,

and similarly

∫ 1

0

∣
∣
∣
∣

1 – 2α

3
+

2(α + 1)
3

τ – τα+1
∣
∣
∣
∣

∣
∣
∣
∣
F ′′

(
1 + τ

2
ρ1 +

1 – τ

2
ρ2

)∣
∣
∣
∣

q

dτ

≤ (
1(α) + 
2(α))|F ′′(ρ1)|q + (
1(α) – 
2(α))|F ′′(ρ2)|q
2

.

Then we obtain the desired result Theorem 5. �

4 Special cases
In this section, we present special cases of the main findings in the paper.

Remark 1 If we choose α = 1 in Theorem 3, then ςα = 1
3 , and we have the inequality

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

–
1

ρ2 – ρ1

∫ ρ2

ρ1

F (κ) dκ

∣
∣
∣
∣

≤ (ρ2 – ρ1)2

162
[∣
∣F ′′(ρ1)

∣
∣ +

∣
∣F ′′(ρ2)

∣
∣
]

,

which is proved by Sarikaya et al. in [35].

Corollary 1 In Theorem 4, if we assign α = 1, then ςα = 1
3 , and the following inequality

∣
∣
∣
∣

1
6

[

F (ρ1) + 4F
(

ρ1 + ρ2

2

)

+ F (ρ2)
]

–
1

ρ2 – ρ1

∫ ρ2

ρ1

F (κ) dκ

∣
∣
∣
∣

≤ (ρ2 – ρ1)2

16
�(1, p)

[∣
∣F ′′(ρ1)

∣
∣
q +

∣
∣F ′′(ρ2)

∣
∣
q] 1

q

is valid.

Remark 2 If we take α = 1 in Theorem 5, then Theorem 5 reduces to [35, Theorem 2.5].

5 Conclusion
In the present article, fractional version of Simpson type inequality for twice differentiable
functions are established. Moreover, we show that our results generalize the inequalities
obtained by Sarikaya et al. [35]. This work is a new version of fractional Simpson type in-
equalities for twice differentiable functions. In the future studies, authors can try to gen-
eralize our results by utilizing a different kind of convex function classes or another type
fractional integral operators. In addition to this, the authors can give some applications of
special cases with the help of our results.
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