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1 Introduction

Nowadays, the need for fractional calculations and differential inclusions to describe the
relationships between different phenomena has doubled because the main tool for mod-
ern modeling of different events is inclusion technique. In addition, the use of fractional
calculus in various sciences such as computer, physics, electronics, etc. is not hidden from
anyone. In recent years, many researchers have become interested in the field of fractional
calculus. There are various techniques in this way such as fixed point theory to investigate
the existence of solutions for fractional differential equations (see, for example, [1-10]).
One can find different techniques or ideas in [11-13] or many applied ideas in this area
(see, for example, [14—16]). We ask the reader to focus on the works [17-19] to find ap-
propriate ideas for their research.

In 1993, Miller and Ross defined sequential derivatives as combinations of derivative
operators [20]. After that time, some researchers always sought to discover the relation-
ship between sequential derivatives and fractional derivatives [21-23]. The efforts of re-
searchers led to the publication of several articles on the issue of boundary value problems

of consecutive fractional derivatives (see, for example, [24-30]).
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In 2015, Alsaedi et al. reviewed the sequential differential problem

(D" + D" N)j(r) = h(r,j(r), re(0,1],
j0)=0,  j(0)=0, )= [y (h-5)Fi(s)ds,

where0<h<A<1,2<0*<3,a,teR*, and ¢pe” denotes the standard Caputo derivative
of fractional order ¢*, and % : [0,1] x R — R is a continuous function [31]. Also, some
researchers investigated hybrid differential problems with different boundary conditions
(see, for example, [32]). In 2010, Dhage and Lakshmikantham started working on hybrid
equations [33, 34]. In 2011, Zhao et al. defined studied hybrid differential equations [35].
In 2016, Ahmed et al. reviewed the existence of solution for the fractional inclusion dif-

ferential equation

- [qm — YK RI7ihy(r, q(r))

1 a0) :| € H(r, q(r)) (r eZ =0, 1])

with the boundary conditions ¢(0) = B(s) and ¢g(1) = 0 € R, where °D¥ is the Caputo
derivative of order a € (1,2] and I is the Riemann—Liouville integral of order @ > 0
so that o € {1, @2,..., o1}, @; >0, € C@ xR,R),j=1,2,...,k, h € C(Z x R,R-{0}),
B:C(Z,R) - R,and H :Z x R — P(R) is a multifunction, P(R) is the set of all subsets
of R [36]. In 2020, Baleanu et al. examined the hybrid inclusion model of the thermostat
problem

% y(r)
b [m] ek(ryr) (relo,1])

with the hybrid boundary conditions

¥(r) _
D[m“r:o =0,

y(r) ¥(r) _
MDAy =+ Loyt Hlr=n = 0,

where @ € (2,3], A >0, n € [0,1], ¥ : [0,1] x R — R is a continuous function and p €
C([0,1] x R,R\ {0}),D = %. They also studied the thermostatic model

cpe| Y0 )
P [h(r,y(r))] +@(r,y(n) =0 (¢ e(1,2Lre(0,1])

with hybrid boundary conditions

(r) -
D[ h(r,y(r))] |r=0 = 0:

-17_y) ¥(r) -
SCD; [h(r,y(r))] |r:1 + [h(r,y(r)) ] |r:k = O:

where & > 0 is a parameter, > € [0,1], ¢ - 1€ (0,1], D = %, ¢DH is the Caputo derivative
of fractional order u € {¢,¢ — 1}, the function @ : [0,1] x R — R is continuous, and 4 €
C([0,1] x R,R\ {0}) [37].
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By using and mixing the main idea of the works, we first review the k-dimensional hybrid
system of fractional differential inclusions

dy, (‘D" +dy CD‘“)[‘“*“] €St qi(0),-.., qi(0), 41 (2), ..., q; (1)),

16a1(0)R1Pq1(2))

d12 (CDa + d CDa 1)[“12)7[?1/)%0)] € 82(t1 611 (t)r e Qk(t)y q/l(t)f e y@}((t)), (1)
dlk(CDa + d2kCDa71)[(tqk(qt];7Rlqu] € ‘Sk(t ql(t) .. ~qu(t)’q/1(t)’ .. 7q;<(t))x

with three-point hybrid boundary conditions

4i(t) _
[Qi<t,qi(t>,f<1ﬂqi(t)>] le=0 =0,

p! 4t cp? ai(t)
D g mmgm o +°D [W“t 0=0, @

oty e + VL lesp =0,

0i(t,q;(0),RIP g;(t)) 0i(t.q;(t RI”q

where 1 <i <k, t€[0,1],x €(2,3],p € (0,1), dv,,...,dy,,do,,...,doy, .6 >0, D and X1
denote the Caputo fractional derivative and the Riemann-Liouville fractional integral, re-
spectively. The nonzero continuous function g; is defined as g; : [0,1] x R x R — R, and
S;:[0,1] x R?* — P(R) is a multifunction such that P(R) is the set of all subsets of R and

any ¢; is a real-valued continuous function.

2 Preliminaries
Suppose that @ > 0, « € (k — 1,k) and k = [«] + 1. The Riemann Liouville integral for
a function ¢ : [0, +00) — R is defined by *1%g(t) = fo - r q(r) dr, whenever the inte-

gral exists [38, 39]. If q € AC ([0 +00)), the fractional Caputo derivative is defined by
k o

DYq(t) = fo ”Tal )(r) dr provided that the integral is finite-valued [38, 39]. Moreover,

for a sufficiently smooth function ¢ : [0, +00) — R, the sequential fractional derivative is

defined by
D*q(t) = (D" D --- D*)q(t),

where o = (o1, oy, . .., ) is a multi-index [20]. Note that the sequential derivative operator
D* can be Riemann-Liouville, Caputo, Hadamard, Caputo—Hadamard, or any other ver-
sion of derivative operators in general. In this research, we employ the sequential deriva-
tive of Caputo type which is defined as follows. For k — 1 < & < k, the Caputo sequential
fractional derivative for a sufficiently smooth function g : [0, +00) — R is given by

¢y oo (4
D%q(t) =D~ & q(t),

where D~ g(t) = RI*k-®)g(t) is the Riemann—Liouville fractional integral of order k — «
[38]. It has been verified that the general solution for the homogeneous differential equa-
tion “Dg, q(¢) = 0 is given by ¢g(¢) = bo + byt + bot® + - -+ + by_1t*! and

k-1
R (cD¥q(2)) = q(t) + Zl;hth =q(t) + by + byt + byt® + - - + b1 £,
=0

where by, ..., bi_1 € R with k = [a] + 1 [20].
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Let (Q,] - lo) be a normed space. We use the notations P(Q), Pus(Q), Prua(Q),
Pemp(Q), and P, (Q) for the sets of all subsets of the space Q, all closed subsets of
the space Q, all bounded subsets of the space O, all compact and all convex sub-
sets of Q, respectively. The element g* € Q is a fixed point for given set-valued map
S : Q — P(Q) whenever g* € S(g*) [40]. We express the family of all fixed points
S with the symbol FZX(S) [40]. Let (Q,dg) be a metric space, then the Pompeiu—
Hausdorff metric PHg, : Peas(Q) X Pus(Q) = R* = R U {00} is defined by PHg, (B1,By) =
max{supy, .g, do(b1,B2),sup,, 5, do(Bi1,bs)}, where do(Bi,bs) = infycp, do(bi1,bs) and
dg(b1,B,) = infy,ep, do(bi1,by) [40]. A set-valued map S : Q — P(Q) is Lipschitzian
with positive constant & if the inequality PH,(S(g), S(q') < kdg(q,¢') holds for all
q,q' € Q. A Lipschitz map § is called contraction if & € (0,1) [40]. In the sequel, S is said
to be completely continuous if S(K) is relatively compact for each K € Py,,(Q), whereas
S :[0,1] = Pus(R) is called measurable if t +— dg(v,S(¢)) = inf{lv — 2| : z € S(t)} is
measurable for any v € R [40, 41]. Also, S is upper semi-continuous whenever for ev-
ery q* € Q, the set S(¢*) belongs to P,;(Q) and also, for each open set I/ of Q containing
S(q*), there is a neighborhood O of ¢* provided that S(Of) < U [40].

We construct the graph of the set-valued map S : @ — P,(Z2) by Graph(S) = {(g,2) €
Q x Z:z € S(q)}. The Graph(S) is closed whenever for two arbitrary convergent se-
quences {g,}y>1 in Q and {y,}u>1 in Y with g, — qo, y» — 0, and y, € S(qy), then if
n — oo we have yy € S(qo) [40, 41]. In view of [40], it is deduced that if the set-valued
map S : Q — Py(Y) has an upper semi-continuity property, then Graph(S) is a closed
subset of Q x V. If S has the complete continuity and closed graph property, then S is
upper semi-continuous [40]. In addition, S has convex values if S(k) € P,,(Q) for all
q € Q. Furthermore, a collection of selections of S at point g € Cg([0, 1]) is represented by
(SEL)s,,:= (i € L([0,1]) : ii(t) € S(¢,q(2))} for almost all £ € [0, 1] [40, 41].

If we assume that S is an arbitrary set-valued map, then for each g € Co([0,1]) we
have (S6L)s,4 # ¥ whenever dim(Q) < oo [40]. We say that S : [0,1] x R — P(R) is
called Caratheodory if t — S(¢,¢) is measurable for every g € R and g — S(¢,9) is up-
per semi-continuous for almost all g € [0,1] [40, 41]. A Caratheodory set-valued map
S§:[0,1] x R — P(R) is called £!-Caratheodory whenever, for each ¥ > 0, there is
@9 € L. ([0,1]) such that ||S(£,q)|| = sup;cpo,ytiwl: w € S(t,q)} < @y (¢) for all |g| < and
for almost any ¢ € [0, 1] [40, 41].

In 2012, Samet et al. considered the set of all nonnegative and nondecreasing functions
¢ : [0,00) — [0,00) with Y 77, ¢"(¢) < 0o [42]. They denoted it by ®. One can easily see
that ¢(t) <t forall £ >0 [42]. Let ¢ € ® and o : Q X Q — R be a map. A multifunction
S 1 Q — Puspna(Q) is said to be a-yr-contraction if (g, ¢ )PHa, (Sq, Sq') < ¥(dalq,q))
for all g,q4" € Q [43]. We say that Q has the property (E,) whenever, for any sequence
{g,+} in Q with ¢, — g and «(g4,g4.1) = 1 for all n € N, there is a subsequence {g,,} of
{gx} such that a(g,,,q) > 1 for all i € N. Also, S is called a-admissible whenever, for every
q € Q and ¢’ € S(q) with a(q,q’) > 1, we have a(q’,q") > 1 for all ¢" € S(¢’) [43]. Finally,
q € Q is called the endpoint of W : Q — P(Q) whenever W(q) = {q} [44]. We say that W
has an approximate endpoint property if infye o sup,cyy, do(q, z) = 0 [44]. To continue, we
will need the following theorems.

Theorem 2.1 ([45]) Let Q be a separable Banach space, G : [0,1] X Q = Py cvx(Q) be
an L'-Caratheodory multifunction, and S : Elg([O, 1]) — Co([0,1]) be a linear continuous
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map. Then the map Q o (SEL)g : Co([0,1]) = Poup,evs(C([0,1])) defined by q — (2 o
(SEL)G)q) = QUSEL)g,q) is an operator in Co ([0, 1]) x Co([0, 1]) and has the closed graph
property.

Theorem 2.2 ([33]) Let Q be a Banach algebra, V; : Q — Q be a map, and V5 : Q —
Pempeve(Q) be a multifunction. Assume that
(i) W is Lipschitzian with constant A*;
(i) W; is compact and upper semi-continuous;
(iii) 24*O < 1 provided that © = | W3 (Q)||.
Then either the set S* = {v* € Qlagv* € (Vv )(W3v*), 0 > 1} is not bounded or there exists
q € Q such that g € (Viq)(V;q).

Theorem 2.3 ([33]) Assume that Q is a Banach space and, & is a closed convex subset of Q,
V is an open subset of £, and 0 € V. Let G : V —> Peypcvx(E) be an upper semi-continuous
compact map, where Py cvi(E) denotes the family of nonempty, compact convex subsets
of €. Then either G has a fixed point in V or there exist v € 3V and A € (0,1) such that
veAG(v).

Lemma 2.4 ([46]) Letle Q. Then qo is a solution for the fractional differential equation

c N cCNHa— Q(t) 3
dy (D + dy*D 1)[m} =i(t) (tel0,1],a €(2,3],d1,d>>0) 3)

with three-point hybrid integro-derivative boundary conditions

q(t) _
[ 0(t.q(0)R17 q(2) lleo =0,

‘D 1[)(7Rlyq]|t O+CD2[W]“ 0=0, (4)

q() RyE q@)
Lo gl + 711 tqt)RIVqt)“f-P 0,

if and only if qy is a solution for the integral equation

_ a2
q(t) = o(t,q(®), "I (t))( / ~42(=p) [ (P ar)n (r)drdp

+1—e_dft+(d2 dz)t[/ —dzlp/ ('O_r)az I(rydrdp

di(Ay — dr Q%) T-1)
V4 _ A1 r L L—l"a_2~
+/ M/ =0 Ql(r)dmdtdp}), (5)
o TG Jo o a-1)
_ —-d pX P p-p) ! -a —dy , dop*! P
where Ay :=1-e® + (x+1) 0 (x) 7 dr 40, Ayi=dy—1+e 2 + 2(x+2) oot

fp@p 1epzpdp7z(),md§z* A1+ Ay =dy(1 + X+2)7!0

3 Main results

We are now ready to start an investigation of the k-dimensional hybrid inclusions system
(1). We say that (41,92, -..,q«) is a solution for system (1) whenever there exist functions
{li, 05, ..., 1) € L1[0,1] such that

li(s) € Si(s, 01(5), 42(5), .. 4i(9), 41 (5), G5(9), -, 4}(5)) (6)
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for all i and almost all s € [0,1] and

1 P (p— )2,
%‘(S)=Qi(5,61i(5),R1ti(s))<d—L/0 e’dzi(s’p)/o %li(r)dmdp

1—e %+ (d2 —dy)sT (1 P (p—r)e2.
¥ Cr(d m ) [ / entin [0 g0 4 g
dy,(Ay, — do, ) 0 o ai-1)

P(p——p)‘_l P (o0 Lwi. drdid D
+/0 6 /0 e /0 Tl —1) i(r)drdudp (7)

for all i and s € [0, 1]. Here, we have o € (2,3], p € (0,1), d1,,d>,,0,t > 0, and °D and Ry
denote the Caputo fractional derivative and the Riemann-Liouville fractional integral, re-
spectively. Note that °Dj, = % and °D}, = %. The nonzero continuous real-valued func-
tion «; is supposed to be defined on [0,1] x Rand §:[0,1] x R - P(R) foralli=1,...,k.

Defined the space Q; = {s :5,4(s),4'(s) € C([0,1], R)} endowed with the norm |g]|g, =
SUP,c (0,11 14i(8)] + supgcpo,1 14;(s)| for all {i € 1,2,...,k}. Also, define the product space Q =
Q1 X Qy x -+ x Q endowed with the norm [/(71,q,..,q0)ll = Yr; l|4:ll. Then (Q, | - II)
is a Banach space. Consider the set of the selections

Qu,, = {1 € L'[0,1]: U(s) € Ai(5,q1(5), - Gk (5), 41(5), - .., 4 (5))

forallg=(q1,....qx) € Q},
where 1 <i <k, and we consider the inclusion for almost all s € [0, 1].

Theorem 3.1 Suppose that Ai,...,A; :[0,1] x R3* — Pempevs(R) are Caratheodory mul-
tifunctions and there exist a nondecreasing, bounded, and continuous map  : [0,00) —
(0, 00) and continuous functions by, ..., by : [0,1] — (0,00) such that

|Ai(s,q1(5) q2(5); - . 4i(8), 4, (8), @5 (8), ..., 4}(9)) |
= sup{ |z|z € Ai(s, q1(8), g2(s), - . ., gi(5), 41 (5), 45 (s), - .-, q;(s))}
<bi(s)¥ (I91,925- - 4:)

foralll <i<k,(qu,...,qx) € Q and almost all s € [0, 1]. Assume that there exist constants

L
L; such that M 40T, <1, where

[ (-e®) |1-c®|+1d} - dy| ((1 —eh) PN dop v e P - 1) )}
i = — + )
Vo ldidaT(@)  dy| Ay, - da) \ dal' (@) d;Ti(e)T (&)

Iy [ 1 |dae™%| + |d2 — dy| <(1 —e®)  putEiYdyp + e P — 1) )}
in = + = +
> LdiT () di| Ay, — dr 25| dy T (i) d3T ()T (&)

and ||0;]| = supge(o1710i(s)| for all i = 1,..., k. Then the k-dimensional hybrid inclusions sys-
tem (1) has at least one solution.

Proof Define the operator T: Q — 22 by

T(ql:“')qk) = (Tl(%:--qu), TZ(qlrquk):“" Tk(qlv-"qk)):

Page 6 of 21
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where

Tiq1,--->qx) = {z € Q; :there exists [ € Q, L such that

r -2
=) ) dmdr

z(s) = O[(S q(s) IOJrq(S))(dll/ e~ (s \ mz

—d r o—
l-e fs + (d% —dy)s |:/1 e_dz(l—r) MZ(M) dmdr
dl(Az - dzA*) 0 0 F(Ol - 1)

T S A () D}
+/0 TE) /Oe /0 ) l;(m)dmdcdr . (8)

We show that the operator T has a fixed point. Consider the maps ¥} : @ — Q and W3 :

Q — P(Q) defined by (\Ilfl,q)(s) = a;(s, q;(s), RI +q,(s)) and
(\Ilikiq)(s) = {l,' € Q:li(s)= b@i(s) for all s € [0, 1]},

where b;. € Ti(q1,...,qx) and

e L s [C =)
bl"'(s)_dl_/o e | T 1)b drd,o

N 1- e‘dfs +(d3 —dy)s [/ e—dz(l—p)/ M by drdp
di(Ay —dy A¥) 0 o [le=1) %
)a—2

p(p_p)x—l ? —dy(p—0) “l-r
el el e S

Put Gi(q) = Vi q¥5.q for i = 1,...,k. We show that W} and W; satisfy the assumptions
of Theorem 2.2 for all i. We first prove that the operator W7 is Lipschitzian on Q. Let

q1,92 € Q. Then
|(W5q1)(8) = (W1.q2) ()| = | (5,41 (9), “ I 41 (5)) — i (5, q2(5), * 5 2 (5)) |

1
= Vi(8)<|f11(5) - Q2(S)| + m |f11(5) - 42(5)’)

1
= Ui(S)<1 + m) |71(s) — q2(9)|

for all s € [0,1]. Hence, [Wfq1 - i pllo < v;(1 + pop)lar - 42llo, and so Wy is
). Now we show that T(q1,42,...,qk) is

a Lipschitzian map with constant v;(1 + +1
.,qx). Choose

convex for all (g1,42,...,qx) € Q. Let (zl, ,zk) (zt15+-r24) € T(q1, 92, ..

Lyl € QA Y such that

1[5 e / (p— 1)
. = — i\ —li d d
0= 4 fo e L indrs

+1_e_1712is+(d2 d2)s[/ —dzlp/ (/0—’")0[2 r)drdp
dli(AZi - dZi j) - 1)

Ry (R N (e G }
+/o 7”)0) /Oe / o - )l(r)drdtd,o 9)
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and

V[ e [0 =1)2
(s) = — i -~ L (r)drd
() dli/o‘ ¢ o Mai-1) u(r)drdp

1-e 5+ (d2 —dy)sT ! r o2
. : (d5, —dy;) [ / e~2,0-p) / ultl(;ﬂ)drdp
0 0

dli(Azi - dle;k) r(al - 1)
P (p_p)x—l P —dy (p) =) -2
[y e [ ] 1o

forallse[0,1]and 1 <i <k.Let 0 </ < 1. Then we have

[hz: + (1 - Bz, (s)

1 $ —dy (s P(p_r)ot—Z
:d—ll/ e~ (s=p) 0 m[hzi(r)+(l—h)ztl.(r)]drd,o

1—e %+ (d? —dy,)sT [ P (p—r)2
" ) [ / ¢~21-0) / D" ) + (1= ()] drdp
dli(AZi - dziQ;k) 0 o Dlo-1)

S A S () o - ]
+/(; T /(;e \ F(oei—l)[hzl(r)+(1 h)zti(r)]drdtdp. (11)

Since A; is convex-valued for all 1 <i <k, [hz; + (1 — h)z;](s) € Ti(q1,...,qk). Thus,
h(zy,..oz) + (L=h)(zy, ... 2) = (hzl +(A-h)zy,... hze+ (1 - h)ztk) e T(q1,-.-,qx)-
Now, we show that 7 maps bounded sets of Q into bounded sets. Let p > 0,
B, ={(qu...q0) € Q: | (qu,....q0) | <7},
(q1,-.-,qx) € By and (z1,...,2x) € T(qu,...,qx). Choose
(G155 qK) € Qaty gy 0 X X LUkt

such that

1 s P _ a2
zi(s) = / et t-r_ li(rydrdp
dl 0

F(Oli—l)
1_e—dzs+(d2 —dz)s (1-p) (/0 )a2
drd
" (B - ) [ [ e

pM P s (o0 ‘i :|
+/0 I'(x:) _/(; ¢ /(; F(al_l)l(r)drdtdp (12)
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forall s € [0,1] and 1 <i < k. Hence,

N N
Zi(s)—d—li/() mlz(")dr

dy. e + (d2 — dy, 1 P (o —r)e2.
L e (dy, 2L)|:/ o2, (1-0) Mh(}’)drdp
dy,(Ay, — dy, ) 0 o ai-1)

Po=pf" [P gy [ =) ]
+\/0 F(Xl) \/0\ € \/0 l—w(ai_l)lt(r)drdldp )

and so
1 s_m_p)/ﬂ( p )
; i\ ————1z;(r)| drd
|Z(S)|§d1i./o ¢ o Io—-1) 2| drdo
1-¢ z+d2 do)sT 1 D (a2
+ ( 2) [/ e’d (l—p)/ ( r) ’ ’drdp
d( —dy, 2Y) 0 I'o; —1)

p(P ;0)é ! —d2 _) (l—”)a 2 i|
+/0 Tl f r)|drdtdp

Ed_ 7d2sp/ (,O—F)’ Q(r)drd,o
1

|1 —dzs|+|d§—d2|s|:/ - 2(1-p) P (p - r)oq—z ) drdo
dy| Ay, — dr 2| 0 o Io—-1)

P (p—p)sit /p oy [ =)
+ A A e [ 22 _g(r)drdidp
/0 L) Jo o Ilei—1)
[(1—ed2) 11— e |+ |d? - dy|
< + ~
dvdr T (o)) di| Ay, — dr Q27|

((1 —e ) puitsil(dyp + e — 1)
+
doT () d3Ti(e)T (x1)

>} 161l 22 = M 11631l 21,

ol L [P o=
‘Zi(8)| = d_ll/(; m|zi(7‘)‘d}"

do, e + (d2 —dy) [ 1 _
i (@, 2)[/ e %2 1-p) 7('0 |Z/ (r)| drdp
dli(A2i — dle;k) 0 0 F( o —

» -l 0 _ a2
+/ u] o=, (0-0) &V r)]drdtdp
o T'x) Jo o Mai=1)

L / P lo-n"?,
SF R i e L

) 2 1 i
|1 _e 2S| + |d d2|S |:/ efdz(l—p) ! MQ;(V) drdp
0 0

dy| Ay, — dr Q2| [(a;—1)

P(p—pw-/ iy [ =) }
+ —_— e 2(0-1) —_ d}"dld
/0 T Jo ) T 1)) drdidp

[ 1 |dae™ 2| + |d? — dy|
< + -
dil'(a:)  di| Ay, — dr Q2|

(1-e®) ptti-l(dyp +e %P 1) N ,
8 ( drT (o) ¥ d%Fi(ai)F(Xi) >:| ”91 ”Cl =M Hei ||£1i|’

(13)

(14)
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forall s € [0,1] and 1 <i < k. Thus, ||z|; < (M;, + M;,)[16;]| z1. Hence,

k k
21zl = Y llzill < ) (M + M) 16 1.

i=1 i=1

Now, we show that T maps bounded sets to equicontinuous subsets of Q. Assume that

(ls...olk) € By, 51,82 € [0,1] with s; <s3 and (z3,...,2¢) € T(l3,...,l). Then we have

1 $2 P _ o2
— / e~ (52-p) / (o r) bﬁ}(r) drdp
di Jo o Tloi-1)

Y P(p—r)i?
R e 2(S1—/>)/ b drdp
dv Jo o Dle—-1) 0

. (e7%1 — e7%2%2) + |d3 — di|(sp — 1)

di| Ay, — dr 2|

1 p( _ )oz,'—2
—d(1-p) p-r
X e —— by, |drd
[/0 /0 Do —1) Pl drde

P (p-p)i! /p iy [ =) }
+ -_— e 2\ ‘)/ ——1b; . |drdied
/o T'(x): 0 0 F(Oli—l)| ﬂ‘(r)| r

= M [10:ll 1,
L[ (p=n?
L(s2) = £ <|= ———b; ,drd
‘ l(S2) l(SI)’ - ‘dl /0 F(Oli—l) 0;(r) rap

L (7 (p=n
- = —b; . drd
dl 0 F(Oll'—l) 791‘('") rap

(—doe™ 1 — dye™22) + |dj — dy|
di| Ay, — dr Q|

1 P ( _ r)ai—z
~dy(1-p) P )
X [/0 e /(; Y |bﬁ,i(r)|drdp

Pp-prt /p arony [ =12 :|
S Myl A L)/ ——1by, |drdcd
/(; (%) 0 0 F(ai—1)| ﬂi(f)' 0

<M [67] o1

|i(s2) = Li(s1)| <

for all 1 <i < k. This implies that limg, 5, |/1(s2) — l1(s1), ..., l(s2) — l(s1)| = 0 and
lim |l/1(sz) =0 (s1)s s dk(s2) = lk(s1)| =0.
§2—>81

By using the Arzela—Ascoli theorem for each bounded subset B, of Q, T(B3,) is rela-
tively compact. Thus, T is completely continuous. Now, we show that 7" has a closed
graph. Let (I{,...,[}) € @ and (2,...,2}) € T(l(l),...,l,?) with (If,...,[}) — (l(l),...,l,‘z) and

(Z},....20) = (&),...,2)). We show that (z},...,27) € T(},...,1}). For each natural number
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n, choose (uf,...,uy) € QAl,q X e X QAk,q such that

1 s-d(—)/p(_r)a2
Z'(s) = — e 42 5=p —[I"(r)drd
o= | [Fe s

l—e_d2i5+d2,—d.5 1 P _ )2
+ _ (dy, — dn) |:/ e 4(1-0) —('0 7) I'(r)drdp
dli(Azi - dzLQT) 0 0 F(at - 1)
P(p_p)x—l/‘p —dy. (- Le=-r)-
N A R t)/ Dy drdedp (15)
./0 C(x) Jo o Nle;-1)"
for t € [0,1] and 1 < i < k. Now, define the continuous linear operator 6; : L'([0,1],R) —

Q; by

1 s ~ ~ P (IO_,,)oz—2~
0:(1,s) = — doy(s P>/ L T drd
(ts) dli-/(; ¢ o Iai-1) () drdp

1—e®5 1+ (d2 —dy)s[ 1 P(p—r)2.
+ _ ( 2; 21) [/ e—dzi(lfp) &l,(r) d}"dp
dli(Azi - dleT) 0 0 F(Oll' - 1)

PV 7 e [T ]
G e g aras | (16)

By using Theorem 2.1, 6; o QAi,q is a closed graph operator. Since z} € 6;( QAi,(llw,lk)) for all
ml<i<kand(,...,[}) > (l(f,...,lg), there exists u? € QAW B such that

,,,,,,
s p —r)%
(S) / —dzl(s—p)/‘ M[O(r) drdp
dl 0

Mo -1)
1-e " +(d} —dy,)s b -p) [© (o=
-y l° drd
’ dli(A2i_d2i i) |:'/ / (r) e
L A h () e
A Oﬁl“)d’d‘d"} W

Hence, 20 € T(l9,...,17) for all 1 <i < k. This implies that T; has a closed graph for all
1 <i<k,and so T has a closed graph. Now, suppose that there exists A € (0,1) such that
(h,...,1,) € AT(l1,...,1,). Then there exists (I1,...,1,) € QA1 o) - X QAk o) such
that

s P -2
(s) = — / =) / O =N"" ) drdp
dl,‘ 0 0

e - 1)
1—e 4 (d} —dy,)s (p-r)? r)a 25
‘ _ [/ ~d2;(1-p) f r)drdp
dll‘(AZi —dz,- j)
P (p_ p)xfl /p dy () L (L _r)oz—z~ :|
+ _— e u\r ——i(r)drdid 18
/o I'(x:) 0 o ey —1) ) p (18)

for all s € [0,1] and 1 < i < k. Since Ml” il ||9 | <1, |Lll; <6 forall i = 1,2,..., k. Now,

put L = {(vy,...,vx) € Q: |(¢1,.. ., )|l < Zi:l 0; + 1}. Thus, there are no (l,...,Ix) € oL
and X € (0,1) such that (/,...,4) € AT(l,..., k). Also, the operator T : L—> Pcmp,a,x(i) is

Page 11 of 21
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upper semi-continuous because it is completely continuous and has a closed graph. By
using the definition of L, there is no (/1,...,/) € dL such that (I,..., &) € AT(ly,..., k) for
some A € (0,1). Now, by using Theorem 2.3, T has a fixed point in L which is a solution

for the k-dimensional hybrid inclusion system. O

Now, we review the k-dimensional non-hybrid inclusion system

dy, (°D* +dy, *D* )y (s) € S1(5,q1(5)s- - qx () 41(8)s - -, @1 (), 41 (5), - .., @} (5)),
dy, (“D* + do,*D* ) (s) € Sa(s,q1(5)s - - qi(8): 41(8), -, 41 (), 41 (5), . .., @ (5)),

(19)
dy, (“D* + do, “D* g (s) € S(s,q1(5)s .- qi(8): 41 (8)s -, @1 (), 41 (), - .., g} (5)),
with three-point integro-derivative boundary conditions
70 =0, g}(0)+;(0) = ai() + " qi(p) =0, (1<i<Kk), (20)

where s € [0,1], @ € (2,3], p € (0,1), dy,,...,d1,, ..., day € (0,00) and R¢ denotes the
Riemann-Liouville fractional integral of order £ > 0. Define the space

Q; ={s:5,q(s),4'(s),q"(s) € C([0,1],R) }

endowed with the norm ||gll g, = sup,c(o1) 14i(s)| + Supsc(o,1) 14;(S)| + Supse(o1 147 (s)| for all
{iel,2,...,k}. Also, define the product space Q = Q; x Qy X --- x Qi endowed with the
norm ||(q1,42;---,qx)|l = Zle llg:ll. Then (Q, || - ||) is a Banach space. We need the next

result.

Lemma 3.2 ([46]) A function q € ACg([0,1]) is a solution for the k-dimensional non-
hybrid inclusion system (19)—(20) whenever there is an integrable function it € L}([0,1])
such that it € S(s,q(s)) for almost all s € [0,1], g(0) = 0, ¢'(0) + ¢"(0) = 0, g(1) + *I*q(p) = 0
and

61(s)=— fdzsp)/ (ﬁ—r)”2 () drdp

- dys ) a-2
. e N + (d2 dz)S |:/ —do(1-p) ('0 ) u(r) drdp
dl(Az - d29*) 0

P =07 [ ‘<t—_r>“‘2A ardca
*/0 T /o ¢ fo Mo drdide

forallse[0,1].

We say that a function (q1,42,...,4qx) € Q is a solution for the k-dimensional system of
non-hybrid inclusions (19) whenever there exist functions uy, uy,...,u; in L'[0,1] such
that

ui(s) € Si(s,q1(5), 42(5), ..., qi(), 41 (), ..., 4(5), 41 (5), ..., 4 (5))
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for all s € [0,1]

[ A )/p (p—r)i?,
i(s) = — e 2;(8=p 7uirdrd
ai(s) dl,v/(; o Tile;—1) ) ?

1 —e %5 4 d2 d-)s 1 P _ )2
. ( %) [/ e i 1-r) wﬁi(’)d’"dl‘)
0

dli(A2i - dZ,QT) 0 Fi(aZ - 1)

P (p - p)ri-! / o [l }
+ _— e “u'rt ————iu;(r)drdedp
/o Li(x)  Jo o Tilai—1)

ando € (2,3],p€(0,1),d1,,do,, v, x >0, <D and *1") denote the Caputo fractional deriva-
tive and the Riemann-Liouville fractional integral, respectively. By using the idea of [37],

we consider the set of the selections
SGi,q = {u € L'0,1] : u(s) € Ji(s) for all s € [0,1],g = (q1,...,qx) € Qand 1 < i < k},

where Ji(s) = Ai(s,q1(5), ..., qx(), 41(5), .. ., 41 (5), 47 (5), ..., g (s)).

Theorem 3.3 Let0,...,0; € C([0,1],R) be such that L = Zle 101l oo (M, + M, + M) <1,

where

_ a2
M”zdl/ —dzsp/ to=rf™” r) ) — uy ()] drdp

. 1—e %S+ (d% - dz)S |:/ e—dz(l—p) P (p - r)oz—z
dl(Ag - dQQ*) 0 0 F(Ol - 1)

P(p_p))(*l ? —da(p—t) (L_r) :|
+/0 7[) e | D" ) - )] dre o |

|ui(r) — uy,(r)| drdp

I'(x) INCEN))
P (p—r)%2 P (p - r)®2 -
M;, = dl/ T —1) uy(r)drdp _dl Mo - 1) u;(r)drdp
(_dze—dzﬂ _dze—dzsz) + |d%—d2|
dy| Ay, — dy Q2|
1 ( )(x,
X [/ e—dz(l—/o)/ |u1(7’)|dl’dp
0 0 (
P (p_p)xi—l /,0 —dz(p—)/ (L—l”)"" R ]
B S T T t ———— |#/i(r)|drdied
/o T Jo ) F(Oli—l)‘ ()| o
and
_ 1 p(p—r)ai ” (p—r)"‘l ”
M, = d_1/(; m Y(r)drdp - dl/ ‘ ) (r)drd,o‘

d2e—d251 + dZe—dzsz 1 ALY
+( . 2 ) X / e~ 21-r) u‘u” ‘drdp
dy| Ay, — dr Q| 0 o D(ai-1)

pM P i) % , ]
+/0 L(x)i ./0 ¢ /0 [ (a; — |u i(r)]drdedr
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fori=1,...,k. Suppose that G; : [0,1] x R3* — PempR) is a multifunction such that the

map s — Gi(S$,%1,..., Xk Y15 -+, Vir 21, - - - Zk) S integrable bounded, measurable and
PHg, (G,'(s,xl,...,xk,yl,...,yk,zl,...,zk), Gi(s,xil,...,xik,yil,...,yik,zil,...,z,»k))

k
<161 (Z i —m)
i=1

Sor almost all s € [0, 11, %, ..., Xips Yiys -3 YigsZigs -+ 22y €Rand i=1,...,k. Then the non-

hybrid k-dimensional inclusion system (19)—(20) has at least one solution.

Proof Note that the multifunction

s — Gi(s,q1(8), ..., qk(s), 41 (5), ..., g4 (5), 4, (5), ..., g ()

is measurable and closed-valued forall ¢y, ...,qx € Qand i = ., k. Hence, it has measur-
able selection, and so the set SG,;(,, ,,,,, » is nonempty foralli = 1,..., k. Consider the opera-
tor H : Q - 2Q defined bYH(Lh, o ',Qk) = (Hl(qh .. ~,le) H2(q1» .. ~,Qk)r cee 1Hk(q1’~ . ~,!Ik)),

where

Hiq1,...,qx) = {z € Q; : there exists g € Sg;

i(q1 - qk)

L s [
z(s)—d1/0 e ”/0 Fa-1) q(r)ydrdp

—dos “-
. l1-e f +(d§—d2)S [/ —dy(1— p)/ (p—1) 2q(r)drd,o
di(As-dr2) Lo -

P(p_p)x—l —dy(ot) (L— )az i|}
+/0 —F(X) /Oe | F(a 1) q(r)ydrdedp | ¢.

First, we show that H(qy,...,qx) is a closed subset of Q for all (¢q1,...,qx) € Q. Let
{(4%,...,q7)} be a sequence in H(q1,...,qx) such that (q7,...,q4}) — (q(l),...,qg). Choose
) such that

n n
(Wf,...,u;) € SGI,(ql,.,.qk SG2 ata) X SG"’(‘H

q;(s) = d_lf 7d2$p/ o )aZl (r)drdp

—dys -
+ 1-e f +d; - dZ)S [/ e 20-r) /P to-rf"” 2Mf’(i‘) drdp
dl(Ag—dZQ*) 0 0 F(Ol—l)

P (p_p)x—l o (L 7)o -2
+/0 7”)() fo / Ta-D U r)drdcdp]

for all s € [0,1] and i = 1,...,k. Since G; is compact-valued for all i, {1},<1 has a sub-

sequence which converges to some u? € L!([0, 1], R). Denote the subsequence again by

Page 14 of 21
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{u'},<1. It is easy to check that ¥ € 56,4,

L[ genm [P (0=
1(s) > Os) = — | e-daln) 0
q'(s) — q; (s) 7 /0 e ./o Ta-1) u;(r)drdp

Loy (@ - ds [ / csoon [ P =0"2 oy ardo
di(Ay — dyQ2%) 0 o Ple-1)

’ (P_,O)X_l P —dy(r-1) i ( —r)a_z 0
+/0 71—‘(5) /(; e /0 —F((x—l) u; (r)drdtdr:|

for all s € [0,1]. This implies that ¢° € Hy(q1,...,qx) for any i = 1,2,..., k. This concludes

that (¢3,...,4Y) € Hi(q1,...,qx). Now, we show that H is a contractive multifunction with
the constant L < 1, where Zf:l(M,-l + M;, + M) < 1. Let (y1,...,9%), (z1,...,2x) € Q and
(hy,...,hx) € H(zy, ..., zx) be given. Then we can choose

(Ml’ ,M]() € SGI X SG2,(21,.4,,zk) X X SGk,(zl,“.,zk)

such that

1 s —dy(s—p) P ( 0 r)ot—2
i = s — d
h (S) ) /0 e A ( 1) U (F) dr Yy

—dys 1 @
L B s [ / et [P
di(Ay — dr2%) 0 o Mle-1)

Pe=p T [P ey [0 ]
+/0 T /Oe i F(oz 1) u;(r)drdedp

forallte[0,1]andi=1,...,k. Since

PH,, (G; (s,yl(s), e k(8), Y1 (8)s o 5 0 (8), 1 (5), .., 4 (s),
Gi(s,21(5), ..., 2k(5), 21 (5), ..., 2 (5), 2/ (), . .., 2} (5)))

k
< My(s) Y _(|9i(s) = zi()]) + (|9ils) — zi(8)]) + |y} (5) = 2/ (5)])
i=1
for almost all s € [0,1] and i = 1,..., k, there exists

u; € Gi(s,yl(s), e i (8),07(8)5 -, 3 (5), ¥ (5), - ..,yﬁ(/(s))

such that

k
|i(s) — i < Mi(s) Y (|3ils) = zi(9)]) + (|yi() = 2i(s)]) + (|9 (5) = 2/ (5)])

i=1

for almost all s € [0,1] and i = 1,...,k. Consider the multifunction ; : [0,1] — 2F by
U(s) = {u € R uy(s) — u;| < My(s)f (s) for almost all s € [0, 1]}, where

k
)= (|yils) = zis)]) + (|56s) = Zi(s)|) + (|97 () = 2 (5)).-
i=1
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Since u; and ¢; = M;(s) Zle(lyi(s) —zi($)]) + (|y(s) = zi(s)]) + (|y} (s) — 2/ (s)]) are measurable
for all 4,U;(-) N Gi(s,91(-)s s k() 91 () oo 35 ()91 ()s .., () is @ measurable multifunc-
tion. Thus, we can choose

u;(s) = G; (s,y1 (8),- sk (8), 51(8)s ., 71 (5), 1 (8), . ..,yZ(s))

such that

1 s B ~ P (p_r)a—z
His)= — | e®b p)f — _u(r)drd
i) dl/(; o MNa-1) {r)drdp

. l—e_df5+(d%—d2)5 |;/ ~d(1- p)/ (p—r)”‘ - u,(r)drdp
d(Ry-dr2) Lo Ta-1"

Po—p (P ey [ drded ]
- A e LR

forallse[0,1]andi=1,...,k. Since

NGRS
1—e 8+ (d3 —dy)s
di(Ay — dr2¥)

! ? (p -
~d(1-p)
X [/0 e /(.) F( |ul(r) utl(r)|drdp

Fo—py? cdripeny [ =) }
+/0 I /oe /or( \u(r u, ()| drdidp

<M 16ill 21|01 =21,k = 20) |

_ )2
d1/ (,o r) u,(r)drdp

p(p—r)“"‘ A
e drd
dy Jo T(e-1) wi(r) dr p’

N (—doe™ 1 — dpe™22) + |d — dy|
di| Ay, — dy 2|

! —dy(1— (P—r)
dy(1-p)
X [/o e | T |u,(r)|drd,o

pw P —dy(p—t) (t_r)a_ ~ drdid ]
+/0 T (x); /o € /0 F(ai—1)|ul(r)‘ rdedp

<MupllOiller|0n =21 yic =

(5)— _L [ o pL
) -] = - [ e [ () — 1, ()] dr dp

|(s2) = h

and

1 1 1 p ,0 - V)
: 8 _ // d
|h, (s2) = h; (51)| =< ‘dl /0 Mo = 1) J(r)drdp

L [P (p=r)%?
—— | L _rrydrd
dlfo T " drde
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dZe—dzsl + dZe—dzsz 1 — V az
+ (d; 2 ) X [/ e~ 20-r) "l |u”l(r)|drd,0
0

dﬂ&zi—sz?l r( l_l)
? (p—p)ri! /p o [F=P)TE S :|
+f —2 | g0 [ =1 |yri(r)|drdid
./o T'(x)i Jo 0 F(ai_1)| gl r

< Mpp|6ill 1 [ 01 =21, 9
we get ||/ — hg, || < (M, + My + M) 16l 21 Il(y1 — 215, 9k — zi) || for all i = 1,..., k. Hence,
||(h1w--)hk)_(htlwnyhtk)”
k k
=D M= hlli <D Mill6ill 21|01 = 21,96 = 20|
i=1 i=1

<Al 13 - G120

This implies that

PHdQ(H(ylx'H;yk))H(leu)Zk)) SA” (yl""fyk) - (Zl""

and so H is a closed-valued contractive multifunction. Now, by using Lemma 2.4 and The-
orem 2.3, we deduce that H has a fixed point which is a solution for the non-hybrid inclu-

sion system. g
We now present two examples to illustrate our main results.

Example 3.4 Consider the fractional two-dimensional fractional sequential differential

inclusion system

0.07(°D*%* + 0.21°D*6%)( )

0.0006+ 10500 (arcsin v(s)+sin(R10-03y(s))) )

1
57

0.069(°D>%* + 0.20°D'6%)( ws) )

0.0005+ 5 (arcsin v(s)+sin(R10-03y(s)))

e [0,(s+ %) sinv(s) + =,sinv(s) + (s + %)V/(S) cosv(s)],

(21)

€[0,(s + %) sinv(s) + %, sinv(s) + (s + %L)l/(s) cos v(s)]
with hybrid integro-derivative boundary conditions

>V(S) )|s 0 = 0

( 0.0006+ 153 (arcsin v(s)+sin(R70-03
cpl v(s) ) |
0.0006+ 1000 (arcsin v(s)+sin(R10-03y(s))) / 15= 0

c D2( .V(s) )|s 0=0, (22)

0.0006+ 1537 (arcsin v(s)+sin(R70-03

( - 5!
0.0006+ 153 (arcsin v(s)+sin(R70-03 s=1

R70.32 V(s) -
+° (0.0006+ﬂ%m(arcsin1/(5)+sin(R10'03V(s))))|S:0'4 =0,

where s € [0,1], o« = 2.64, dy, = 0.07, d1, = 0.069, dy, = 0.21, dy, = 0.20, p = 0.03, and & =
0.32. Then we have A; >~ 0.1576, A, =~ 0.008, and * =~ 0.1323. Define the continuous map

a:[0,1] x R x R — R\ {0} by a(s, v1(s), v2(s)) = 0.0006 + — (arcsin v (s) + sin(R1%By,(s)))

1000
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with o* = sup, (o 47 [@(s,0,0)| = 0.0007. Let v,v" € R. Then we have

|oe(s, v(8), V()R v(s)) — e,V (), "I V' (9)) |

s 004

<v($)| 1+ ———|[|v(s)—V(s v(s

= ()[ F(y+1)]| (5) =) = 1000[ r(1.04)}| s)
where v(s) = 1555 and v* = supSE[O vl = W Note that the Lipschitz constant of the
function « is v*[1 + (y+1)] = 1000 1+ . 03)] 0.012021 > 0. Consider the set-valued map

§:[0,1] x R — P(R) defined by

S(s, (), () = |:0, (s + %) sinv(s) + é, sin v(s) + (s + é)v/(s) cos v(s), 0,

1\ . 1. Ly
(s + 5) sinv(s) + Z—L,smV(S) + (S + E)V (s) cos V(S):|'

Since
1\ . 1 1\ ,

lv| < max[O, <S + 1) sinv(s) + 5 sinv(s) + <s + E)V (s) cos v(s):| <s+0.35
for all v € S(s, v(s)),

1S (s, v(8),V'(9)) | = sup{I¥: D € S(s,v(s),v/(5))} <s+0.35.
Here, put 6(s) = s + 0.35 for all s € [0, 1]. Then

1 1
1611 = / |6(r)| dr :/ (r+0.35)dr=1.15
0 0

and M ~ 117.7012. Choose g > 0.2474259. Then

1
V14 ——— [Mlgll 1 ~ (0.002022)(117.6114)(1.15) ~ 0.343974.
Ly +1)

Now, by using Theorem 3.1, hybrid system (21)—(22) has a solution.

Example 3.5 Consider the fraction two-dimensional hybrid differential inclusion system

0. 07(61)235 +0.21°D"*)g(s)

€ [0, 2 cosq(s), 2 ¢ (s) sing(s), 224" (s) sing(s) + 22 ¢ (s) cos q(s)], 23)
0. 06(CD2'35 + 0.206D1-35)q(s)
€ [0, 3¢ cosq(s), =2 4/(s) sing(s), S 4" (s) sing(s) + =&/ (s) cos g(s)]
with three-point integro-derivative boundary conditions
g0)=0, g0 +q"0)=0,  ¢(1)+*1°?q(0.4) =0, (24)

for all s € [0, 1], where D) is the Caputo derivative of order j € {2.35,1.35} and #1°3? is the
Riemann-Liouville integral of order 0.32. Put & = 2.35, d;, = 0.07, dy, = 0.06, dy; = 0.21,

Page 18 of 21
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dys = 0.20, and & = 0.32. One can find that A} ~ 0.1246, A, ~ 0.007, Q* ~ 0.1656, and
M ~151.6013. Define the set-valued map S: [0,1] x Q — P(Q) by

S(s, q(s),q'(s), q”(s))

q(s) sing(s), —q "(s)sing(s) + —q( ) cos g(s)

2¢° -2¢° -2¢° -2¢*
0, ?cosq(s)

for all s € [0,1]. Consider the function § € Cr=0([0, 1]) defined by 5(s) = E for all s with
18]l = 26 =~ 1.8361. Define the nondecreasing nonnegative function v : [0, oo) [0, 00) by
Y(s) = ; for all s > 0. Note that i has the upper semi-continuity property

lim inf (s —(s)) >0
§—> 00
and ¥ (s) < s for all s > 0. For every q,q; € Q, we have

PHy,, (S (s, q(s),q (), q”(s)), S(s, q:(s), q;/))

&1 2e 1
5 2 (a-al) = ~g-v g -ad) <860v (19 -ail) 3o

where m =~ 0.002007. Consider the operator K : Q@ — P(Q) defined by
K(q) = {z € Q:thereis v € (S§€L)s,4 such that z(s) = k(s) for any s € [0, 1]},

where

L[ g [* 0=
- : it
Hs) 0.07/0 ¢ | Tass_p drde

N 1-e%25+((0.21)* - 0.21)s /16_0,21(1_0) /P (p—r)>532 B drdp
0.07(0.007 - (0.21)(0.1565)) | /o o T'(2.35-1)

0.4 0.4 — 0.32-1 2.35-2
) S ] e [ )
o 032 J r@ss-1

Now, by using Theorem 3.3, the non-hybrid two-dimensional inclusion system (23)—(24)

has a solution.

4 Conclusion

Today, most researchers try to review complicated versions of systems of differential equa-
tions to increase the ability to better model different versions of events in the world. One
of the appropriate methods in this way is an investigation of hybrid and non-hybrid differ-
ential inclusion systems. We can use fractional sequential operators and inclusion systems
for better modeling of some natural phenomena, but we first need to increase our abili-
ties in the study of such systems. In this work, we examined two-hybrid and non-hybrid
differential inclusion systems with integral boundary conditions. Finally, we provided two
examples to illustrate our main results. The novelty of this work was mixing different ideas

and techniques and also using a modern nonlinear technique for concluding the results.
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