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Abstract
In this article, we aim to investigate various formulae for the (p, k)-analogues of Gauss
hypergeometric functions, including the integral transforms and the operators of
fractional calculus. All the outcomes presented here are of general attractiveness and
can yield a number of previous works as special cases.
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1 Overture
Throughout this work, N := {1, 2, 3, . . .} denotes the set of positive integers, N0 = N ∪ {0},
Z

– := {–1, –2, –3, . . .} denotes the set of negative integers, Z–
0 = Z

– ∪ {0}, R+ denotes the
set of positive real numbers, and C denotes the set of complex numbers.

In 1813, Gauss first summarized his investigations of hypergeometric functions, which
has been of great significance in the mathematical modeling of physical phenomena and
other applications. Recently, various developments and expansions of the hypergeometric
functions have been proposed and discussed (for example, see [1–12]).

In [13], Diaz and Pariguan introduced an interesting extensions of the gamma, beta,
Pochhammer, and hypergeometric functions as follows.

Definition 1.1 For k ∈R
+, the k-gamma function �k(y) is defined by

�k(y) =
∫ ∞

0
uy–1e– uk

k du, (1.1)

where y ∈C \ kZ–. We note that �k(y) → �(y) for k → 1 where �(y) is the classical Euler’s
gamma function and (y)m,k is the k-Pochhammer symbol given by

(y)n,k =
�k(y + nk)

�k(y)
=

⎧⎨
⎩

y(y + k) . . . (y + (n – 1)k), n ∈N, y ∈ C,

1, n = 0, k ∈R
+, y ∈C \ {0},

(1.2)
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the relation between the �k(y) and the usual gamma function �(y) follows easily as

�k(y) = k
y
k –1�

(
y
k

)
or �(w) = k1–w�k(kw).

Definition 1.2 The k-beta function Bk(s, t) is defined by

Bk(s, t) =

⎧⎨
⎩

1
k
∫ 1

0 y
s
k –1(1 – y)

t
k –1 dy, (k ∈R

+, min{Re(s), Re(t)} > 0),
�k (s)�k (t)
�k (s+t) , (k ∈R

+, s, t ∈C \Z–
0 ).

(1.3)

Clearly, the case k = 1 in (1.3) reduces to the known beta function B(s, t).

B(s, t) =
∫

10ys–1(1 – y)t–1 dy.

Also, the relation between the k-beta function Bk(s, t) and the original beta function B(s, t)
is

Bk(s, t) =
1
k
B

(
s
k

,
t
k

)
.

Definition 1.3 Let k ∈R
+ and α1,α2, y ∈C and α3 ∈ C\Z–

0 , then k-hypergeometric series
is defined by the form

2Hk
1

[
(α1; k), (α2; k)

(α3; k);
y

]
=

∞∑
n=0

(α1)n,k(α2)n,k

(α3)n,k
.
yn

n!
, |y| <

1
k

, (1.4)

where (α1)n,k is the k-Pochhammer symbol given in (1.2).
Indeed, in their special case when k = 1, Eq. (1.4) is reduced to the Gauss hypergeometric

function 2H1(·). The 2H1(·) is the special case of the generalized hypergeometric functions
mHn(·) of m numerator and n denominator parameters defined by (see, e.g., [14, Sect. 1.5]):

mHn

[
α1 . . .αm;
δ1 . . . δn;

y

]
=

∞∑
j=0

(α1)j . . . (αm)j

(δ1)j . . . (δn)j
.
yj

j!
, (1.5)

where

(α1)n =
�(α1 + n)

�(α1)
=

⎧⎨
⎩

α1(α1 + 1) . . . (α1 + n – 1), i ∈N,α1 ∈ C,

1, i = 0;α1 ∈C \ {0},
(1.6)

is the usual Pochhammer symbol (or the shifted factorial) and �(·) is the standard gamma
function (see, e.g., [14, Sect. 1.1])).

Currently, several different outcomes concerning the k-analogue of special functions
have been archived, the interested reader may refer to the monographs by many re-
searchers (see, e.g., [15–22] and the references cited therein).
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Recently, Abdalla and Hidan [23] and Hidan et al. [24] introduced and studied several
properties of the following (p, k)-analogues of Gauss hypergeometric functions:

2H(p,k)
1

[
(α1; k), (α2; k)

(α3; k)
; w

]
=

∞∑
j=0

(α1)j,k(α2)j,k

(α3)j,k
.

wj

(pj)!
, (1.7)

which is an entire function for p > 1, where k ∈ R
+ and α1,α2, w ∈ C and α3 ∈ C \Z–

0 , and
(α)j,k is the k-Pochhammer symbol defined in (1.2).

Remark 1.1 Among the important special cases of 2H(p,k)
1 are equations of type (1.4) and

(1.5). Further, at k = 1, we obtain the p-extended Gauss hypergeometric functions in the
following form (cf. [25]):

2H(p)
1

[
α1,α2

α3
; w

]
=

∞∑
j=0

(α1)j(α2)j

(α3)j
.

wj

(pj)!
, p ∈N, (1.8)

which is also an entire function for p > 1.

The purpose of this work is to continue the investigation of new formulae like integral
transforms and fractional calculus operators on the (p, k)-analogues of Gauss hyperge-
ometric functions 2H(p,k)

1 . In Sects. 2 and 3, respectively, we introduce several integral
transforms and image formulae for the (p, k)-analogues of Gauss hypergeometric func-
tions 2H(p,k)

1 by applying a certain integral transform (like Laplace transform and fractional
Fourier transform) and diverse fractional operators. Also, some special cases and signifi-
cance of our main outcomes are considered.

2 Integral transforms
In this section, we prove two theorems, which exhibit the connection between integral
transforms like the Laplace transform and the fractional Fourier transform for the 2H(p,k)

1

given in (1.7). We recall the Laplace transform and the fractional Fourier transform, re-
spectively.

Definition 2.1 (Laplace transform) Let f (ξ ) be a function of ξ > 0. Then the Laplace trans-
form of f (ξ ) is defined by

F(s) = L
{

f (ξ ) : s
}

=
∫ ∞

0
e–sξ f (ξ ) dξ , �(s) > 0, (2.1)

provided that the improper integral exists, e–λξ is the kernel of the transformation, and
the function f (ξ ) is called the inverse Laplace transform of F(λ) (see [26, Chap. 3]).

Definition 2.2 (Fractional Fourier transform) Assume that ϕ is a function belonging to
Lizorkin space ψ(R). The fractional Fourier transform (FFT) of order β , 0 < β ≤ 1, is de-
fined as (cf. [26, 27])

ϕβ (ω) = Fβ [ϕ](ω) =
∫

R
eiω

1
β ξϕ(ξ ) dξ , i =

√
–1. (2.2)
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Remark 2.1 It may by observed that when ω > 0 it reduces to the FFT introduced by
Luchko, Martinez, and Trujillo (see, e.g., [27, pp. 225–240] for details). The relationship
between the two Fourier transforms, the classical and FFT, is given by the following rela-
tion:

Fβ [ϕ](ω) = F[ϕ](s) for s = ω
1
β , 0 < β ≤ 1.

Theorem 2.1 The Laplace transform for the 2H(p,k)
1 given by (1.7) is in the form

L
{

ξ
δ
k –1

2H(p,k)
1

[
(α1, k)(α2, k)

(α3, k);
uξ

]}

=
k�k(δ)

(ks)
δ
k

3H(p,k)
1

[
(α1, k)(α2, k)(δ, k)

(α3, k);
u
ks

]
,

(2.3)

(α1,α2, u, ξ ∈ C, α3 ∈C \Z–
0 , Re(α1) > 0, Re(α2) > 0, Re(s) > 0, | u

ks | < 1, k ∈ R
+ and p ∈ N).

Proof Taking the left-hand side of Eq. (2.3) by I and upon using (1.7), we have

I =
∫ ∞

0
e–sξ ξ

δ
k –1

∞∑
n=0

(α1)n,k(α2)n,k(uξ )n

(α3)n,k(pn)!
dξ

=
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k

un

(pn)!

{∫ ∞

0
e–sξ ξ

δ
k +n–1 dξ

}
.

Putting sξ = vk

k , we have

I =
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k

un

(np)!

∫ ∞

0
e

–vk
k

(
vk

ks

) δ
k +n–1 vk–1

s
dv

=
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k

un

(np)!

∫ ∞

0

e
–vk

k vδ+nk–1

k
δ
k +n–1s

δ
k +n

=
k�k(δ)

(ks)
δ
k

∞∑
n=0

(
u
ks

)n (α1)n,k(α2)n,k(δ)n,k

(α3)n,k

1
(pn)!

.

We thus obtain the required result. �

Theorem 2.2 For α1,α2, w ∈ C, α3 ∈ C \ Z
–
0 , Re(α1) > 0, Re(α2) > 0, k ∈ R

+, p ∈ N, and
0 < β ≤ 1, the following fractional Fourier transform (FFT) holds true:

Fβ

{
2H(p,k)

1

[
(α1, k)(α2, k)

(α3, k)
; w

])

=
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k
(ω)–( n+1

β
)(–1)n(i)(n–1)

× n!
(pn)!

.

(2.4)
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Proof For convenience, let the left-hand side of (2.4) be denoted by T. Applying the frac-
tional Fourier transform (2.2) to (1.7) when w < 0, we observe that

T =
∫

R
eiω

1
β w

∞∑
n=0

(α1)n,k(α2)n,k

(α3)n,k(np)!
wn dw

=
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k

∫ 0

–∞
eiω

1
β wwn dw.

Letting –t = iω
1
β w, we obtain

T =
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k(np)!

∫ ∞

0
e–t

(
–t

iω
1
β

)n( dt

iω
1
β

)

=
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k(np)!
(–1)n(i)–(n+1)(ω)

–(n+1)
β �(n + 1),

which yields our required result (2.4). �

Corollary 2.1 For p = 1, the FFT of k-Gauss hypergeometric function of order β is (see
[28])

Fβ

[
2H(k)

1

[
(α1, k)(α2, k)

(α3, k)
; w

])
=

∞∑
n=0

(α1)n,k(α2)n,k

(α3)n,k
(–1)n(i)–(n+1)(ω)

–(n+1)
β .

Further, for p = 1 and k = 1, we get the FFT of Gauss hypergeometric function

Fβ

[
2H1

[
(α1)(α2)

(α3)
; w

])
=

∞∑
n=0

(α1)n(α2)n

(α3)n
(–1)n(i)–(n+1)(ω)

–(n+1)
β .

3 k-fraction calculus of the 2H(p,k)
1

Nowadays, computations of images of k-analogues of special functions under operators
of k-fractional calculus have found significant importance and applications by many ref-
erences (for instance, see [15–17, 28–40]).

The k-Riemann–Liouville fractional integral using k-gamma function is defined in [31]
as follows:

(
Iυ

k f (τ )
)
(x) =

1
k�k(υ)

∫ x

0
f (τ )(x – τ )

υ
k –1 dτ , υ, k ∈R

+. (3.1)

Therefore, the k-Riemann–Liouville fractional derivative of order υ is introduced in [29,
31] by

Dυ
k
{

f (η)
}

= D
(
I(1–υ)

k f (η)
)
; 0 < υ ≤ 1, D =

d
dη

. (3.2)
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Let α,β ,γ , δ,η ∈ C(Re(η) > 0) and x > 0, then the generalized fractional calculus opera-
tor (the Marichev–Saigo–Maeda operator) is defined by (see [33, 41, 42])

(
Iα,β ,γ ,δ,η

0,x
)
f (x) =

x–α

�(η)

∫ x

0
(x – t)η–1t–β

× F3

[
α β γ δ

η
; 1 –

t
x

, 1 –
x
t

]
f (t) dt,

(3.3)

where F3 denotes the Appell third function, known also as Horn’s F3-function for
(max{|z| < 1, |w|} < 1) defined by the series

F3

[
α β γ δ

η
; z, w

]
=

∞∑
m,n=0

(α)m(β)n(γ )m(δ)n

(η)m+nm!n!
zmwn,

which reduces to the Gauss hypergeometric function as follows:

2H1

[
α,β
η

; w

]
= F

[
α β γ δ

η
; z, 0

]
= F3

[
α 0 γ δ

η
; z, w

]

= F3

[
α β γ 0

η
; z, w

]
.

The following image formula, which is required in the sequel, can be easily derived from
the direct application of the fractional integral operator (3.3), (see, e.g., [41, 42]):

(
Iα,β ,γ ,δ,η

0,x tθ–1)(x)

=
�(θ )�(θ + η – α – β – γ )�(θ + δ – β)

�(θ + δ)�(θ + η – α – β)�(θ + η – β – γ )
xθ+η–α–β–1,

(3.4)

where Re(η) > 0, Re(θ ) > max{0, Re(α + β + γ – η), Re(β – δ)}.
Here, we aim at establishing certain new image formulas for the (p, k)-analogues of

Gauss hypergeometric functions by applying the k-fractional derivative by (3.2) and left-
sided operator of Marichev–Saigo–Maeda fractional integral defined by (3.3). On account
of the general nature of the hypergeometric functions, a number of known formulas can
easily be found as special cases of our main outcomes.

Theorem 3.1 For α1,α2,ν, u ∈ C, α3 ∈ C \ Z–
0 , Re(α1) > 0, Re(α2) > 0, k ∈ R

+, p ∈ N, and
0 < �(ν) ≤ 1, we have

Dν
k

{
u

δ
k 2H(p,k)

1

[
(α1, k)(α2, k)

(α3, k)
; u

]}

=
λ�k(λ)

k�k(1 – ν + δ)
u

1–ν+δ
k –1

3H(p,k)
2

[
(α1, k)(α2, k)(δ + k, k)

(α3, k)(1 – ν + δ, k)
; u

]
.

(3.5)
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Proof From (1.7) and (3.2), we observe that

Dν
k

[
u

δ
k 2H(p,k)

1

[
(α1, k)(α2, k)

(α3, k)
; u

]]

=
d

du

[
I1–ν

k u
δ
k 2H(p,k)

1

[
(α1, k)(α2, k)

(α3, k)
; t

]]
dt

=
d

du
1

k�k(1 – ν)

∫ u

0
(u – t)

1–ν
k –1t

δ
k 2H(p,k)

1

[
(α1, k)(α2, k)

(α3, k)
; t

]
] dt.

Putting t = ux in the above equation and after simple computations, we arrive at

Dν
k

[
u

δ
k 2H(p,k)

1

[
(α1, k)(α2, k)

(α3, k)
; u

]]

=
1

k�k(1 – ν)

∞∑
n=0

(α1)n,k(α2)n,k

(α3)n,k(np)!
d

du

∫ 1

0
(u – ux)

1–ν
k –1(ux)n+ δ

k udx

=
1

k�k(1 – ν)

∞∑
n=0

(α1)n,k(α2)n,k

(α3)n,k(np)!
d

du

∫ 1

0
(1 – x)

1–ν
k –1(x)n+ δ

k u
1–ν+δ+nk

k dx

=
1

k�k(1 – ν)

∞∑
n=0

(α1)n,k(α2)n,k

(α3)n,k(np)!
d

du
u

1–ν+δ+nk
k B

(
1 – ν

k
, n +

δ

k
+ 1

)

=
1

k�k(1 – ν)

∞∑
n=0

[
(α1)n,k(α2)n,k

(α3)n,k(np)!

(
1 – ν + δ + nk

k

)
u

1–ν+δ+nk
k –1 �( 1–ν

k )�( nk+δ+k
k )

( 1–ν+λ+nk+
k )

]

=
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k

�k(nk + δ + k)
k�k(1 – ν + δ + nk)

u
1–ν+δ+nk

k –1

(np)!

= u
1–ν+δ

k –1 δ�k(δ)
k�k(1 – ν + δ)

∞∑
n=0

(α1)n,k(α2)n,k(δ + k)n,k

(α3)n,k(1 – ν + δ)n,k

un

(np)!
.

This completes the proof of Theorem 3.1. �

Theorem 3.2 Assume that α,β ,γ , δ,η,ϑ ,α1,α2 ∈C, α3 ∈ C \Z–
0 , x > 0, k ∈R

+, and p ∈N

such that �( ϑ
k ) > max{0,�(β – δ),�(α + β + γ – η)}, then we have

(
Iα,β ,γ ,δ,η

0,x w
ϑ
k –1

2H(p,k)
1

[
(α1; k), (α2; k)

(α3; k)
; w

])
(x)

= kηx–α–β+η+ ϑ
k –1 �k(ϑ)�k(ϑ – kβ + kδ)�k(ϑ – kα – kβ – kγ + kη)

�k(ϑ + kδ)�k(ϑ – kα – kβ + kη)�k(ϑ – kβ – kγ + kη)

× 5H(p,k)
4

[
(α1; k) (α2; k) (ϑ ; k) (ϑ – kβ + kδ; k) (ϑ – kα – kβ – kγ + kη; k)

(α3; k) (ϑ + kδ; k) (ϑ – kα – kβ + kη; k) (ϑ – kβ – kγ + kη; k) ; x
]

.

(3.6)
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Proof We indicate the left-hand side of(3.6) by ϒ , and invoking to Eqs. (3.3) and (1.7), we
find

ϒ =

(
Iα,β ,γ ,δ,η

0,x w
ϑ
k –1

∞∑
n=0

(α1)n,k(α2)n,k

(α3)n,k

wn

(pn)!

)
(x)

=
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k

1
(pn)!

(
Iα,β ,γ ,δ,η

0,x w
ϑ
k +n–1)(x)

=
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k

�( ϑ
k + n)

(pn)!�(δ + ϑ
k + n)

× �(–β + δ + ϑ+nk
k )�(–α – β – γ + η + ϑ+nk

k )
�(–α – β + η + ϑ+nk

k )�(–β – γ + η + ϑ+nk
k )

x–α–β+η+ ϑ+nk
k –1.

Upon using (3.4) and after a simplification, we get the following expression:

ϒ =
∞∑

n=0

(α1)n,k(α2)n,k

(α3)n,k

xnkη

(pn)!
(ϑ)n,k�

k(ϑ)
(ϑ + kδ)n,k�k(ϑ + kδ)

× (ϑ – kβ + kδ)n,k�
k(–kβ + kδ + ϑ)

(ϑ – kα – kβ + kη)n,k�k(ϑ – kα – kβ + kη)

× (ϑ – kα – kβ + kη)n,k

(ϑ – kβ – kγ + kη)n,k
.
�k(ϑ – kα – kβ – kγ + kη)

�k(ϑ – kβ – kγ + kη)
x–α–β+η+ ϑ

k –1,

whose last summation, in view of (1.2), is easily seen to arrive at the expression in (3.6).
This completes the proof of Theorem 3.2. �

4 Conclusion
Recently, the applications and importance of integral transforms and fractional calculus
operators involving a variety of special functions have received more attention in various
fields like mathematical analysis, survival analysis, physics, statistics, and engineering. In
fact, this manuscript is a continuation of the recent authors’ articles [23, 24], where we
have introduced the (p, k)-analogues of hypergeometric functions and their various prop-
erties and applications. In this line of research, we have derived integral transforms and
image formulas for the (p, k)-analogues of hypergeometric functions. We also have con-
sidered that by setting p → 1, the various outcomes considered in this manuscript reduce
to the corresponding outcomes (see [28, 31, 36]). Also, for k → 1, we obtain many in-
teresting new outcomes for the p-extended hypergeometric functions. Further, if we take
both k → 1 and p → 1, then the obtained results reduce to the results analogous to the
usual hypergeometric functions. This approach allows the related research work to be re-
ported in further articles. Additionally, all the outcomes presented here are expected to
find some applications in control theory and to the solutions of fractional-order systems,
for instance, see [43–47] and the references cited therein.
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