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Abstract
In this paper, for the first time the inverse problem of reconstructing the
time-dependent potential (TDP) and displacement distribution in the hyperbolic
problem with periodic boundary conditions (BCs) and nonlocal initial supplemented
by over-determination measurement is numerically investigated. Though the inverse
problem under consideration is ill-posed by being unstable to noise in the input data,
it has a unique solution. The Crank–Nicolson-finite difference method (CN-FDM)
along with the Tikhonov regularization (TR) is applied for calculating an accurate and
stable numerical solution. The programming language MATLAB built-in lsqnonlin is
used to solve the obtained nonlinear minimization problem. The simulated noisy
input data can be inverted by both analytical and numerically simulated. The
obtained results show that they are accurate and stable. The stability analysis is
performed by using Fourier series.

Keywords: Hyperbolic equation; Inverse problem; Periodic boundary; Integral
boundary; Tikhonov regularization; Optimization

1 Introduction
The reconstruction of the unknown coefficients in the inverse problem of the hyperbolic
problem has various applications in science and engineering. In the last few decades, var-
ious authors have reconstructed the unknown coefficients in the inverse problem of the
hyperbolic wave equations. For example, Bakushinsky and Leonov [2] recovered the space-
dependent coefficient from integral data, while authors of [5, 24, 25] determined the time-
dependent source coefficients. Cannon and Dunninger [7] reconstructed a force function
from over-specified data. Further, Cannon and DuChateau [6] determined both time-
and space-dependent coefficients. Stefanov and Uhlmann [27] recovered a source term
in anisotropic media. Additionally, Bellassoued and Yamamoto [3] studied the inverse
problem to determine the unknown term in the hyperbolic model with variable terms.
Boumenir and Tuan [4] showed the process for reconstructing the unknown coefficient in
the inverse problem of the wave equation from a finite number of special lateral measure-
ments. Yamamoto [31] considered an inverse problem for identifying space-dependent
function from Neumann BCs and showed a TR and reconstruction formula. Yang et al.
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[32] recovered heat source term in the inverse problem of heat conduction equation using
Tikhonov regularization. Huntul [12] identified the unknown time-dependent coefficient
in the third-order equation from nonlocal integral observation.

Recently, the inverse problems of the wave equations for recovering time-dependent po-
tential from over-determination integral condition have been investigated by Tekin [29]
while the time-dependent force function has been studied by Hussein and Lesnic [19].
The authors of [13–15, 17] studied the inverse problems for identifying the time-wise po-
tential terms in third and fourth-order equations. Huntul et al. [18] investigated an in-
verse problem to reconstruct the time-wise potential terms in a wave equation as an over-
determination condition. In [10, 11, 20], authors recovered the time- and space-dependent
source functions. Huntul and Tamsir [16] investigated an inverse problem to recover a
time-wise heat source from the integral condition. Still, the inverse problem of recon-
structing the time-wise potential coefficient numerically for the hyperbolic problems with
integral and periodic BCs is inadequate in the literature.

In this paper, the time-dependent potential is reconstructed for the first time numeri-
cally in a one-dimensional hyperbolic problem with periodic and integral BCs from the
over-determination estimation. Azizbayov [1] has already proved that this problem is lo-
cally uniquely solvable, but no numerical realization has been carried out till now, which
is the main contribution of proposed work.

The paper is organized as follows: The research problem is stated in Sect. 2. Sect. 3
discretizes the direct problem using CN-FDM. Stability analysis is presented in Sect. 4,
while the minimization technique is given in Sect. 5. Some numerical results are tabulated
in Sect. 6, while the conclusions are highlighted in Sect. 7.

2 Formulation of the inverse problem
We consider an inverse problem of reconstructing an unknown time-dependent potential
coefficient α(t) in the one-dimensional hyperbolic equation

∂2z
∂t2 –

∂2z
∂r2 = α(t)z + s(r, t), (r, t) ∈ DT := (0, 1) × (0, T), (1)

where z = z(r, t) is an unknown displacement, s(r, t) is a known source term which is as
distributed force. The nonlocal initial conditions (ICds)

z(r, 0) =
∫ T

0
P1(t)z(r, t) dt +ξ (r), zt(r, 0) =

∫ T

0
P2(t)z(r, t) dt +ζ (r), r ∈ [0, 1], (2)

the periodic BCs

z(0, t) = z(1, t), t ∈ [0, T], (3)

the integral boundary condition

∫ 1

0
z(r, t) dr = 0, t ∈ [0, T], (4)

and the over-determination condition

z(R0, t) = q(t), t ∈ [0, T], (5)
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where R0 ∈ (0, 1) is some fixed point, the functions P1(t), P2(t), ξ (r), ζ (r), and q(t) are
given.

The numerical solution of the inverse problem hyperbolic wave equation (1)–(5) is writ-
ten as {α(t), z(r, t)} such that α(t) ∈ C[0, T] and z(r, t) ∈ C2(DT ). Along with inverse prob-
lem (1)–(5), the following auxiliary inverse problem is considered. It is needed to find
{α(t), z(r, t)} ∈ C[0, T] × C2(DT ) from (1)–(3), and

zr(0, t) = zr(1, t), t ∈ [0, T], (6)

q′′(t) – zrr(R0, t) = α(t)q(t) + s(R0, t), t ∈ [0, T]. (7)

The upcoming theorems are taken from [1], and they read as follows.

Theorem 1 Suppose that ξ (r), ζ (r) ∈ C[0, 1], Pi(t) ∈ C[0, T], i = 1, 2, q(t) ∈ C2[0, T], q(t) �=
0, s(r, t) ∈ C(DT ),

∫ 1
0 s(r, t) dr = 0, t ∈ [0, T], and the consistency conditions, given below, are

satisfied:

∫ 1

0
ξ (r) dr = 0,

∫ 1

0
ζ (r) dr = 0, (8)

q(0) =
∫ T

0
q(t)P1(t) dt + ξ (R0), q′(0) =

∫ T

0
q(t)P2(t) dt + ζ (R0). (9)

Then the following arguments are true:
1. Each classical solution (α(t), z(r, t)) of (1)–(5) is a solution of (1)–(3), (6), and (7);
2. Each solution (α(t), z(r, t)) of (1)–(3), (6), and (7) by virtue of

(
T

∥∥P2(t)
∥∥

C[0,T] + T
∥∥P1(t)

∥∥
C[0,T] +

T
2

∥∥α(t)
∥∥

C[0,T]

)
T < 1 (10)

is a classical solution of (1)–(5).

We impose the below conditions to the functions ξ , ζ , s, P1, P2, and q [1]:
(A1) ξ ′′′(r) ∈ L2(0, 1), ξ (r) ∈ C2[0, 1], ξ (0) = ξ (1), ξ ′(0) = ξ ′(1), ξ ′′(0) = ξ ′′(1);
(A2) ζ ′′(r) ∈ L2(0, 1), ζ (r) ∈ C1[0, 1], ζ (0) = ζ (1), ζ ′(0) = ζ ′(1);
(A3) s(r, t), sr(r, t) ∈ C(DT ), srr(r, t) ∈ L2(DT ), s(0, t) = s(1, t), sr(0, t) = sr(1, t), t ∈ [0, T];
(A4) P1(t), P2(t) ∈ C[0, T], q(t) ∈ C2[0, T], q(t) �= 0, t ∈ [0, T].

Theorem 2 Let conditions (A1)–(A4) be satisfied, and suppose that

((
A1(T) + A2(T) + 2

)(
B1(T) + B2(T)

)
+ C1(T) + C2(T)

)(
A1(T) + A2(T) + 2

)
< 1,

where

A1(T) = T
∥∥ζ (r)

∥∥
L2(0,1) + T

√
T

∥∥s(r, t)
∥∥

L2(DT ) +
∥∥ξ (r)

∥∥
L2(0,1) + 2

√
6
∥∥ξ ′′′(r)

∥∥
L2(0,1)

+ 2
√

6T
∥∥sr(r, t)

∥∥
L2(DT ) + 2

√
6
∥∥ζ ′′(r)

∥∥
L2(0,1),
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A2(T) =
∥∥q–1(t)

∥∥
C[0,T]

{∥∥q′′(t) – s(R0, t)
∥∥

C[0,T] + 2

( ∞∑
k=1

λ–2
k

) 1
2

× [∥∥ξ ′′′(r)
∥∥

L2(0,1)

+
∥∥ζ ′′(r)

∥∥
L2(0,1) +

√
T

∥∥sr(r, t)
∥∥

L2(DT )

]}
, B1(T) = T2 + 2

√
6T ,

B2(T) =
∥∥q–1(t)

∥∥
C[0,T]

( ∞∑
k=1

λ–2
k

) 1
2

T ,

C1(T) = T(1 + 2
√

6)
∥∥P1(t)

∥∥
C[0,T] + T(T + 2

√
6)

∥∥P2(t)
∥∥

C[0,T],

C2(T) = 2
∥∥q–1(t)

∥∥
C[0,T]

( ∞∑
k=1

λ–2
k

) 1
2

T
(∥∥P2(t)

∥∥
C[0,T] + T‖P1‖C[0,T]

)
.

Then inverse problem (1)–(3), (6), (7) has a unique solution in the ball K = KR.

The uniqueness of solution for inverse problem (1)–(5) has been proved by Azizbayov
[1]; it is given as follows.

Theorem 3 Let the conditions

∫ 1

0
ξ (r) dr = 0,

∫ 1

0
ζ (r) dr = 0,

∫ 1

0
s(r, t) dr = 0, t ∈ [0, T],

q(0) =
∫ T

0
P1(t)q(t) dt + ξ (R0), q′(0) =

∫ T

0
P2(t)q(t) dt + ζ (R0),

(
T

∥∥P2(t)
∥∥

C[0,T] + T
∥∥P1(t)

∥∥
C[0,T] +

T
2

(
A1(T) + A2(T) + 2

))
T < 1,

and all the assumptions of Theorem 2 be satisfied. Then (1)–(5) has a unique solution in
K = KR(‖z‖E3

T
≤ A1(t) + A2(t) + 2) of the space E3

T .

3 Numerical solution of the forward problem
First of all, we consider forward problem (1)–(4) with all initial and boundary conditions,
then we calculate solution using the CN-FDM scheme in this section.

Theorem 4 Let α(t), ξ (r), ζ (r), P1(t), P2(t), s(r, t) be known functions, and the CN-FDM
scheme is utilized for time discretization. Then the numerical solution z(r, t) is given in
equations (19) and (21).

Proof We denote z(ri, tj) = zi,j, P1(t) = Pj
1, P2(t) = Pj

2, s(ri, tj) = si,j, and α(tj) = αj, where ri =
i�r, tj = j�t, �r = 1

M , and �t = T
N , i = 0(1)M and j = 0(1)N . Then the (�r2,�t2) CN-FDM

[26] discretizes (1) as follows:

zi,j+1 – 2zi,j + zi,j–1

(�t)2 –
(

zi+1,j+1 – 2zi,j+1 + zi–1,j+1 + zi+1,j – 2zi,j + zi–1,j

2(�r)2

)

=
αj+1

2
zi,j+1 +

αj

2
zi,j +

1
2

(si,j+1 + si,j), i = 1(1)M, j = 1(1)N . (11)
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Equation (11) yields

–Azi–1,j+1 + (1 + 2A – Bj+1)zi,j+1 – Azi+1,j+1

= Azi–1,j + (2 + 2A + Bj)zi,j + Azi+1,j – zi,j–1

+
(�t)2

2
(si,j+1 + si,j), i = 1(1)M, j = 1(1)N , (12)

where

A =
(�t)2

2(�r)2 , Bj =
(�t)2

2
αj.

The discretization of nonlocal ICs (2) is

zi,0 =
�t
3

(
P0

1zi,0 + PN
1 zi,N +

N–1∑
l=1,3

Pl
1zi,l +

N–2∑
l=2,4

Pl
1zi,l

)
+ ξ (ri), i = 0(1)M, (13)

zi,1 – zi,–1

2(�t)
=

�t
3

(
P0

2zi,0 + PN
2 zi,N +

N–1∑
l=1,3

Pl
2zi,l +

N–2∑
l=2,4

Pl
2zi,l

)
+ ζ (ri), i = 0(1)M, (14)

and the periodic BC (3) is

z(0, t) = z0,j = z(1, t) = zM,j. (15)

Finally, discretization of integral BC (4) is given as follows:

∫ 1

0
z(r, tj) dr =

�r
3

(
z0,j + zM,j +

M–1∑
l=1,3

zl,j +
M–2∑
l=2,4

zl,j

)
= 0, j = 0(1)N . (16)

For i = 0 and M, from equations (15) and (16), we get

2z0,j + 4
M–1∑
l=1,3

zl,j + 2
M–2∑
l=2,4

zl,j = 0, i = 0, j = 0(1)N , (17)

and

4
M–1∑
l=1,3

zl,j + 2
M–2∑
l=2,4

zl,j + 2zM,j = 0, i = M, j = 0(1)N . (18)
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The above equations (12), (17), and (18) can be reformulated and converted at time tj+1

into the (M + 1) × (M + 1) system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 2 4 2 · · · 4 0
–A B̄ –A 0 0 · · · 0 0
0 –A B̄ –A 0 · · · 0 0
...

. . . . . . . . .
... · · · ...

...
0 0 · · · –A B̄ –A 0 0
0 0 · · · 0 –A B̄ –A 0
0 0 · · · 0 0 –A B̄ –A
0 4 · · · 4 2 . . . 4 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z0,j+1

z1,j+1

z2,j+1

z3,j+1
...

zM–2,j+1

zM–1,j+1

zM,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0,j

R1,j

R2,j

R3,j
...

RM–2,j

RM–1,j

RM,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where

B̂ = 1 + 2A – Bj+1, R0,j = RM,j = 0,

Ri,j = Azi–1,j + (2 + 2A + Bj)zi,j + Azi+1,j – zi,j–1

+
(�t)2

2
(si,j+1 + si,j), i = 1(1)M – 1, j = 1(1)N .

At time t1, using (14) in (12), we get

–Azi–1,1 + (2 + 2A – B1)zi,1 – Azi+1,1

= Azi–1,0 + (2 + 2A + B0)zi,0 + Azi+1,0 + 2(�t)ζ (ri)

+
k2

3

(
P0

2zi,0 + PN
2 zi,N +

N–1∑
l=1,3

Pl
2zi,l +

N–2∑
l=2,4

Pl
2zi,l

)

+
(�t)2

2
(si,1 + si,0), i = 1(1)M – 1. (20)

Now, at time t1, equations (17), (18), and (20) can be reformulated into the (M+1)×(M+1)
system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 2 4 2 · · · 4 0
–A B̂ –A 0 0 · · · 0 0
0 –A B̂ –A 0 · · · 0 0
...

. . . . . . . . .
... · · · ...

...
0 0 · · · –A B̂ –A 0 0
0 0 · · · 0 –A B̂ –A 0
0 0 · · · 0 0 –A B̂ –A
0 4 · · · 4 2 . . . 4 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z0,1

z1,1

z2,1

z3,1
...

zM–2,1

zM–1,1

zM,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0,0

R1,0

R2,0

R3,0
...

RM–2,0

RM–1,0

RM,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

where

B̂ = 2 + 2A – B1, R0,0 = RM,0 = 0,

Ri,0 = Azi–1,0 + (2 + 2A + B0)zi,0 + Azi+1,0 + 2(�t)ζ (ri)
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+
(�t)2

3

(
P0

2zi,0 + PN
2 zi,N +

N–1∑
l=1,3

Pl
2zi,l +

N–2∑
l=2,4

Pl
2zi,l

)

+
(�t)2

2
(si,1 + si,0), i = 1(1)M – 1. �

4 Stability analysis
The von Neumann stability [8, 9, 22, 23, 28, 30] is carried out for the discretized system
of hyperbolic wave equation.

Theorem 5 Show that the proposed numerical scheme is stable.

Proof Taking s(r, t) = 0 and assuming local constant αj = αj+1 = b̄1 for known level in (12),
we get

–Azi–1,j+1 + (1 + 2A – B)zi,j+1 – Azi+1,j+1

= Azi–1,j + (2 + 2A + B)zi,j + Azi+1,j – zi,j–1, (22)

where

B =
(�t)2

2
b̄1.

Now we consider one Fourier mode out of the full solution zi,j = ẑjeiωφ as trial solutions
at a given point ri, where φ = θh is the phase angle, i is the node number, and ω =

√
–1.

Using trial solutions in the above equation and simplifying the terms, we get

(
–2A cosφ + (1 + 2A – B)

)
ẑ2 –

(
2A cosφ + (2 + 2A + B)

)
ẑ + 1 = 0, (23)

which can be written as

β1ẑ2 – β2ẑ + β3 = 0, (24)

where

β1 = –2A cosφ + (1 + 2A – B), β2 = 2A cosφ + (2 + 2A + B), β3 = 1.

Under the transformation ẑ = 1+ρ

1–ρ
in equation (24), we get

(β1 + β2 + β3)ρ2 + 2(β1 – β3)ρ + (β1 – β2 + β3) = 0. (25)

The discretized system (22) will be stable if

β1 + β2 + β3 ≥ 0, β1 – β3 ≥ 0, β1 – β2 + β3 ≥ 0. (26)

Using the values of β1, β2, β3 and simplifying the terms, we get

β1 + β2 + β3 =
2(�t)2

(�r)2 + 3, (27)
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β1 – β3 =
(�t)2

(�r)2

(
2 sin2

(
φ

2

)
– (�r)2b̄1

)
, (28)

β1 – β2 + β3 = 2 +
2(�t)2

(�r)2

(
2 sin2

(
φ

2

)
–

(�r)2

2
b̄1 – 1

)
. (29)

It is clear from (27) that β1 + β2 + β3 ≥ 0. From (28) and (29), we get β1 – β3 ≥ 0 and β1 –
β2 + β3 ≥ 0 if (�r)2 ≤ 1

b̄1
(2 sin2( φ

2 ) – 1), and the discretized system of (1) will be stable. �

5 Numerical solution of the inverse problem
In this section, we want to find accurate and stable identification of z(r, t) and α(t) which
satisfies the nonlinear and ill-posed inverse problem (1)–(5). This is achieved by minimiz-
ing the objective function

F(α) =
∥∥z(R0, t) – q(t)

∥∥2
L2[0,T], (30)

where z solves the forward problem (1)–(4) for given α(t). The discrete form of equation
(30) is

F(α) =
N∑

j=1

[
w(R0, tj) – q(tj)

]2. (31)

The objective function F (31) is minimized by the MATLAB subroutine lsqnonlin [21].

6 Numerical results and discussion
The accuracy is measured by RMS:

RMS(α) =

[
T
N

N∑
j=1

(
αnumerical(tj) – αexact(tj)

)2
]1/2

, (32)

RMS(q) =

[
T
N

N∑
j=1

(
qnumerical(tj) – qexact(tj)

)2
]1/2

. (33)

Here, for simplicity, we take T = 1, and 102 and –102 as upper and lower bounds, respec-
tively, for coefficient α(t).

The inverse problem (1)–(5) is solved with exact and noisy measurement data (5). We
numerically simulated the perturbed data as follows:

qε(tj) = q(tj) + εj, j = 0(1)N , (34)

where εj are random variables with mean zero and standard deviation σ given by

σ = p × max
t∈[0,T]

∣∣q(t)
∣∣, (35)

where p denotes the percentage of noise. In the case of noisy data (34), we replace q(tj)
with qε(tj) in (31).
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6.1 Test 1
The proposed problem (1)–(5) is considered with some smooth potential term

α(t) = –1 – π t, t ∈ [0, 1], (36)

the exact solution

z(r, t) = exp(–1 – t) cos(2πr), (r, t) ∈ DT , (37)

and the rest of the data are as follows:

∫ 1

0
z(r, t) dr = 0, P1(t) = 0, P2(t) = 0, R0 = 0.5,

ξ (r) = exp(–1) cos(2πr),

ζ (r) = – exp(–1) cos(2πr), s(r, t) = exp(–1 – t)
(
2 + 4π2 + π t

)
cos(2πr). (38)

The periodic BCs

z(0, t) = exp(–1 – t) = z(1, t), t ∈ [0, 1], (39)

and the over-determination condition

q(t) = z(R0, t) = – exp(–1 – t), t ∈ [0, 1]. (40)

It is observed that Theorem 3 guarantees the uniqueness of the solution because their
conditions have been fulfilled. The accuracy of problem (1)–(4) has been assessed with
data (37) and (38) when α(t) is given by (36). Fig. 1 depicts the approximate displacement
measurement in (5) in comparison to the analytical solution (40) obtained by using the
Crank–Nicolson FDM with M = N ∈ {10, 20, 40, 80}. The exact (37) and approximate so-
lutions for the displacement z(r, t) are illustrated in Fig. 2. The absolute errors between

Figure 1 The approximate and exact (40) q(t) for the forward problem
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Figure 2 The exact (37) and approximate z(r, t), and absolute errors with various grid sizes M = N: (a) 10,
(b) 20, (c) 40, and (d) 80 for the forward problem

those solutions are also included and it can be seen that these errors decrease as the CN-
FDM grid becomes finer. A good agreement observed between the analytical (40) and the
approximate q(t) solutions as the mesh size decreases, see Table 1.

Next, we fix �r = �t = 0.025, and the time-dependent potential coefficient α(t) deter-
mination is started, when the value of p equal zero in equation (5), as put in (35). The
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Table 1 The RMS error norm for direct problem

M = N 10 20 40 80

RMS(q) 8.5E–3 2.2E–3 5.3E–4 1.1E–4

Figure 3 (a) F (31), (b) the exact (36) and approximate α(t) with p = 0 (Test 1)

initial guess (IG) for α is taken as follows:

α0(tj) = α(0) = –1, j = 1(1)N . (41)

Fig. 3(a) is depicted by the objective function F (31), and a monotonically decreasing con-
vergence is observed by making 15 time repetitions for attaining a less order tolerance
O(10–30). Numerical outcomes for the potential α(t) are observed in Fig. 3(b) and also ob-
taining with RMS(α) = 0.0868. The perturbed data has been used to examine the stability
of the approximate solution. The noise p ∈ { 1

100 %, 1
10 %} is included to simulate the input

noisy data via equation (34) for q(t). The potential term α(t) is depicted in Figs. 4 and 5.
From Figs. 4(a) and 5(a) it can be observed that as p is increased the approximate results
for α(t) start to build up oscillations. To retrieve stability, we penalize F (30) by adding
β‖α(t)‖2

L2[0,T] to it, where β > 0 is Tikhonov’s regularization parameter. Then a discretized
form of Tikhonov functional is

Fβ (α) = F(α) + β

N∑
j=1

α2
j . (42)

For p ∈ {0.01%, 0.1%} noise, Figs. 4(b) and 5(b) show the analytical (36) and the ap-
proximate α(t) achieved by minimizing Fβ (42) for various β . The RMS(α) values are
{3.1204, 0.0790, 0.0776} for the value of p = 1

100 %, and {34.2297, 0.1573, 0.1100} for the
value of p = 1

10 %, respectively, with β ∈ {0, 10–10, 10–9} and β ∈ {0, 10–9, 10–8}. It is no-
ticed that the approximate α(t) obtained with β = 0 demonstrates instability; however,
on inclusion of regularization with β = 10–10 to 10–8, a stable solution is obtained which
is consistent in accuracy with p = 0.01% and 0.1% violating the input data (34). The ab-
solute error norms between the exact (37) and approximate solutions with β = 0, 10–9
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Figure 4 The analytical (36) and approximate α(t) with p = 0.01% for: (a) β = 0 and (b) β = 10–10 and 10–9 for
Test 1

Figure 5 The analytical (36) and approximate α(t) with p = 0.1% for: (a) β = 0 and (b) β = 10–9 and 10–8 for
Test 1

and 10–8 are illustrated in Fig. 6. It is observed that the displacement z(r, t) component
is accurate and stable when penalty term β > 0 is added as in (42) to stabilize the solu-
tion.

6.2 Test 2
The smooth time-wise potential α(t) given by (36) has been recovered in Test 1. Now,
consider a nonlinear numerical test problem which is given by

α(t) = – exp(t) – π cos2(3π t), t ∈ [0, 1], (43)

s(r, t) = exp(–1 – t)
(
1 + exp(t) + 4π2 + π cos2(3π t)

)
cos(2πr). (44)
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Figure 6 The absolute errors between the analytical (37) and approximate z(r, t) with β : (a) 0, (b) 10–9, and
(c) 10–8 for p = 0.1% (Test 1)

Figure 7 (a) F (31), (b) the analytical (43) and approximate α(t) with p = 0 for Test 2

Since the conditions of Theorem 3 hold, the solution uniqueness is guaranteed. The IG
for α(t) is considered as follows:

α0(tj) = α(0) = –1 – π , j = 1(1)N . (45)

We take fixed values M = N = 40 as in the previous test problem, and value of p = 0 in
q(t), as also in equation (35). Fig. 7(a) is depicted by the objective function F (31), and
a monotonically decreasing convergence is observed by making 15 time repetitions for



Huntul et al. Advances in Difference Equations        (2021) 2021:452 Page 14 of 17

Figure 8 The regularized function Fβ (42) with p (a) 0.01%, (b) 0.1% for Test 2

Figure 9 The analytical (43) and approximate α(t) with p = 0.01% for β : (a) 0 and (b) 10–12, 10–11, 10–10 for
Test 2

attaining a less order tolerance O(10–30). Numerical outcomes for the potential α(t) are
observed in Fig. 7(b) and also obtaining with RMS(α) = 0.0872.

The F (31) is depicted in Fig. 7(a), where a monotonically decreasing convergence is
achieved in 15 iterations for achieving O(10–30). Fig. 7(b) depicts the exact (43) and ap-
proximate α(t), obtaining with RMS(α) = 0.0872.

Next, we take p ∈ { 1
100 %, 1

10 %} to the measured data q(t), as also in equation (35), for
checking the stability of problem. The regularized function Fβ (42) is depicted in Fig. 8
with various parameters. The approximate outcomes of potential α(t) are illustrated in
Figs. 9 and 10. As in the previous test problem, it is observed that the numerical solu-
tions for β = 0 tabulated in Figs. 9(a) and 10(a) are unstable due to high oscillations and
unbounded, obtaining with RMS(α) = 3.3676 for the value of p = 1

100 % and RMS(α) =
33.9465 for the value of p = 1

10 %. However, the addition of some restrictions on β > 0 in
Fβ (42) improves the stability of the numerical solutions, as drawn further in Figs. 9(b) and
10(b), respectively. It is observed that the addition of β ∈ {10–12, 10–11, 10–10} for 1

100 % and
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Figure 10 The analytical (43) and approximate α(t) with p = 0.1% for β : (a) 0 and (b) 10–11, 10–10, 10–9 for
Test 2

Figure 11 The absolute errors between the exact (37) and approximate z(r, t) with β : (a) 0, (b) 10–11, (c) 10–10,
and (d) 10–9 for p = 0.1%, for Test 2

β ∈ {10–11, 10–10, 10–9} for 1
10 % provides a perfect and stable approximate solution for α(t),

getting with RMS(α) ∈ {0.2368, 0.1245, 0.2728} and RMS(α) ∈ {0.8454, 0.5282, 0.6936}.
The comparison between analytical (37) and approximate z(r, t) in terms of absolute er-
rors with and without descriptor parameters are depicted in Fig. 11, where β > 0 has the
effect of reducing the unstable performance of the restored displacement. Refer to Table 2
for additional information on the RMS(α) values, the minimum value of F or Fβ at final
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Table 2 The RMS values (32) for p ∈ {0, 0.01%, 0.1%} and β ∈ {0, 10–12, 10–11, 10–10, 10–9, 10–8, 10–7}
for Tests 1 and 2

Test 1 Test 2

p β RMS(α) Minimum value
of F or Fβ

p β RMS(α) Minimum value
of F or Fβ

0 0 0.0868 F = 2.4E–30 0 0 0.0872 F = 8.1E–30

0.01% 0 3.4204 F = 1.3E–29 0.01% 0 3.3676 F = 8.5E–30
10–10 0.0790 Fβ = 1.1E–7 10–12 0.2368 Fβ = 7.1E–8
10–9 0.0776 Fβ = 4.2E–7 10–11 0.1245 Fβ = 2.3E–7
10–8 0.0982 Fβ = 3.2E–6 10–10 0.2728 Fβ = 1.5E–6

0.1% 0 34.2297 F = 1.3E–29 0.1% 0 33.9465 F = 2.1E–29
10–9 0.1573 Fβ = 8.4E–6 10–11 0.8454 Fβ = 6.7E–6
10–8 0.1100 Fβ = 1.1E–5 10–10 0.5282 Fβ = 8.6E–6
10–7 0.1701 Fβ = 3.6E–5 10–9 0.6936 Fβ = 1.6E–5

iteration without and with regularization for both numerical test problems. For the term
α(t), the same results may be derived regarding the stable reconstruction.

7 Concluding remarks
For the first time, the reconstruction of a potential coefficient α(t) and the displacement
distribution z(r, t) from the over-determination condition in the hyperbolic equation using
nonlocal ICs and periodic BCs have been computationally addressed. The CN-FDM was
applied to solve the direct problem. The stability analysis of the discretized system of the
wave equation has been discussed using the von Neumann method. The TR was used
to overcome the instability due to the ill-posed issue. For both numerical test problems,
the RMS values for noise without and with regularization were compared. It has been
noticed that on the inclusion of regularization with β = 10–12 to β = 10–7, a stable solution
is obtained which is consistent in accuracy with 0.01% and 0.1% noise. Finally, future
study into the extension of the suggested approach for determining the time-wise potential
coefficient in a two-dimensional wave equation is an intriguing prospect.
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