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Abstract
For finding a common fixed point of a finite family of G-nonexpansive mappings, we
implement a new parallel algorithm based on the Ishikawa iteration process with the
inertial technique. We obtain the weak convergence theorem of this algorithm in
Hilbert spaces endowed with a directed graph by assuming certain control
conditions. Furthermore, numerical experiments on the diffusion problem
demonstrate that the proposed approach outperforms well-known approaches.
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1 Introduction
In the literature of metric fixed point theory, the Banach contraction principle is well
known. Many mathematicians have improved and generalized this theory in various ways,
see [2, 11, 14, 21, 23–25, 27, 30]. Browder [10], by using Banach’s result, proved a strong
convergence theorem of an implicit iterative for nonexpansive mappings in a Hilbert
space. Later on, Halpern [18] applied Browder’s convergence theorem to establish a strong
convergence theorem of an explicit iteration for such mappings in a Hilbert space. In 2008,
Jachymski [22] was the first to prove a generalization of the Banach contraction principle in
a complete metric space endowed with a directed graph by combining two ideas from fixed
point theory and graph theory. Then, in 2012, Aleomraninejad et al. [1] proposed several
iterative procedures in Banach spaces involving a directed graph for G-contraction and
G-nonexpansive mappings. In Hilbert spaces involving a directed graph, similar studies
of Browder and Halpern were provided by Tiammee et al. [40] in 2015. Next, Tripak [41]
in 2016 studied a two-step iteration process, called the Ishikawa iteration process, and
used this scheme to prove weak and strong convergence theorems for estimating com-
mon fixed points in a uniformly convex Banach space involving a directed graph for G-
nonexpansive mappings. Subsequently, numerous research studies have been conducted
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on two- and three-step iteration processes under conditions similar to Tripak [41], see
[32, 36, 38, 42].

Otherwise, inertial extrapolation, which was initially presented by Polyak [29] as an ac-
celeration technique, has recently been applied to solve a variety of convex minimization
problems based on the heavy ball method of the two order time dynamical system. Two
iterative steps are used in inertial form processes, with the second iteration being derived
from the preceding two iterates. These methods are committed to be considered an ef-
fective technique for dealing with a variety of iterative algorithms, especially projection-
based algorithms, see [3, 6, 26, 34, 35, 39, 46]. Within the forward–backward splitting
framework, Beck and Teboulle [9] suggested the so-called fast iterative shrinkage thresh-
olding algorithm (FISTA), which cleverly incorporates the ideas of Polyak [29], Nesterov
[28], and Güler [17]. The FISTA has become a standard algorithm because it can be used
to solve a wide range of practical problems in sparse signal recovery, image processing,
and machine learning.

To approximate a finite family of quasi φ-nonexpansive mappings in a Banach space,
Anh and Hieu [4, 5] proposed a parallel monotone hybrid method. Recently, Yambangwai
et al. [44] applied the parallel monotone hybrid method to construct an algorithm for solv-
ing common variational inclusion problems in a Hilbert space. Some findings concerning
the parallel approach to solve the fixed point problem and related problems have been
published, see [12, 13, 19, 20, 37].

In this article, we develop a new parallel algorithm based on the Ishikawa iteration pro-
cess with the inertial technique to prove the weak convergence theorem for estimating
common fixed points of a finite family of G-nonexpansive mappings by assuming some
control conditions in Hilbert spaces endowed with a directed graph. Moreover, we com-
pare the proposed method to a well-known method in order to solve the diffusion problem.

2 Preliminaries
In this part, we bring back several conceptual outcomes that will be applicable to our new
technique. The set of a fixed point of M is denoted by Fix(M), that is, Fix(M) = {x :
Mx = x}.

Definition 2.1 A metric space X is said to be endowed with a transitive directed graph
G if G = (V (G), E(G)) is a directed graph such that the following hold:

(i) G is transitive, that is, for any u, v, z ∈ V (G),

(u, v), (v, z) ∈ E(G) ⇒ (u, z) ∈ E(G);

(ii) the set of vertices V (G) coincides with X ;
(iii) the set of edges E(G) contains the diagonal of X ×X , that is, {(x, x) : x ∈X } ⊆ E(G);
(iv) E(G) contains no parallel edges.

Definition 2.2 Let C be a nonempty subset of a Hilbert space H and G = (V (G), E(G)) be
a directed graph such that V (G) = C. A mapping M on C is said to be G-nonexpansive if
for each u, v ∈ C such that the following hold:

(i) M is edge-preserving, i.e.,

(u, v) ∈ E(G) ⇒ (Mu,Mv) ∈ E(G),
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(ii) M does not increase the weights of edges of G, i.e.,

(u, v) ∈ E(G) ⇒ ‖Mu – Mv‖ ≤ ‖x – y‖.

Lemma 2.3 ([7]) Let {σn} and {δn} be nonnegative sequences of real numbers satisfying
∑∞

n=1 δn < ∞ and σn+1 ≤ σn + δn. Then {σn} is a convergent sequence.

Lemma 2.4 ([8, Opial]) Let � be a nonempty set ofH and {χn} be a sequence inH. Suppose
that the following assertions hold:

(i) For every ρ ∈ �, the sequence {‖χn – ρ‖} converges.
(ii) Every weak sequential cluster point of {χn} belongs to �.

Then {χn} weakly converges to a point in �.

Definition 2.5 ([36]) Let G = (V (G), E(G)) be a directed graph and A ⊆ V (G). For v ∈
V (G), we say that

(i) A is dominated by v if (v, a) ∈ E(G) for all a ∈ A.
(ii) A dominates v if for each a ∈ A, (a, v) ∈ E(G).

Lemma 2.6 ([33]) Let C be a nonempty, closed, and convex subset of a Hilbert space H
and G = (V (G), E(G)) be a directed graph such that V (G) = C. Let M : C → C be a G-
nonexpansive mapping and {un} be a sequence in C such that un ⇀ u for some u ∈ C. If
there exists a subsequence {unk } of {un} such that (unk , u) ∈ E(G) for all k ∈ N and {un –
Mun} → v for some v ∈H, then (I – M)u = v.

3 Main results
In this part, we construct a novel parallel scheme to find a common fixed point of a finite
family of G-nonexpansive mappings based on the inertial Ishikawa iteration process. For
all i = 1, 2, . . . , N , the following assumptions are maintained.

Assumption 1 H is a real Hilbert space endowed with a transitive directed graph G such
that E(G) is convex.

Assumption 2 Ti : H →H is a G-nonexpansive mapping such that F :=
⋂N

i=1 Fix(Ti) 	= ∅.

Assumption 3 {αi
n}, {β i

n} ⊂ [0, 1] satisfies the condition such that lim infn→∞ αi
n > 0 and

0 < lim infn→∞ β i
n ≤ lim supn→∞ β i

n < 1, and {ϑn} ⊂ [0,ϑ) for some ϑ > 0.

Next the algorithm is presented.
With Algorithm (�), we are now ready for the main convergence theorem.

Theorem 3.1 Assume that Assumptions 1–3 are true and that the following criteria are
met:

(i) {ωn} is dominated by ρ and {ωn} dominates ρ for all ρ ∈ F;
(ii) If there exists a subsequence {ωnk } of {ωn} such that ωnk ⇀ μ ∈H, then

(ωnk ,μ) ∈ E(G);
(iii)

∑∞
n=1 ϑn‖χn – χn–1‖ < ∞.

Then the sequence {χn} developed by Algorithm (�) weakly converges to an element in F.
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Algorithm (�)
Initialization: Select arbitrary elements χ0,χ1 ∈H and set n := 1.
Iterative steps: Construct {χn} by using the following steps:
Step 1. Define

ωn = χn + ϑn(χn – χn–1).

Step 2. Compute, for all i = 1, 2, . . . , N ,

ψ i
n =

(
1 – β i

n
)
ωn + β i

nTiωn

and

ζ i
n =

(
1 – αi

n
)
ωn + αi

nTiψ i
n.

Step 3. Compute

χn+1 = arg max
{∥
∥ζ i

n – ωn
∥
∥ : i = 1, 2, . . . , N

}
.

Replace n with n + 1 and then repeat Step 1.

Proof Let ρ ∈ F. From condition (i), we gain (ωn,ρ), (ρ,ωn) ∈ E(G). Then (Tiωn,ρ) ∈ E(G)
because Ti is edge-preserving for all i = 1, 2, . . . , N . By the definition of ψ i

n and E(G) is
convex, we have (ψ i

n,ρ) ∈ E(G) for all i = 1, 2, . . . , N . For all i = 1, 2, . . . , N , since the mapping
Ti is G-nonexpansive, we have

∥
∥ζ i

n – ρ
∥
∥ =

∥
∥
(
1 – αi

n
)
(ωn – ρ) + αi

n
(
Tiψ i

n – ρ
)∥
∥

≤ (
1 – αi

n
)‖ωn – ρ‖ + αi

n
∥
∥Tiψ i

n – ρ
∥
∥

≤ (
1 – αi

n
)‖ωn – ρ‖ + αi

n
∥
∥ψ i

n – ρ
∥
∥

=
(
1 – αi

n
)‖ωn – ρ‖ + αi

n
∥
∥
(
1 – β i

n
)
(ωn – ρ) + β i

n
(
Tiωn – ρ

)∥
∥

≤ (
1 – αi

n
)‖ωn – ρ‖ + αi

n
{(

1 – β i
n
)‖ωn – ρ‖ + β i

n
∥
∥Tiωn – ρ

∥
∥
}

≤ ‖ωn – ρ‖
≤ ‖χn – ρ‖ + ϑn‖χn – χn–1‖.

This implies that ‖χn+1 – ρ‖ ≤ ‖χn – ρ‖ + ϑn‖χn – χn–1‖. From Lemma 2.3 and condition
(iii), we derive that limn→∞ ‖χn – ρ‖ exists. In particular, {χn} is bounded and also {ωn},
{ψ i

n}, and {ζ i
n} for all i = 1, 2, . . . , N . By some properties inH, we obtain, for all i = 1, 2, . . . , N ,

∥
∥ζ i

n – ρ
∥
∥2 ≤ (

1 – αi
n
)‖ωn – ρ‖2 + αi

n
∥
∥Tiψ i

n – ρ
∥
∥2

≤ (
1 – αi

n
)‖ωn – ρ‖2 + αi

n
∥
∥ψ i

n – ρ
∥
∥2

≤ (
1 – αi

n
)‖ωn – ρ‖2

+ αi
n
{(

1 – β i
n
)‖ωn – ρ‖2 + β i

n
∥
∥Tiωn – ρ

∥
∥2 – β i

n
(
1 – β i

n
)∥
∥Tiωn – ωn

∥
∥2}
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≤ ‖ωn – ρ‖2 – αi
nβ

i
n
(
1 – β i

n
)∥
∥Tiωn – ωn

∥
∥2 (3.1)

≤ ‖χn – ρ‖2 + 2ϑn〈χn – χn–1,ωn – ρ〉 – αi
nβ

i
n
(
1 – β i

n
)∥
∥Tiωn – ωn

∥
∥2.

It follows that there are in ∈ {1, 2, . . . , N} and W̄1 > 0 such that

αin
n β in

n
(
1 – β in

n
)∥
∥Tinωn – ωn

∥
∥2 ≤ ‖χn – ρ‖2 – ‖χn+1 – ρ‖2 + W̄1ϑn‖χn – χn–1‖.

From Assumption 3 and condition (iii), and using limn→∞ ‖χn – ρ‖ exists, we obtain

lim
n→∞

∥
∥Tinωn – ωn

∥
∥ = 0. (3.2)

Since (ψ in
n ,ρ) and (ρ,ωn) are in E(G) and by the transitivity property of G, we gain

(ψ in
n ,ωn) ∈ E(G). Applying (3.2) to the definitions of χn+1 and ψ in

n , the following result
is obtained:

‖χn+1 – ωn‖ = αi
n
∥
∥Tinψ in

n – ωn
∥
∥

≤ ∥
∥Tinψ in

n – Tinωn
∥
∥ +

∥
∥Tinωn – ωn

∥
∥

≤ ∥
∥ψ in

n – ωn
∥
∥ +

∥
∥Tinωn – ωn

∥
∥

≤ 2
∥
∥Tinωn – ωn

∥
∥ → 0 as n → ∞.

Again, by the definition of χn+1, we deduce, for all i = 1, 2, . . . , N ,

lim
n→∞

∥
∥ζ i

n – ωn
∥
∥ = 0. (3.3)

From inequality (3.1), we have, for all i = 1, 2, . . . , N ,

αi
nβ

i
n
(
1 – β i

n
)∥
∥Tiωn – ωn

∥
∥2 ≤ ‖ωn – ρ‖2 –

∥
∥ζ i

n – ρ
∥
∥2 ≤ W̄2

∥
∥ζ i

n – ωn
∥
∥

for some W̄2 > 0. This combined with equation (3.3) and Assumption 3 leads to, for all
i = 1, 2, . . . , N ,

lim
n→∞

∥
∥Tiwn – wn

∥
∥ = 0. (3.4)

Next, let ρ̄ be a weak sequential cluster point of {ωn}. Applying Lemma 2.6 to equation
(3.4) with condition (ii), we deduce that ρ̄ ∈ F. Finally, since limn→∞ ϑn‖χn – χn–1‖ = 0
and using Opial’s lemma (Lemma 2.4), we can conclude that {χn} weakly converges to an
element in F. �

Additionally, we provide the following theorem for a family of G-nonexpansive map-
pings in a Hilbert space.

Theorem 3.2 Assume that
∑∞

n=1 ϑn‖χn – χn–1‖ < ∞ and Assumption 3 is true. Let Ti be a
family of nonexpansive mappings on a real Hilbert space H for all i = 1, 2, . . . , N such that
F 	= ∅. Then the sequence {χn} developed by Algorithm (�) weakly converges to an element
in F.

Proof This proof is analogous to the proof of Theorem 3.1. �
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4 Differential problems
Let us consider the following simple and well-known periodic one-dimensional diffusion
problem with Dirichlet boundary conditions and initial data:

ut = βuxx + f (x, t), 0 < x < l, t > 0,

u(x, 0) = u0(x), 0 < x < l, (4.1)

u(0, t) = γ1(t), u(l, t) = γ2(t), t > 0,

where β is constant, u(x, t) represents the temperature at point (x, t), and f (x, t), γ1(t), γ2(t)
are sufficiently smooth functions. In what follows, we use the notations un

i and (uxx)n
i to

represent the numerical approximations of u(xi, tn) and uxx(xi, tn) and tn = n�t, where �t
denotes the temporal mesh size. A set of schemes in solving problem (4.1) is based on the
following well-known Crank–Nikolson type of scheme [43, 45]:

un+1
i – un

i
�t

=
β

2
[
(uxx)n+1

i + (uxx)n
i
]

+ f n+1/2
i , i = 2, . . . , N – 1, (4.2)

with the initial data

u0
i = u0(xi), i = 1, . . . , N , (4.3)

and the Dirichlet boundary conditions

un+1
1 = γ1

(
tn+1), un+1

N = γ2
(
tn+1). (4.4)

The matrix form of the second-order finite difference scheme (FDS) in solving diffusion
problem (4.1) can be written as

Aun+1 = Gn, (4.5)

where Gn = Bun + fn+1/2,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + η – η

2
– η

2 1 + η – η

2
. . . . . . . . .

– η

2 1 + η – η

2
– η

2 1 + η

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 – η
η

2
η

2 1 – η
η

2
. . . . . . . . .

η

2 1 – η
η

2
η

2 1 – η

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Table 1 The specific name of WJ and SOR in solving linear system (4.5)

Linear system Iterative method Specific name

Aun+1 = Gn Du(n+1,s+1) = (D –ωA)u(n+1,s) +ωGn WJ

(D –ωL)u(n+1,s+1) = ((D –ωL) –ωA)u(n+1,s) +ωGn SOR

un =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uk
2

uk
3
...

uk
N–2

uk
N–1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, fn+1/2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

η

2 γ n+1/2
1 + �tf n+1/2

2

�tf n+1/2
3
...

�tf n+1/2
N–2

η

2 γ n+1/2
2 + �tf n+1/2

N–1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

η = β�t/(�x2), γ n+1/2
i = γi(tn+1/2), i = 1, 2, and f n+1/2

i = fi(tn+1/2), i = 2, . . . , N –1. From equa-
tion (4.5), matrix A is square and symmetric positive definite. Traditionally iterative meth-
ods have been presented in solving the solution of linear systems (4.5). The well-known
weight Jacobi (WJ) and successive over relaxation (SOR) methods [16, 43] are chosen to
exemplify here (see Table 1).

And ω is the weight parameter, D is the diagonal part of the matrix A, and L is the lower
triangular part of the matrix D – A, respectively. For the implementation of WJ and SOR,
the availability of the selection rule for weight parameter ω and the optimal parameter ωo

needs the values of the smallest and largest eigenvalues of matrix A. The calculations of
their eigenvalue can be found in [15, 31]. Since the stability of WJ and SOR methods in
solving linear system (4.5) generates from the discretization of the considered problem
(4.1), the step sizes of time play an important role in the stability needed. The discussion
on the stability of WJ and SOR in solving linear system (4.5) can be found in [16, 43].

Let us consider the linear system

Aun+1 = Gn, (4.6)

where A : RN–2 → R
N–2 is a linear and positive operator. Then linear system (4.6) has

a unique solution. To find the solution of linear system (4.6), we manipulate this linear
system into the form of a fixed point equation:

Tiun+1 = un+1, ∀i = 1, 2, . . . , M. (4.7)

Suppose that the solution of linear system (4.6) is the common solution of equation (4.7).
We can apply our new inertial parallel algorithm to solve the common solution of equation
(4.7) by using the G-nonexpansive mapping Ti, ∀i = 1, 2, . . . , M. The generated sequence
{u(n,s)}, s ∈N is created iteratively by using two initial data u(n,1), u(n,2) ∈R

N–2 and

t(n,s+1) = u(n,s+1) + ϑn
(
u(n,s+1) – u(n,s)),

v(n,s+1)
i =

(
1 – β i

n
)
t(n,s+1) + β i

nTit(n,s+1),

w(n+1,s+1)
i =

(
1 – αi

n
)
t(n,s+1) + αi

nTiv(n,s+1)
i ,

u(n+1,s+1) = argmax
∥
∥w(n,s+1)

i – t(n,s+1)∥∥, n ≥ 2,

(4.8)
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Table 2 The different way of rearranging linear systems (4.5) into the form x = T (x)

Linear system Fixed point mapping Tx

Aun+1 = Gn TWJun+1 = (I –ωD–1A)un +ωD–1Gn

TSORun+1 = (I –ω(D –ωL)–1A)un +ω(D –ωL)–1Gn

Table 3 Implemented weight parameter and optimal weight parameter of operator S

The different types
of operator S

Implement weight
parameter ω

Optimal weight
parameter ωo

SWJ 0 <ω < 2min{ λmin(D)
λmin(A)

, λmax(D)
λmax(A)

} ωo = 1
2 (λmin(A) + λmax(A))

SSOR 0 <ω < 2 ωo = 2d
d+

√
λmin(A)λmax(A)

where the second superscript “s” denotes the number of iterations s = 1, 2, . . . , Ŝn and {αi
n},

{β i
n} are appropriate real sequences in [0, 1]. The following stopping criterion is used:

∥
∥un+1,̂Sn+1 – un+1,̂Sn

∥
∥∞ < ε,

where “̂Sn” denotes the number of the last iteration at time tn and after that set un,1 =
u(n+1,̂Sn), un,2 = u(n+1,̂Sn+1).

There are many different ways of rearranging equation (4.6) in the form of fixed point
equation (4.7). For example, the well-known weight Jacobi (WJ), successive over relaxation
(SOR), and Gauss–Seidel (GS, the SOR with ω = 1) methods [16, 43, 45] present linear
system (4.6) into the form of fixed point equation as un+1 = TWJun+1, un+1 = TSORun+1, and
un+1 = TGSun+1, respectively (see Table 2).

From the fact that ‖Tx – Ty‖ = ‖Sx – Sy‖ ≤ ‖S‖‖x – y‖ < ‖x – y‖ for all x, y ∈R
m, where

S : Rm → R
m, Tx = Sx + c such that x, c ∈ R

m and ‖S‖ < 1. This shows that T is a G-
nonexpansive mapping. In controlling the operators TWJ and TSOR in the form of Tix =
Six + ci, i ∈ {WJ, SOR},

SWJ = I – ωD–1A, cWJ = ωD–1b,

SSOR = I – ω(D – ωL)–1A, cSOR = ω(D – ωL)–1b

are G-nonexpansive mappings, their weight parameter must be properly modified. The
implementation of weight parameter ω for the operator S of WJ and SOR methods is de-
fined as its norm is less than one (‖Si‖ < 1). Moreover, the optimal weight parameter ωo in
getting the smallest norm for each type of operator S is indicated. It can be observed from
Table 3 that these parameters result from the maximum and minimum values of matrix A.

Next, the proposed algorithm (4.8) in getting the solution of linear system (4.5) gener-
ated from a one-dimensional diffusion problem with Dirichlet boundary conditions and
initial data (4.1) is compared with the well-known WJ, GS, and SOR methods. For simplic-
ity, the proposed algorithm (4.8) with M = 2 is studied. Two G-nonexpansive mappings Ti

and Tj are chosen from the three operators TWJ, TSOR, and TGS. And we call it the pro-
posed algorithm with Ti–Tj.
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Let us consider the simple one-dimensional diffusion problems:

ut = βuxx + 0.4β
(
4π2 – 1

)
e–4βt cos(4πx), 0 ≤ x ≤ 1, 0 < t < ts,

u(x, 0) = cos(4πx)/10, u(0, t) = e–4βt/10, u(1, t) = e–4βt/10,

u(x, t) = e–4βt cos(4πx)/10.

(4.9)

The results of WJ, GS, SOR and the proposed algorithm with M = 2 are demonstrated and
discussed in the following cases:

Case I. WJ method
Case II. GS method

Case III. SOR method
Case IV. The proposed algorithm with TWJ–TGS

Case V. The proposed algorithm with TWJ–TSOR

Case VI. The proposed algorithm with TGS–TSOR.
Since we focus on the convergence of the proposed algorithm, the stability analysis in
choosing the step sizes of time is not discussed in detail. The step size of time for the
proposed algorithm is based on the smallest step size chosen from WJ and SOR methods
in solving linear system (4.5) generated from the discretization of consideration problem
(4.1). All computations are performed by using the uniform grid of 101 nodes, which cor-
responds to the solution of linear systems (4.5) with 99 × 99 sizes respectively. The weight
parameter ω of the proposed algorithm is set as its optimum weight parameter (ωo) de-
fined in Table 3. We used αi

n = β i
n = 0.9, β = 25, �t = �x2/10 (step size of time), ε = 10–10,

and

ϑn =

⎧
⎨

⎩

min{ 1
n2‖u(n,s+1)–u(n,s)‖2

, 0.035} if u(n,s+1) 	= u(n,s) & 1 ≤ n < K ,

0.035 otherwise,

where K is the number of iterations that we want to stop.
For testing purposes only, all computations are performed for 0 ≤ t ≤ 0.01 (when t �

0.05, u(x, t) → 0). The exact error is measured by using ‖un – u‖2. Figure 1 shows the
approximate solution at t = 0.01 and the approximate error per step of time for WJ, GS,
SOR, and the proposed algorithm to problem (4.9) with β = 25.

Figure 1 Approximate solutions and approximate error of GS, WJ, SOR, and all cases of the proposed
algorithms to problem (4.1) with β = 25 and t = 0.01
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Figure 2 The evolution of iterations number for GS, WJ, SOR, and the proposed algorithm to problem (4.1)
with β = 25 and t ∈ (0, 1]

Figure 3 The evolution of iterations number for GS, WJ, SOR compared with the proposed algorithm using
six cases of parameter ϑn for problem (4.1) with β = 25 and t ∈ (0, 1]

It can be seen from Fig. 1 that all numerical solution matches the analytical solution
reasonably well. Figure 2 shows the trend of the iterations number for WJ, GS, SOR, and
the proposed algorithms in solving linear system (4.5) generated from the discretization
of the considered problem.

Figure 2 shows that the iteration number of the proposed algorithm with TWJ–TGS,
TWJ–TSOR, and TGS–TSOR is significantly decreased compared with the well-known GS,
WJ, and SOR methods. And the proposed algorithm with TGS–TSOR gives the smallest
number of iterations on every step of the time. However, even if using a small amount
of iteration per step of time shows excellent performance of the proposed method, the
stability condition of the proposed algorithm needs to be considered carefully as chosen
for the results of the stability analysis with time. Moreover, the proposed algorithm (4.8)
with the effect of parameter ϑn is shown in Fig. 3. The proposed algorithm (4.8) with the
following parameter ϑn:

ϑn =

⎧
⎪⎪⎨

⎪⎪⎩

θn if u(n,s+1) 	= u(n,s) & 1 ≤ n < K ,
1

n2‖u(n,s+1)–u(n,s)‖2
if u(n,s+1) 	= u(n,s) & n ≥ K ,

0.2 otherwise,

where
Case I. θn = 0
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Table 4 The maximum, minimum, and average number of iterations per time step for the proposed
algorithm

Proposed method
with parameter ϑn

Proposed method with operator T with their iteration number

TWJ TGS TSOR

Max Min Aver Max Min Aver Max Min Aver

Cases I–IV 14 14 14.0000 12 11 11.5475 12 11 11.5475
Case V 14 12 13.9970 12 10 11.5355 12 10 11.5355
Case VI 13 12 12.8849 10 10 10.0000 10 10 10.0000

Case II. θn = 1
n2

Case III. θn = 1
2n

Case IV. θn = tn–1
tn+1

, where t1 = 1 and tn+1 = 1+
√

1+4t2
n

2
Case V. θn = 1 – n

n+1
Case VI.

ϑn =

⎧
⎨

⎩

min{ 1
n2‖u(n,s+1)–u(n,s)‖2

, 0.035} if u(n,s+1) 	= u(n,s) & 1 ≤ n < K ,

0.035 otherwise,

where K is the number of iterations that we want to stop. Figure 3(a) shows the iteration
number per step of time of the proposed algorithm where parameter ϑn is chosen as in
Cases I–IV. Figures 3(b) and 3(c) show the iteration number per step of time of the pro-
posed algorithm where parameter ϑn is chosen as in Cases V and VI respectively.

The maximum, minimum, and average number of iterations per time step for the pro-
posed algorithms using six cases of parameter ϑn in solving problem (4.1) with β = 25 and
t ∈ (0, 1] in Fig. 3 are also shown in Table 4.

From Table 4 and the graph of the evolution iterations number in Fig. 3, we see that the
proposed algorithm applying the parameter ϑn as in Case VI gives the smallest number of
iterations on every step of the time.

5 Conclusion
In summary, we present a new parallel algorithm that solves the common fixed point prob-
lem for a finite family of G-nonexpansive mappings by combining the Ishikawa iteration
process with the inertial technique. In a Hilbert space endowed with a directed graph,
our main theorem guarantees that this algorithm weakly converges to an element of the
problem’s solution set under certain conditions. Additionally, the algorithm is then ap-
plied to the problem of diffusion. In comparison to other well-known methods, such as
WJ, GS, and SOR, numerical experiments show that the algorithm improves the number
of iterations.
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