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Abstract
In this paper, we introduce a new structure of the generalized multi-point thermostat
control model motivated by its standard model. By presenting integral solution of this
boundary problem, the existence property along with the uniqueness property are
investigated by means of a special version of contractions named μ-ϕ-contractions
and the Banach contraction principle. Then, on the given nonlinear generalized BVP
of thermostat, the Bernstein polynomials are introduced and numerical solutions
obtained by them are presented. At the end, three different structures of nonlinear
thermostat models are designed and the results are examined.
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1 Introduction
Fractional calculus and the existing notions in it are of high interest in different aspects
of applied sciences, and one can find some instances of applications like signal and image
processing, control theory, economics, optical systems, thermal materials, aerodynamics,
mechanical systems, biology, and bio-mathematics [1–10]. The starting point for such
a topic can be seen in many published papers in which mathematicians deal with some
properties such as the existence of solution, uniqueness property, the property of stability,
positivity, etc., and establish these properties to various abstract boundary value prob-
lems. Such a diversity and importance led to the publication of many research papers in
this field, which revealed the flexibility of fractional calculus theory in designing various
mathematical models. The main methods conducted in these articles are by terms of fixed
point techniques [11–33].

Along with the investigation of existence theory, the approximation of solution and nu-
merical methods are also of interest. Al-Smadi et al. [34] utilized a method based on the
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homotopy analysis for finding approximate solutions of a SEIR epidemic model in the
fractional settings. Dhage, Dhage, and Ntouyas in [35] applied two notions of partial com-
pactness and continuity to develop the method of Kranoselskii theorem and found the
approximation of solutions regarding a hybrid ODE. Chadha et al. published a paper on
the Faedo–Galerkin approximation for solutions of a neutral nonlocal FDE in a separable
Hilbert space [36]. Other applications of approximate techniques can be found in [37–40].
The Bernstein polynomials are one of the strongest numerical techniques which possess
some important properties such as the unity partition and continuity on [0, 1] [41]. In re-
cent years, due to the importance and accuracy of this technique, the numerical solutions
of a wide range of linear\nonlinear BVPs have been obtained for Riccati type FDEs, Bessel
FDE, Lane–Emden equations, etc., [11–13, 42–44]. We here use these polynomials to find
approximate solution of our given multi-point FBVP introduced in the sequel.

In 2006, two mathematicians, Infante and Webb, simulated a mathematical model of a
mechanical instrument named thermostat in the form of a second-order boundary prob-
lem on the interval [0, 1] which is insulated at s = 0 via the controller for s = 1 [45]. This
model has the following mathematical structure:

⎧
⎨

⎩

u′′(s) = g(s, u(s)), (s ∈ J := [0, 1]),

u′(0) = 0, μu′(1) + u(ζ ) = 0,
(1)

where ζ ∈ J and the parameter μ > 0. Further, two other mathematicians, Nieto and Pi-
mentel, converted the above problem to a similar version of arbitrary order [46] which
takes the following structure:

⎧
⎨

⎩

cDpu(s) = g(s, u(s)), (s ∈ J := [0, 1]),

u′(0) = 0, μcDp–1u(1) + u(ζ ) = 0, μ > 0, p ∈ (1, 2], p – 1 ∈ (0, 1],
(2)

where cDp is the Caputo derivative and ζ ∈ J . In fact, at the time s = ζ and based on the
existing temperature, the sensor detects that the thermostat discharges or adds heat.

In this manuscript, we concentrate on this aim in which some existence and uniqueness
aspects and numerical analysis of solutions for a generalized fractional boundary value
problem (GFBVP) based on thermostat model are investigated. Indeed, we formulate the
following structure of a generalized multi-point thermostat control model motivated by
the standard model (1):

⎧
⎨

⎩

cDpu(s) = g(s,βu(s), cDσ u(s),Iρu(s)), (s ∈ J := [0, 1]),
cD1u(0) = ε1

∫ 1
0 u(r) dr,

∑m
j=1 u(ζj) + kcDp–1u(1) = ε2

∫ 1
0 u(r) dr,

(3)

in which p ∈ (1, 2], σ ∈ (0, 1), p – 1 ∈ (0, 1], k,β ,ρ > 0, 0 < ζ1 < ζ2 < · · · < ζm < 1, m ∈ N,
ε1, ε2 ∈R, and cD1 = d

ds . Along with these, the mapping g : J × (R≥0)3 →R
≥0 is continuous

and cD� and I� display the derivation and integration operators of order � ∈ {1, p, p –
1,σ ,ρ} in the sense of Caputo and Riemann–Liouville.

The novelty, motivation, and objective of this research are:
– The multi-point nonlinear system (3) is a generalized form of the mathematical

model of thermostat that by assuming p = 2, μ = k > 0, m = 1,
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ζ1 = · · · = ζm = ζ ∈ (0, 1), ε1 = 0, ε2 = 0, and β = 1, we obtain the second-order
integro-differential FBVP (1);

– The existence property of solutions to the generalized nonlinear GFBVP (3) is
derived by terms of a special case of contractions entitled μ – ϕ-contraction and
μ-admissible maps;

– The approximate solution of this generalized nonlinear GFBVP of thermostat is
obtained via Bernstein polynomials;

– The accuracy and absolute errors of the mentioned numerical technique are
examined in different examples of thermostat model.

The rest of the manuscript is provided as follows: The primitive notions are indicated and
recalled in Sect. 2. The existence property along with the uniqueness property are inves-
tigated in Sect. 3. Bernstein polynomials and numerical solutions obtained by them are
presented in Sect. 4. In Sect. 5, three different structures of nonlinear thermostat GFBVP
are designed, and the results are examined. We end the manuscript by giving conclusions
in Sect. 6.

2 Basic notions
In this section, we provide some general basic tools and results of fractional calculus that
allow us to achieve our desired results. For more details on this subject, we advise the
authors to consult, for example, [47, 48].

Definition 2.1 The Riemann–Liouville fractional integral (FRL-integral) of order ν > 0
for a continuous function f : R≥0 →R is defined by

Iν f (t) =
1


(ν)

∫ t

0
(t – τ )ν–1f (τ ) dτ , (4)

such that integral (4) converges.

Definition 2.2 The Caputo derivative of order ν > 0 for a continuous function f : R�
+ →R

is defined by

c
D

ν f (t) =
1


(n – ν)

∫ t

0
(t – τ )n–ν–1f (n)(τ ) dτ , (5)

such that integral (5) exists, where n = [ν] + 1.

Lemma 2.3 ([49]) For p > 0 and α > 0,
• cD

p
0+ zα = 
(α+1)


(α+1–p) zα–p if α ∈ {0} ∪N and α ≥ �p� or α /∈N and α > 	p
,
• cD

p
0+ zα–1 = 0 if α ∈ {0} ∪N and α < �p�,

• Ip
0+ zα = 
(α+1)


(α+p+1) zα+p.
• cD

p
0+ C = 0 for all constant C.

Now, consider the family � of all nondecreasing functions ϕ : R+ → R
+ which satisfy

∑+∞
n=1 ϕn(t) < +∞, ∀t > 0. Consider (H , d) as a metric space, F as a self-map on H , and

μ : H × H →R
+.
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Definition 2.4 ([50]) F is said to be a μ – ϕ-contraction if

μ(x, y)d(Fx, Fy) ≤ ϕ
(
d(x, y)

)
, ∀x, y ∈ H .

Definition 2.5 ([50]) F is said to be μ-admissible if

μ(x, y) ≥ 1 ⇒ μ(Fx, Fy) ≥ 1, ∀x, y ∈ H .

Theorem 2.6 ([50]) Let (H , d) be a complete metric space and F : H → H be a μ – ϕ-
contraction. Assume:

(i) F is μ-admissible,
(ii) There exists x� ∈ H such that μ(x�, Fx�) ≥ 1,

(iii) For each sequence xn in H which converges to x ∈ H such that μ(xn, xn+1) ≥ 1 for all
n, we have μ(xn, x) ≥ 1 for all n.

Then there exists z ∈ H satisfying the operator equation Fz = z.

3 The existence property
It is known that X = {u : u, cDσ u ∈ CR(J)} is a Banach space with the sup norm ‖u‖X :=
sups∈J |u(s)| + sups∈J |cDσ u(s)|, where CR(J) denotes the collection of all continuous real-
valued functions on J . In the following, we characterize the structure of the solutions
for given GFBVP caused by thermostat model (3) which plays a key role in our required
method. Before it, we introduce some notations for simplicity:

V1 := ε1, V2 := 1 –
ε1

2
, V3 := m – ε2,

V4 :=

(
k


(3 – p)
–

ε2

2
+

m∑

j=1

ζj

)

, V := V2V3 + V1V4. (6)

Proposition 3.1 Let p ∈ (1, 2], p – 1 ∈ (0, 1], k > 0, 0 < ζ1 < ζ2 < · · · < ζm < 1, m ∈N, ε1, ε2 ∈
R, and h ∈ CR(J). Then the solution of the linear thermostat GFBVP

⎧
⎨

⎩

cDpu(s) = h(s), (s ∈ J := [0, 1]),
cD1u(0) = ε1

∫ 1
0 u(r) dr,

∑m
j=1 u(ζj) + kcDp–1u(1) = ε2

∫ 1
0 u(r) dr,

(7)

is given by

u(s) =
∫ s

0

(s – r)p–1


(p)
h(r) dr –

kA(s)
V

∫ 1

0
h(r) dr

–
A(s)
V

m∑

j=1

∫ ζj

0

(ζj – r)p–1


(p)
h(r) dr +

G(s)
V

∫ 1

0

∫ r

0

(r – q)p–1


(p)
h(q) dq dr, (8)

where A, G ∈ CR(J) are introduced as

A(s) := V2 + V1s, G(s) := (ε2V2 – ε1V4) + (ε1V3 + ε2V1)s. (9)
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Proof We assume that u∗ satisfies the linear thermostat GFBVP (7). Then cDpu∗(s) = h(s).
By integrating of order 1 < p ≤ 2 on both sides of it, we get

u∗(s) =
1


(p)

∫ s

0
(s – r)p–1h(r) dr + c0 + c1s, (10)

where we try to obtain the constant values of the coefficients c0, c1 ∈R. On the other hand,
we have

c
D

1u∗(s) =
1


(p – 1)

∫ s

0
(s – r)p–2h(r) dr + c1 (11)

and

c
D

p–1u∗(s) =
∫ s

0
h(r) dr + c1

s2–p


(3 – p)
, (12)

and

∫ 1

0
u∗(r) dr =

1

(p)

∫ 1

0

∫ r

0
(r – q)p–1h(q) dq dr + c0 +

1
2

c1. (13)

Now, in view of notations (6) and by using boundary conditions (7) and by invoking rela-
tions (11), (12), and (13), we reach

c0 = –
kV2

V

∫ 1

0
h(r) dr –

V2

V

m∑

j=1

∫ ζj

0

(ζj – r)p–1


(p)
h(r) dr

+
(ε2V2 – ε1V4)

V

∫ 1

0

∫ r

0

(r – q)p–1


(p)
h(q) dq dr (14)

and

c1 = –
kV1

V

∫ 1

0
h(r) dr –

V1

V

m∑

j=1

∫ ζj

0

(ζj – r)p–1


(p)
h(r) dr

+
(ε1V3 + ε2V1)

V

∫ 1

0

∫ r

0

(r – q)p–1


(p)
h(q) dq dr. (15)

Eventually, by (14) and (15), we substitute the obtained values for the coefficients c0 and
c1 in (10) and it becomes

u∗(s) =
∫ s

0

(s – r)p–1


(p)
h(r) dr –

kA(s)
V

∫ 1

0
h(r) dr

–
A(s)
V

m∑

j=1

∫ ζj

0

(ζj – r)p–1


(p)
h(r) dr +

G(s)
V

∫ 1

0

∫ r

0

(r – q)p–1


(p)
h(q) dq dr,

which confirms that u∗ satisfies (8), and accordingly, the proof is finished. �
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To follow the procedure of the paper, we introduce the operator K : X → X associated
with the nonlinear thermostat GFBVP which takes the form

(Ku)(s) =
∫ s

0

(s – r)p–1


(p)
g
(
r,βu(r), c

D
σ u(r),Iρu(r)

)
dr

–
kA(s)

V

∫ 1

0
g
(
r,βu(r), c

D
σ u(r),Iρu(r)

)
dr

–
A(s)
V

m∑

j=1

∫ ζj

0

(ζj – r)p–1


(p)
g
(
r,βu(r), c

D
σ u(r),Iρu(r)

)
dr

+
G(s)

V

∫ 1

0

∫ r

0

(r – q)p–1


(p)
g
(
q,βu(q), c

D
σ u(q),Iρu(q)

)
dqdr, (16)

where the functions A, G ∈ CR(J) are introduced by (9).
Before presenting our main theorems, we equip the space X with the metric d formu-

lated as d(x, y) = ‖x – y‖X .
It is well known that (X, d) is a complete metric space (see [51]).

Theorem 3.2 Consider a continuous function g : J ×R
3 → R and assume that the follow-

ing assumptions hold:
(ASS1) There are a map ϕ ∈ � (� is the family defined in Section 2) and a function

w : R2 →R such that for all x, x̂, y, ŷ, z, ẑ ∈ R we have w(x, y) ≥ 0 and

∣
∣g(s, x, y, z) – g(s, x̂, ŷ, ẑ)

∣
∣ ≤ 1

ϑ1 + ϑ2
ϕ

(|x – x̂| + |y – ŷ| + |z – ẑ|),

where ϑ1 and ϑ2 are two positive real constants which satisfy the following inequalities:

ϑ1 >
1


(p + 1)
+

k(|V2| + |V1|)
|V | +

|V2| + |V1|
|V |
(p + 1)

m∑

j=1

ζ
p
j +

|ε2V2 – ε1V4| + |ε1V3 + ε2V1|
|V |
(p + 2)

and

ϑ2 >
1


(p – σ + 1)
+

k(|V2| + |V1|)
|V |
(2 – σ )

+
|V2| + |V1|

|V |
(p – σ + 1)

m∑

j=1

ζ
p–σ

j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p – σ + 2)
.

(ASS2) ∃x� ∈ X s.t. w(x�(s),Kx�(s)) ≥ 0, ∀s ∈ J .
(ASS3) ∀x, y ∈ X, we have

w
(
x(s), y(s)

) ≥ 0 ⇒ w
(
Kx(s),Ky(s)

) ≥ 0 for all s ∈ J .

(ASS4) For each sequence xn ∈ X which converges to x in X and w(xn(s), xn+1(s)) ≥ 0, ∀s ∈ J
and ∀n ∈N, we have w(xn(s), x(s)) ≥ 0.

(ASS5) the constants β and ρ are linked by the relation β + 1

(ρ+1) < 1.

Then problem (3) has a solution.
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Proof Let us define a map μ : X × X →R
+ as

μ(x, y) =

⎧
⎨

⎩

1, if w(x(s), y(s)) ≥ 0,

0, otherwise.

For all x, y ∈ X and w(x(s), y(s)) ≥ 0 for each s ∈ J , we have

∣
∣Kx(s) – Ky(s)

∣
∣

=
1


(p)

∫ s

0
|s – r|p–1∣

∣g
(
r,βx(r), c

D
σ x(r),Iρx(r)

)
– g

(
r,βy(r), c

D
σ y(r),Iρy(r)

)∣
∣ dr

+
k|A(s)|

|V |

×
∫ s

0

∣
∣g

(
r,βx(r), c

D
σ x(r),Iρx(r)

)
– g

(
r,βy(r), c

D
σ y(r),Iρy(r)

)∣
∣ dr

+
|A(s)|

|V |
(p)

×
m∑

j=1

∫ ζj

0
|ζj – r|p–1∣

∣g
(
r,βx(r), c

D
σ x(r),Iρx(r)

)

– g
(
r,βy(r), c

D
σ y(r),Iρy(r)

)∣
∣ dr

+
|G(s)|

|V |
(p)

×
∫ 1

0

∫ r

0
|r – q|p–1∣

∣g
(
r,βx(r), c

D
σ x(r),Iρx(r)

)

– g
(
r,βy(r), c

D
σ y(r),Iρy(r)

)∣
∣ dqdr

≤
[

1

(p + 1)

+
k(|V2| + |V1|)

|V | +
|V2| + |V1|
|V |
(p + 1)

m∑

j=1

ζ
p
j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p + 2)

]

× sup
s∈J

∣
∣g

(
s,βx(s), c

D
σ x(s),Iρx(s)

)
– g

(
s,βy(s), c

D
σ y(s),Iρy(s)

)∣
∣

≤ ϑ1 sup
s∈J

∣
∣g

(
s,βx(s), c

D
σ x(s),Iρx(s)

)
– g

(
s,βy(s), c

D
σ y(s),Iρy(s)

)∣
∣, (17)

and

∣
∣c
D

σ
Kx(s) – c

D
σ
Ky(s)

∣
∣

=
1


(p – σ )

×
∫ s

0
|s – r|p–σ–1∣

∣g
(
r,βx(r), c

D
σ x(r),Iρx(r)

)
– g

(
r,βy(r), c

D
σ y(r),Iρy(r)

)∣
∣ dr

+
k|A(s)|

|V |
(1 – σ )
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×
∫ s

0
|1 – σ |–σ

∣
∣g

(
r,βx(r), c

D
σ x(r),Iρx(r)

)
– g

(
r,βy(r), c

D
σ y(r),Iρy(r)

)∣
∣ dr

+
|A(s)|

|V |
(p – σ )

×
m∑

j=1

∫ ζj

0
|ζj – r|p–σ–1∣

∣g
(
r,βx(r), c

D
σ x(r),Iρx(r)

)

– g
(
r,βy(r), c

D
σ y(r),Iρy(r)

)∣
∣ dr

+
|G(s)|

|V |
(p – σ )

×
∫ 1

0

∫ r

0
|r – q|p–σ–1∣

∣g
(
r,βx(r), c

D
σ x(r),Iρx(r)

)

– g
(
r,βy(r), c

D
σ y(r),Iρy(r)

)∣
∣ dqdr

≤
[

1

(p – σ + 1)

+
k(|V2| + |V1|)
|V |
(2 – σ )

+
|V2| + |V1|

|V |
(p – σ + 1)

m∑

j=1

ζ
p–σ

j +
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p – σ + 2)

]

× sup
s∈J

∣
∣g

(
s,βx(s), c

D
σ x(s),Iρx(s)

)
– g

(
s,βy(s), c

D
σ y(s),Iρy(s)

)∣
∣

≤ ϑ2 sup
s∈J

∣
∣g

(
s,βx(s), c

D
σ x(s),Iρx(s)

)
– g

(
s,βy(s), c

D
σ y(s),Iρy(s)

)∣
∣. (18)

Therefore, from (17) and (18) it follows that

d(Kx,Ky) = sup
s∈J

∣
∣Kx(s) – Ky(s)

∣
∣ + sup

s∈J

∣
∣c
D

σ
Kx(s) – c

D
σ
Ky(s)

∣
∣

≤ (ϑ1 + ϑ2) sup
s∈J

∣
∣g

(
s,βx(s), c

D
σ x(s),Iρx(s)

)
– g

(
s,βy(s), c

D
σ y(s),Iρy(s)

)∣
∣

≤ (ϑ1 + ϑ2) sup
s∈J

[
1

ϑ1 + ϑ2
ϕ

(
β

∣
∣x(s) – y(s)

∣
∣ +

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣

+
∣
∣Iρx(s) – Iρy(s)

∣
∣
)
]

≤ ϕ
(
β sup

s∈J

∣
∣x(s) – y(s)

∣
∣ + sup

s∈J

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣ + sup

s∈J

∣
∣Iρx(s) – Iρy(s)

∣
∣
)

≤ ϕ

(

β sup
s∈J

∣
∣x(s) – y(s)

∣
∣ + sup

s∈J

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣

+
1


(ρ)
sup
s∈J

∣
∣x(s) – y(s)

∣
∣
∫ s

0
|s – r|ρ–1 dr

)

≤ ϕ

((

β +
1


(ρ + 1)

)

sup
s∈J

∣
∣x(s) – y(s)

∣
∣ + sup

s∈J

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣

)

≤ ϕ
(

sup
s∈J

∣
∣x(s) – y(s)

∣
∣ + sup

s∈J

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣
)

.
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This means that d(Kx,Ky) ≤ ϕ(d(x, y)). Consequently, from the definition of the map μ it
follows that

μ(x, y)d(Kx,Ky) ≤ ϕ
(
d(x, y)

)
, ∀x, y ∈ X,

which means that K is a μ – ϕ– contraction. Furthermore, in view of the definition of the
map μ and assumption (ASS3), we can easily verify that K is μ-admissible.

Let now xn be a sequence in X which approaches to x in X and satisfies μ(xn, xn+1) ≥ 1,
∀n ∈ N and ω(xn(s), xn+1(s)) ≥ 0. Then from the definition of the map μ together with as-
sumption (ASS5), we can directly verify that μ(xn, x) ≥ 1. At this time, all the assumptions
of Theorem 2.6 are fulfilled. Consequently, the operator K admits a fixed point which is
solution of our nonlinear thermostat GFBVP (3). �

Theorem 3.3 Let g : J ×R
3 →R be continuous and the following assumptions hold:

(ASS6) ∃R > 0, s.t. ∀s ∈ J , and∀x, x̂, y, ŷ, z, ẑ ∈R,

∣
∣g(s, x, y, z) – g(s, x̂, ŷ, ẑ)

∣
∣ ≤ R

(|x – x̂| + |y – ŷ| + |z – ẑ|),

(ASS7) The constants β and ρ are linked by the relation β + 1

(ρ+1) < 1 and

γ = R

(
1


(p + 1)
+

k(|V2| + |V1|)
|V | +

|V2| + |V1|
|V |
(p + 1)

m∑

j=1

ζ
p
j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p + 2)
+

1

(p – σ + 1)

+
k(|V2| + |V1|)
|V |
(2 – σ )

+
|V2| + |V1|

|V |
(p – σ + 1)

m∑

j=1

ζ
p–σ

j +
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p – σ + 2)

)

< 1. (19)

Then the nonlinear thermostat GFBVP (3) has exactly one solution.

Proof By following the same arguments of the calculations used in Theorem 3.2 together
with the hypotheses of Theorem 3.3, we write

∣
∣Kx(s) – Ky(s)

∣
∣

≤
[

1

(p + 1)

+
k(|V2| + |V1|)

|V | +
|V2| + |V1|
|V |
(p + 1)

m∑

j=1

ζ
p
j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p + 2)

]

× sup
s∈J

∣
∣g

(
s,βx(s), c

D
σ x(s),Iρx(s)

)
– g

(
s,βy(s), c

D
σ y(s),Iρy(s)

)∣
∣

≤ R

[
1


(p + 1)
+

k(|V2| + |V1|)
|V | +

|V2| + |V1|
|V |
(p + 1)

m∑

j=1

ζ
p
j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p + 2)

]



Etemad et al. Advances in Difference Equations        (2021) 2021:458 Page 10 of 20

× sup
s∈J

[
β

∣
∣x(s) – y(s)

∣
∣ +

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣ +

∣
∣Iρx(s) – Iρy(s)

∣
∣
]

≤ R

[
1


(p + 1)
+

k(|V2| + |V1|)
|V | +

|V2| + |V1|
|V |
(p + 1)

m∑

j=1

ζ
p
j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p + 2)

]

×
((

β +
1


(ρ + 1)

)

sup
s∈J

∣
∣x(s) – y(s)

∣
∣ + sup

s∈J

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣

)

≤ R

[
1


(p + 1)
+

k(|V2| + |V1|)
|V | +

|V2| + |V1|
|V |
(p + 1)

m∑

j=1

ζ
p
j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p + 2)

]

×
(

sup
s∈J

∣
∣x(s) – y(s)

∣
∣ + sup

s∈J

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣
)

.

Similarly, we obtain

∣
∣c
D

σ
Kx(s) – c

D
σ
Ky(s)

∣
∣

≤ R

[
1


(p – σ + 1)
+

k(|V2| + |V1|)
|V |
(2 – σ )

+
|V2| + |V1|

|V |
(p – σ + 1)

m∑

j=1

ζ
p–σ

j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p – σ + 2)

]

×
(

sup
s∈J

∣
∣x(s) – y(s)

∣
∣ + sup

s∈J

∣
∣c
D

σ x(s) – c
D

σ y(s)
∣
∣
)

.

Thus,

‖Kx – Ky‖X ≤ R

(
1


(p + 1)
+

k(|V2| + |V1|)
|V |

+
|V2| + |V1|
|V |
(p + 1)

m∑

j=1

ζ
p
j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p + 2)

+
1


(p – σ + 1)
+

k(|V2| + |V1|)
|V |
(2 – σ )

+
|V2| + |V1|

|V |
(p – σ + 1)

m∑

j=1

ζ
p–σ

j

+
|ε2V2 – ε1V4| + |ε1V3 + ε2V1|

|V |
(p – σ + 2)

)

‖x – y‖X .
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It yields ‖Kx – Ky‖X ≤ γ ‖x – y‖X , ∀x, y ∈ X. Now, from the assumption γ < 1 and the
Banach contraction principle, we conclude that K admits a unique fixed point which rep-
resents the unique solution of our nonlinear thermostat GFBVP (3). �

4 Numerical solutions via Bernstein polynomials
In the first place, we describe the basic formulation of Bernstein polynomials which are
necessary to derive our developed results.

Definition 4.1 [41] The m + 1 Bernstein basis polynomials of degree m are defined on
[0, 1] by

bj,m(z) =
(

m
j

)

zj(1 – z)m–j, 0 ≤ j ≤ m,

where
(m

j
)

= m!
j!(m–j)! .

A recursive expression also can be used to formulate the Bernstein basis polynomials on
the interval [0, 1] such that the Bernstein polynomials of (j, m)th degree can be rewritten
as

bj,m(z) = (1 – z)bj,m–1(z) + zbj–1,m–1(z).

We can easily show that each of Bernstein basis polynomials is positive and also the sum
of all Bernstein basis polynomials is equal to unity for any real z belonging to the interval
[0, 1]; in other words,

∑m
j=0 bj,m(z) = 1.

It is easy to show that any given polynomial of degree m can be developed as a linear
combination of basic functions

φ(z) =
m∑

j=0

cjbj,m(z) = CT B(z), m ≥ 1,

in which the Bernstein vector B(z) and the Bernstein coefficient vector C are defined as

B(z) =
[
b0,m(z), b1,m(z), . . . , bm,m(z)

]
,

and CT = [c0, c1, . . . , cm] with

cj =
∫ 1

0
φ(z)dj,m(z) dz, 0 ≤ j ≤ m. (20)

In [52], Juttler has explicitly represented dj,m(z) by the following formula:

dj,m(z) =
m∑

k=0

λj,kbk,m(z), 0 ≤ j ≤ m, (21)

where for 0 ≤ j, k ≤ m,

λj,k =
(–1)j+k
(m

j
)(m

k
)

min(j,k)∑

i=0

(2i + 1)
(

m + i + 1
m – j

)(
m – i
m – j

)(
m + i + 1

m – k

)(
m – i
m – k

)

. (22)
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Furthermore,

IνB(z) � I(ν)B(z), ν > 0, (23)

where Iν denotes the νth-FRL-integral and I(ν) represents the (m + 1)× (m + 1) operational
matrix of the νth-FRL-integral.

Also, by using the binomial expansion of (1 – z)m–j, we can write

bj,m(z) =
(

m
j

)

zj(1 – z)m–j

=
(

m
j

)

zj

( m–j∑

k=0

(–1)k
(

m – j
k

)

zk

)

=
m–j∑

k=0

(–1)k
(

m
j

)(
m – j

k

)

zj+k

=
m∑

i=j

(–1)i–j
(

m
j

)(
m – j
i – j

)

zi, 0 ≤ j ≤ m. (24)

As we can find in [52], an approach for the direct least squares approximation with the
help of Bernstein polynomials is based on the construction of the basis {d0,m(z), d1,m(z), . . . ,
dm,m(z)} which represents the dual in Bernstein basis of mth-degree on [0, 1]. It is specified
as

∫ 1

0
bj,m(z)dk,m(z)dz = δjk , 0 ≤ j, k ≤ m, (25)

where δjk denotes the Kronecker symbol.

4.1 Fractional matrix of integration
The conclusion of the next theorem is useful for us.

Theorem 4.2 Let B(z) be the Bernstein vector introduced in (23) and I(ν) be the (m + 1) ×
(m + 1) operational matrix of the νth-FRL-integral which is formulated by

I(ν) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w0,0 w0,1 · · · w0,j · · · w0,m

w1,0 w1,1 · · · w1,j · · · w1,m
...

...
...

...
...

...
wi,0 wi,1 · · · wi,j · · · wi,m

...
...

...
...

...
...

wm,0 wm,1 · · · wm,j · · · wm,m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (26)

Then we have

wi,j =
m∑

q=i

m∑

k=0

(–1)q–i
(

m
i

)(
m – i
q – i

)

λjkμqk

(q + 1)


(q + ν + 1)
, (27)
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where

μqk =
m∑

p=k

(–1)p–k

q + p + ν + 1

(
m
k

)(
m – k
p – k

)

,

and λjk are the coefficients expressed by (22).

Proof From expression (23) and by exploiting relationship (25) which connects Bernstein
polynomials with their dual, we can write

I(ν) =
〈
IνB(z), DT 〉

,

where D denotes the vector of dual polynomials of Bernstein polynomials and 〈IνB(z), DT 〉
stands for the (m + 1) × (m + 1)-matrix formulated as

〈
IνB(z), DT 〉

=
〈
Iνbi,m(z), dj,m(z)

〉
, 0 ≤ i, j ≤ m.

Here, we have

wij =
〈
Iνbi,m(z), dj,m(z)

〉
=

∫ 1

0
Iνbi,m(z)dj,m(z) dz.

By applying (24), we get

Iνbi,m(z) =
m∑

q=i

(–1)q–i
(

m
i

)(
m – i
q – i

)

(q + 1)


(q + ν + 1)
.

Afterwards, in view of (21) we conclude that

wij =
m∑

q=i

m∑

k=0

(–1)q–i
(

m
i

)(
m – i
q – i

)

λjk

(q + 1)


(q + ν + 1)

∫ 1

0
zq+νbk,m(z) dz, (28)

but we have
∫ 1

0
zq+νbk,m(z)dz =

m∑

p=k

(–1)p–k

q + p + ν + 1

(
m
k

)(
m – k
p – k

)

= μqk . (29)

Therefore, a combination of (28) and (29) ends the proof of our Theorem 4.2. �

4.2 Fractional matrix of derivative
We can write the derivative of B(z) as

dB(z)
dz

= D(1)B(z), (30)

where D(1) stands for the (m + 1) × (m + 1)-operational matrix of derivative given in the
following format:

D(1) = AWB�. (31)

For more details, we refer to [43, 53–55].
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By applying (30), it is obvious that for each n ∈N we have

dnB(z)
dzn =

(
D(1))nB(z).

Consequently,

D(n) =
(
D(1))n, n = 1, 2, . . .

Now, in order to generalize the operational matrix of derivative, we indicate the following
formulations.

For ν > 0, the νth-Caputo derivative of B(z) is given as

c
D

νB(z) � cD(ν)B(z), (32)

in which cD(ν) stands for the (m + 1)× (m + 1)-operational matrix of the νth-Caputo deriva-
tive which is given by

cD(ν) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑m
j=�ν� ω0,j,0

∑m
j=�ν� ω0,j,1 · · · ∑m

j=�ν� ω0,j,2 · · · ∑m
j=�ν� ω0,j,m

∑m
j=�ν� ω1,j,0

∑m
j=�ν� ω1,j,1 · · · ∑m

j=�ν� ω1,j,2 · · · ∑m
j=�ν� ω1,j,m

...
...

...
...

...
...

∑m
j=�ν� ωi,j,0

∑m
j=�ν� ωi,j,1 · · · ∑m

j=�ν� ωi,j,2 · · · ∑m
j=�ν� ωi,j,m

...
...

...
...

...
...

∑m
j=�ν� ωm,j,0

∑m
j=�ν� ωm,j,1 · · · ∑m

j=�ν� ωm,j,2 · · · ∑m
j=�ν� ωm,j,m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (33)

where

ωi,j,p = (–1)j–i
(

m
i

)(
m – i
j – i

)

(j + 1)


(j + 1 – ν)

m∑

k=0

λpkμkj,

λpk is defined as (22) and

μkj =
m∑

s=k

(–1)s–k

j – ν + s + 1

(
m – k
s – k

)

.

5 Some simulative examples
Before illustrating our theoretical results by some numerical examples, we present, in gen-
eral, the principle of the Bernstein collocation method applied to our problem (3) to obtain
an accurate numerical solution. For this fact, let us consider for all s ∈ J

c
D

pu(s) = g
(
s,βu(s), c

D
σ u(s),Iρu(s)

)
, (34)

with the following conditions:

c
D

1u(0) = ε1

∫ 1

0
u(r) dr,

m∑

j=1

u(ζj) + kc
D

p–1u(1) = ε2

∫ 1

0
u(r) dr. (35)
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Now, to determine an approximation of the exact solution u(s) by Bernstein polynomials,
we utilize the FRL-integral of Bernstein polynomials with the operational matrix of the
Caputo derivative used in [53].

We know that the approximate solution of u(s) by Bernstein polynomials is defined by

u(s) ≈ φ(s) =
m∑

j=0

cjbj,m(s) = CT B(s), (36)

such that C is an indeterminate vector. By replacing the approximate solution given by
(36) in (34) and (35), we can write respectively

CT cD(p)B(s) = g
(
s,βCT B(s), CT cD(σ )B(s), CT I(ρ)B(s)

)
(37)

and

– c0m + c1m =
ε1

m + 1
CT 1, (38)

CT
3∑

j=1

B(ζj) + kCT cD(p–1)B(1) =
ε2

m + 1
CT 1, (39)

where 1 = [1, 1, . . . , 1
︸ ︷︷ ︸

m+1

]T .

For convenience of computations, we consider equidistant points and the roots of the
Legendre polynomial of degree (m-1) in [0, 1]. So, to obtain the solution u(s), we collocate
equation (37) at (m – 1) points together with equations (38) and (39). Therefore, we get
(m + 1) equations with (m + 1) indeterminate coefficients. Consequently, the approximate
solution can be determined.

At the moment, we are ready to illustrate the Bernstein collocation method with some
simulative examples.

Example 5.1 According to the nonlinear thermostat GFBVP (3), consider

⎧
⎨

⎩

cD
5
4 u(s) = φ(s) + s

10 u(s) – sin(s)
20

cD
1
4 u(s) – 1

11I
7
3 u(s),

cD1u(0) = 0,
∑3

j=1 u( j
j+1 ) + 11
( 11

4 )
118

cD
1
4 u(1) = 3407

720
∫ 1

0 u(r) dr.
(40)

In this example, we have p = 5
4 , σ = 1

4 , ρ = 7
3 , ε1 = 0, ε2 = 3407

720 , β = 1
10 , k = 11
( 11

4 )
118 , and

ζj = j
j+1 for j ∈ {1, 2, 3}, and

φ(s) =
3


( 7
4 )

s
3
4 +

24

( 11

4 )
s

7
4 –

1
10

(
s3 + 2s4)

+ sin(s)
(

1
10
( 11

4 )
s

7
4 +

6
5
( 15

4 )
s

11
4

)

+
2

11
( 16
3 )

s
13
3 +

48
11
( 19

3 )
s

16
3 .

We take w(x, y) = 1, ∀x, y ∈ X and ϕ(s) = 1
2 s for any s ∈ J . Therefore, it is easy to verify that

our nonlinear thermostat GFBVP (40) satisfies all assumptions of Theorem 3.2, and its
exact solution is u(s) = s2 + 2s3.
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Table 1 Legendre polynomials and exact solution at different values of variable with absolute error

s Legendre polynomials Exact solution Absolute error

0.0 0.000006 0.000000 6.0000× 10–6

0.1 0.121003 0.012000 1.0300× 10–4

0.2 0.055900 0.056000 1.0000× 10–5

0.3 0.144110 0.144000 1.1000× 10–4

0.4 0.287800 0.288000 2.0000× 10–4

0.5 0.500190 0.500000 1.9000× 10–4

0.6 0.800012 0.792000 0.8000× 10–5

0.7 0.176100 1.176000 1.0000× 10–4

0.8 1.664020 1.664000 2.0000× 10–5

0.9 2.267900 2.268000 1.0000× 10–4

1.0 3.000130 3.000000 1.3000× 10–4

Figure 1 The graphs of the exact solution and the approximate solution truncated at levelm = 4

Now, we substitute u(s) by CT B(s) in the nonlinear thermostat GFBVP (40), from which
we get the following system:

⎧
⎨

⎩

CT cD( 5
4 )B(s) = φ(s) + CT s

10 B(s) – CT sin(s)
20

cD( 1
4 )B(s) – CT 1

11 I( 7
3 )B(s),

–c0 + c1 = 0, CT ∑3
j=1 B( j

j+1 ) + 11
( 11
4 )

118 CT cD( 1
4 )B(1) = 3407

720(m+1) CT 1.

In Table 1 we list the absolute errors |um(s) – u(s)| of approximate solution um(s) com-
puted via the roots of shifted Legendre polynomials at m = 4. Also, the graphs are plotted
in Fig. 1.

Now, we investigate the next example.

Example 5.2 According to the nonlinear thermostat GFBVP (3), consider

⎧
⎨

⎩

cD
5
3 u(s) = φ(s) + s

10 u(s) + sin(s)
2

cD
1
5 u(s) – 7s

100I
7
3 u(s),

cD1u(0) = 0,
∑3

j=1 u( 3
√

1
(4–j)(5–j) ) + 
( 10

3 )
6

cD
2
3 u(1) = 7

∫ 1
0 u(r) dr,

(41)

where

φ(s) =
6


( 7
3 )

s
4
3 –

s4

10
–

3 sin(s)

( 19

5 )
s

14
5 +

21s
50
( 19

3 )
s

16
3 .
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Table 2 Legendre polynomials and exact solution at different values of variable with absolute error

s Legendre polynomials Exact solution Absolute error

0.0 0.000002 0.000000 2.0000× 10–6

0.1 0.001005 0.001000 5.0000× 10–6

0.2 0.008004 0.008000 4.0000× 10–6

0.3 0.027011 0.027000 1.1000× 10–5

0.4 0.064010 0.064000 1.0000× 10–5

0.5 0.125012 0.125000 1.2000× 10–5

0.6 0.216003 0.216000 3.0000× 10–6

0.7 0.343011 0.343000 1.1000× 10–5

0.8 0.512003 0.512000 3.0000× 10–6

0.9 0.729010 0.729000 1.0000× 10–5

1.0 1.000012 1.000000 1.2000× 10–5

Figure 2 The graphs of the exact solution and the approximate solution truncated atm = 7

In the present example, we have p = 5
3 , σ = 1

5 , ρ = 7
3 , ε1 = 0, ε2 = 7, β = 1

10 , k = 
( 10
3 )

6 , and
ζj = 3

√
1

(4–j)(5–j) for j ∈ {1, 2, 3}.
We take w(x, y) = x, ∀x, y ∈ X and ϕ(s) = 1

2 s, ∀s ∈ J . Hence, all assumptions of Theorem
3.2 are satisfied and the exact solution of the nonlinear thermostat GFBVP (41) is given by
u(s) = s3. By the same arguments used in problem (40), we get the following system:

⎧
⎨

⎩

CT cD( 5
3 )B(s) = φ(s) + CT s

10 B(s) + CT sin(s)
2

cD( 1
5 )B(s) – CT 7s

100 I( 7
3 )B(s),

–c0 + c1 = 0, CT ∑3
j=1 B( 3

√
1

(4–j)(5–j) ) + 
( 10
3 )

6 CT cD( 2
3 )B(1) = 7

m+1 CT 1.

Now, we list the absolute errors |um(s) – u(s)| of approximate solution um(s) by utilizing
the roots of shifted Legendre polynomials at m = 7 in Table 2, and the graphs are plotted
in Fig. 2.

Example 5.3 According to the nonlinear thermostat GFBVP (3), consider

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD
7
5 u(s) = φ(s) + 0.3u(s)

15+2u2(s) + s sin(s)
10

cD
1
3 u(s) + 1

14(1+e–s)I
7
4 u(s),

cD1u(0) = 3
∫ 1

0 u(r) dr,
∑2

j=1 u( j
j+1 ) + 13
( 13

5 )
( 8
5 )

72(
( 13
5 )–
( 8

5 ))
cD

2
5 u(1) = 3

∫ 1
0 u(r) dr,

(42)
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where

φ(s) =
2


( 8
5 )

s
3
5 –

0.3(s2 – 2s)
15 + 2(s2 – 2s)

–
1

5
( 8
3 )

s
8
3 +

1
5
( 8

3 )
s

5
3 –

1
7
( 19

4 )
× s 15

4

1 + e–s

+
1

7
( 15
4 )

× s 11
4

1 + e–s .

In this example, we have p = 7
54 , σ = 1

3 , ρ = 7
4 , ε1 = 3, ε2 = 3, β = 0.3, k = 13
( 13

5 )
( 8
5 )

72(
( 13
5 )–
( 8

5 ))
, and

ζj = j
j+1 for j ∈ {1, 2}. Take R = 0.03. Then, by direct calculation, we find

β +
1


(ρ + 1)
≈ 0.9218 . . . < 1,

and γ ≈ 0.8922 . . . < 1. Consequently, Theorem 3.3 ensures the existence of a unique so-
lution of the nonlinear thermostat GFBVP (42).

6 Conclusions
In this work, we introduced a new generalized version of the mathematical model of the
thermostat in the form of the nonlinear GFBVP given as (3). The existence property for
its solutions was established via a special form of contractions and μ-admissible maps.
The uniqueness property was verified by the Banach principle. Further, we used the Bern-
stein operational matrix of the Caputo fractional derivative and the Bernstein operational
matrix of FRL-integral which are necessary to obtain accurate numerical solutions to the
nonlinear thermostat GFBVP (3) via Bernstein polynomials. We have designed two exam-
ples to illustrate the accuracy of the numerical method in finding the exact and approxi-
mate solutions. Then we checked the uniqueness property in the third example. For the
next works, we will apply these methods on different mathematical models designed by
nonsingular operators.
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