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Abstract
This paper proposes two numerical approaches for solving the coupled nonlinear
time-fractional Burgers’ equations with initial or boundary conditions on the interval
[0, L]. The first method is the non-polynomial B-spline method based on
L1-approximation and the finite difference approximations for spatial derivatives. The
method has been shown to be unconditionally stable by using the Von-Neumann
technique. The second method is the shifted Jacobi spectral collocation method
based on an operational matrix of fractional derivatives. The proposed algorithms’
main feature is that when solving the original problem it is converted into a nonlinear
system of algebraic equations. The efficiency of these methods is demonstrated by
applying several examples in time-fractional coupled Burgers equations. The error
norms and figures show the effectiveness and reasonable accuracy of the proposed
methods.

Keywords: Liouville–Caputo fractional derivative; Non-polynomial B-spline
functions; Fractional coupled Burgers’ equation; Shifted Jacobi polynomial;
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1 Introduction
Many phenomena in engineering and applied sciences can be represented successfully
using fractional calculus models such as anomalous diffusion, materials, and mechan-
ics, signal processing, biological systems, finance, etc. (see, for instance, [1–7]). There is a
tremendous interest in fractional differential equations, as the theory of fractional deriva-
tives itself and its applications have been intensively developed. The theory of fractional
differential equations describes the reality of life more powerfully and systematically. In
recent years, several researchers have studied differential equations of fractional order
through diverse techniques [8–11].

The time-fractional Burgers’ equation is important since it is a kind of sub-diffusion con-
vection equation. Several different methods for solving the equation have been developed
such as the local fractional Riccati differential equation method in [12], the homotopy
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analysis transform method [13], the finite difference method [14], the variational itera-
tion method [15]. The study of coupled Burgers equations is significant for t-dimensional.
The system is a simple sedimentation model or the evolution of scaled volume concen-
trations of two types of fluid suspension or colloid particles under the influence of grav-
ity. Many powerful methods had been developed to find analytic or numerical solutions
of coupled Burgers’ equations such as homotopy perturbation method [16], differential
transformation method [17], non-polynomial spline method [18], septic b-spline collo-
cation method [19], Galerkin quadratic b-spline method [20], Adomian decomposition
method [21], meshless radial point interpolation method [22].

Several vital analytical and numerical techniques have been proposed to solve the cou-
pled nonlinear time-fractional Burger equations NLTFBEs. Prakash et al. [23] suggested
an analytical algorithm based on the homotopy perturbation Sumudu transform method
to investigate the coupled NLFBEs. Hoda et al. [24] introduced the Laplace–Adomian
decomposition method, the Laplace variational iteration method, and the reduced dif-
ferential transformation method for solving the one-dimensional and two-dimensional
fractional coupled Burgers’ equations. In [25] Liu and Hou explicitly applied the gener-
alized two-dimensional differential transform method to solve the coupled space- and
time-fractional Burgers equations (STFBEs). Heydari and Avazzadeh [26] proposed an
effective numerical method based on Hahn polynomials to solve the nonsingular variable-
order time-fractional coupled Burgers’ equations. The authors in [27] suggested a hybrid
spectral exponential Chebyshev approach based on a spectral collection method to solve
the coupled TFBEs. Veeresha and Prakasha [28] and Singh et al. [29] presented the q-
homotopy analysis transform method to solve the coupled TFBEs and STFBEs, respec-
tively. The coupled STFBEs have also been solved using the Adomian decomposition
method by Chan and An [30]. Islam and Akbar [31] obtained exact general solutions of
the coupled STFBEs by using the generalized (G′/G)-expansion method with the assis-
tance of the complex fractional transformation. Prakash et al. [32] proposed the fractional
variational iteration method to solve the same problem. Hussein [33] proposed a continu-
ous and discrete-time weak Galerkin finite element approach for solving two-dimensional
time-fractional coupled Burgers’ equations. Hussain et al. [34] obtained the numerical so-
lutions of the coupled TFBEs using the meshfree spectral method.

In comparison with local methods, spectral methods are often efficient and highly ac-
curate systems. Convergence speed is one of the spectral methods’ great advantages. Fur-
thermore, spectral methods have a high level of precision (often so-called “exponential
convergence”). The primary idea of all spectral method versions is to express the solution
to the problem as a finite sum of certain foundation functions and then to choose the coef-
ficients, to minimize the difference between precise and approximate solutions. Recently,
the classical spectral methods have been developed to obtain accurate solutions for linear
and nonlinear FDEs. Spectral approaches with the assistance of operational matrices of
orthogonal polynomials have been considered to approximate the solution of FDEs (see,
for example, [35–39]).

One of the disadvantages of the non-polynomial method is that the time step size must
be small enough. The main advantage of the proposed methods is that they are easy to
implement. Also, the solutions can be obtained with high accuracy with relatively fewer
spatial grid nodes compared with other numerical techniques. For this reason and because
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the current methods can be directly applied to other applications, we are motivated to
apply these techniques for coupled Burgers equations.

In this paper we develop two accurate numerical methods to approximate the numerical
solutions of the coupled TFBEs. The first method is the non-polynomial B-spline method
[8, 40–42] based on the L1-approximation and finite difference approximations for spatial
derivatives. The second method is the shifted Jacobi spectral collocation method [43–45]
with the assistance of the operational matrix of fractional and integer-order derivatives.
The collocation approach proposed in this paper is somewhat different from those colloca-
tion methods commonly discussed in the literature. Now, we consider the time-fractional
coupled Burgers’ equations of the form

∂α1 u
∂tα1

=
∂2u
∂x2 + 2u

∂u
∂x

–
∂(uv)
∂x

+ f (x, t), 0 < α1 ≤ 1, (1)

∂α2 v
∂tα2

=
∂2v
∂x2 + 2v

∂v
∂x

–
∂(uv)
∂x

+ g(x, t), 0 < α2 ≤ 1, (2)

subject to the initial and boundary conditions

u(x, 0) = p(x), v(x, 0) = q(x), a ≤ x ≤ b

u(a, t) = f1(t), u(b, t) = f2(t), v(a, t) = g1(t), v(b, t) = g2(t), t > 0,

where α1 and α2 are parameters describing fractional derivatives, x and t are the space and
time variables, respectively. u and v are the velocity components to be determined. f (x, t)
and g(x, t) are continuous functions on their domains. The functions p(x), q(x), f1(t), f2(t),
g1(t), g2(t) are sufficient smooth functions. The fractional derivatives of order α1 and α2

in Eqs. (1) and (2) are treated in the sense of Liouville–Caputo defined by Jerome and
Oldham [6]. In the case of α1 = α2 = 1, Eqs. (1) and (2) are reduced to the classical coupled
Burgers equations.

Definition 1 ([1]) A real function u(t), t > 0, is said to be in the space CΩ , Ω ∈ R if there
exists a real number p > Ω such that u(t) = tpu1(t), where u1(t) ∈ C(0,∞), and it is said to
be in the space Cn

Ω if and only if u(n) ∈ CΩ , n ∈N.

Definition 2 ([21]) The Liouville–Caputo fractional derivative of u ∈ Cn
Ω (Ω ≥ –1) is de-

fined as

∂αu(x, t)
∂tα

=
1

�(n – α)

∫ t

0

∂nu(x, s)
∂tn (t – s)n–α–1 ds, n – 1 < α ≤ n, n = 1, 2, . . . . (3)

2 Non-polynomial B-spline method
In this section, we take a spline function of the form: H3 = span{1, x, sinh(ωx), cosh(ωx)},
where ω is the frequency of the hyperbolic part of spline functions which will be used to
raise the accuracy of the method.

2.1 Derivation of the numerical method
Consider x ∈ [a, b] and t ∈ [0, τ ]. Let a = x0 < x1 < · · · < xN < xN+1 = b and 0 = t0 < t1 <
· · · < tM = τ be the uniform meshes of the intervals [a, b] and [0, τ ], where xi = a + ih,
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h = (b – a)/(N + 1), and tn = nk, k = τ /M for n = 0, 1, . . . , M and i = 0, 1, . . . , N + 1. Let Un
i

and V n
i be an approximation to u(xi, tn) and v(xi, tn), respectively, obtained by the segment

Pi(x, tn) of the mixed spline function passing through the points (xi, Un
i ) and (xi+1, Un

i+1),
(xi, V n

i ) and (xi+1, V n
i+1). Each segment has the form [8, 42]

Pi(x, tn) = ai(tn) cosh
(
ω(x – xi)

)
+ bi(tn) sinh

(
ω(x – xi)

)
+ ci(tn)(x – xi) + di(tn) (4)

for each i = 0, 1, . . . , N . To obtain expressions for the coefficients of Eq. (4) in terms of Un
i ,

Un
i+1, V n

i , V n
i+1, Sn

i , and Sn
i+1 which are as follows:

Un
i = Pi(xi, tn), Un

i+1 = Pi(xi+1, tn), Sn
i = P(2)

i (xi, tn), Sn
i+1 = P(2)

i (xi+1, tn), (5)

where P(2)
i (x, t) = ∂2

∂x2 Pi(x, t). Using Eqs. (4) and (5), we get

ai + di = Un
i

ai cosh θ + bi sinh θ + cih + di = Un
i+1,

aiω
2 = Sn

i ,

aiω
2 cosh θ + ω2bi sinh θ = Sn

i+1,

where ai ≡ ai(tn), bi ≡ bi(tn), ci ≡ ci(tn), di ≡ di(tn), and θ = ωh.
Solving the last four equations, we obtain the following expressions:

ai =
h2

θ2 Sn
i , bi =

h2(Sn
i+1 – Sn

i cosh θ )
θ2 sinh θ

,

ci =
(Un

i+1 – Un
i )

h
–

h(Sn
i+1 – Sn

i )
θ2 , di = Un

i –
h2

θ2 Sn
i . (6)

Using the continuity condition of the first derivative at x = xi, that is, P′
i(xi, tn) = P′

i–1(xi, tn),
we get the following equation:

biω + ci = ai–1ω sinh θ + bi–1ω cosh θ + ci–1. (7)

Using Eq. (6), and after slight rearrangements, Eq. (7) becomes

Un
i+1 – 2Un

i + Un
i–1 = γ Sn

i+1 + βSn
i + γ Sn

i–1, i = 1, 2, . . . , N . (8)

Similarly, we get

V n
i+1 – 2V n

i + V n
i–1 = γρn

i+1 + βρn
i + γρn

i–1, i = 1, 2, . . . , N , (9)

where γ = h2

θ2 – h2

θ sinh θ
, β = 2h2 cosh θ

θ sinh θ
– 2h2

θ2 , and θ = ωh.

Remark 1 As ω −→ 0, that is, θ −→ 0, (γ ,β) −→ ( h2

6 , 4h2

6 ), and Eqs. (8) and (9) become as
follows:

Un
i+1 – 2Un

i + Un
i–1 =

h2

6
(
Sn

i+1 + 4Sn
i + Sn

i–1
)
, i = 1, 2, . . . , N ,
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V n
i+1 – 2V n

i + V n
i–1 =

h2

6
(
ρn

i+1 + 4ρn
i + ρn

i–1
)
, i = 1, 2, . . . , N .

From Eqs. (1) and (2), we write Sn
i and ρn

i in the form

Sn
i =

∂2Un
i

∂x2 =
∂α1 Un

i
∂tα1

+
(
V n

i – 2Un
i
)∂Un

i
∂x

+ Un
i
∂V n

i
∂x

– f (xi, tn), (10)

ρn
i =

∂2V n
i

∂x2 =
∂α2 V n

i
∂tα2

+
(
Un

i – 2V n
i
)∂V n

i
∂x

+ V n
i

∂Un
i

∂x
– g(xi, tn). (11)

The time-fractional partial derivatives of order α1 and α2 in Eq. (1) are considered in
the Liouville–Caputo fractional derivatives, which can be approximated by the following
lemma.

Lemma 1 ([46]) Suppose 0 < α < 1 and g(t) ∈ C2[0, tn], it holds that

∣∣∣∣∣
1

�(1 – α)

∫ tn

0

g ′(t)
(tn – t)α

dt –
k–α

�(2 – α)

×
[

g(tn) – ϕn–1g(t0) –
n–1∑
q=1

(
ϕα

n–q–1 – ϕα
n–q
)
g(tq)

]∣∣∣∣∣

≤ 1
�(2 – α)

[
1 – α

12
+

22–α

2 – α
–
(
1 + 2–α

)]
max

0≤t≤tn

∣∣g ′′(t)
∣∣k2–α , (12)

where ϕα
q = (q + 1)1–α – q1–α , q ≥ 0.

Lemma 2 ([47]) Let 0 < α < 1 and ϕq = (q + 1)1–α – q1–α , q = 0, 1, . . . , then 1 = ϕα
0 > ϕα

1 >
· · · > ϕα

q → 0, as q → ∞.

Using Lemma 1, the Liouville–Caputo fractional derivative can be approximated as fol-
lows:

∂α1 Un
i

∂tα1
= σ1

[
Un

i – ϕ
α1
n–1U0

i –
n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)
Uq

i

]
+ O
(
k2–α1
)
, (13)

∂α1 V n
i

∂tα2
= σ2

[
V n

i – ϕ
α2
n–1V 0

i –
n–1∑
q=1

(
ϕ

α2
n–q–1 – ϕα2

n–q
)
V q

i

]
+ O
(
k2–α2
)
, (14)

where σ1 = k–α1
�(2–α1) , σ2 = k–α2

�(2–α2) .
Substituting Eqs. (13) and (14) into Eqs. (10) and (11), the spatial derivatives Sn

r and ρn
r ,

r = i – 1, i, i + 1, are discretized for n = 1 and n ≥ 2 as follows:

S1
i–1 	 σ1

(
U1

i–1 – U0
i–1
)

+
δ1

i–1
2h
(
4U1

i – 3U1
i–1 – U1

i+1
)

+
η1

i–1
2h
(
4V 1

i – 3V 1
i–1 – V 1

i+1
)

– f 1
i–1,

S1
i 	 σ1

(
U1

i – U0
i
)

+
δ1

i
2h
(
U1

i+1 – U1
i–1
)

+
η1

i
2h
(
V 1

i+1 – V 1
i–1
)

– f 1
i , (15)

S1
i+1 	 σ1

(
U1

i+1 – U0
i+1
)

+
δ1

i+1
2h
(
U1

i–1 – 4U1
i + 3U1

i+1
)
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+
η1

i+1
2h
(
V 1

i–1 – 4V 1
i + 3V 1

i+1
)

– f 1
i+1,

ρ1
i–1 	 σ2

(
V 1

i–1 – V 0
i–1
)

+
ζ 1

i–1
2h
(
4V 1

i – 3V 1
i–1 – V 1

i+1
)

+
ξ 1

i–1
2h
(
4U1

i – 3U1
i–1 – U1

i+1
)

– g1
i–1,

ρ1
i 	 σ2

(
V 1

i – V 0
i
)

+
ζ 1

i
2h
(
V 1

i+1 – V 1
i–1
)

+
ξ 1

i
2h
(
U1

i+1 – U1
i–1
)

– g1
i , (16)

ρ1
i+1 	 σ2

(
V 1

i+1 – V 0
i+1
)

+
ζ 1

i+1
2h
(
V 1

i–1 – 4V 1
i + 3V 1

i+1
)

+
ξ 1

i+1
2h
(
U1

i–1 – 4U1
i + 3U1

i+1
)

– g1
i+1,

Sn
i–1 	 σ1

(
Un

i–1 – ϕ
α1
n–1U0

i–1
)

+ σ1

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)
Uq

i–1 +
δn

i–1
2h

× (–3Un
i–1 + 4Un

i – Un
i+1
)

+
ηn

i–1
2h
(
–3V n

i–1 + 4V n
i – V n

i+1
)

– f n
i–1,

Sn
i 	 σ1

(
Un

i – ϕ
α1
n–1U0

i
)

+ σ1

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)
Uq

i

+
δn

i
2h
(
Un

i+1 – Un
i–1
)

+
ηn

i
2h
(
V n

i+1 – V n
i–1
)

– f n
i , (17)

Sn
i+1 	 σ1

(
Un

i+1 – ϕ
α1
n–1U0

i+1
)

+ σ1

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)
Uq

i+1

+
δn

i+1
2h
(
Un

i–1 – 4Un
i + 3Un

i+1
)

+
ηn

i+1
2h
(
V n

i–1 – 4V n
i + 3V n

i+1
)

– f n
i+1,

ρn
i–1 	 σ2

(
V n

i–1 – ϕ
α2
n–1V 0

i–1
)

+ σ2

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)
V q

i–1 +
ζ n

i–1
2h

× (–3V n
i–1 + 4V n

i–1 – V n
i+1
)

+
ξn

i–1
2h
(
–3Un

i–1 + 4Un
i–1 – Un

i+1
)

– gn
i–1,

ρn
i 	 σ2

(
V n

i – ϕ
α2
n–1V 0

i
)

+ σ2

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)
V q

i

+
ζ n

i
2h
(
V n

i+1 – V n
i–1
)

+
ξn

i
2h
(
Un

i+1 – Un
i–1
)

– gn
i , (18)

ρn
i+1 	 σ2

(
V n

i+1 – ϕ
α2
n–1V 0

i+1
)

+ σ2

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)
V q

i+1

+
ζ n

i+1
2h
(
V n

i–1 – 4V n
i + 3V n

i+1
)

+
ξn

i+1
2h
(
Un

i–1 – 4Un
i + 3Un

i+1
)

– gn
i+1,

where δn
i = (V n

i – 2Un
i ), ζ n

i = (Un
i – 2V n

i ), ηn
i = Un

i , and ξn
i = V n

i , i = 1, 2, . . . , N .
Substituting Eqs. (15) to (18) into Eqs. (8) and (9), after slight rearrangement, yields the

following systems:

A1U1
i–1 + A2U1

i + A3U1
i+1 + A4V 1

i–1 + A5V 1
i + A6V 1

i+1

= A7U0
i–1 + A8U0

i + A7U0
i+1 – γ f 1

i–1 – βf 1
i – γ f 1

i+1, (19)
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B1V 1
i–1 + B2V 1

i + B3V 1
i+1 + B4U1

i–1 + B5U1
i + B6U1

i+1

= B7V 0
i–1 + B8V 0

i + B7V 0
i+1 – γ g1

i–1 – βg1
i – γ g1

i+1, (20)

A1Un
i–1 + A2Un

i + A3Un
i+1 + A4V n

i–1 + A5V n
i + A6V n

i+1

= A7U0
i–1 + A8U0

i + A7U0
i+1 – (λ1)n

i – γ f n
i–1 – βf n

i – γ f n
i+1, (21)

B1V n
i–1 + B2V n

i + B3V n
i+1 + B4Un

i–1 + B5Un
i + B6Un

i+1

= B7V 0
i–1 + B8V 0

i + B7V 0
i+1 – (λ2)n

i – γ gn
i–1 – βgn

i – γ gn
i+1. (22)

where i = 1, 2, . . . , N , n ≥ 2 and

A1 = 1 – γ σ1 +
3γ δn

i–1
2h

+
βδn

i
2h

–
γ δn

i+1
2h

, A2 = –2 – βσ1 –
2γ δn

i–1
h

+
2γ δn

i+1
h

,

A3 = 1 – γ σ1 +
γ δn

i–1
2h

–
βδn

i
2h

–
3γ δn

i+1
2h

, A4 =
3γ ηn

i–1
2h

+
βηn

i
2h

–
γ ηn

i+1
2h

,

A5 =
2γ

h
(
ηn

i+1 – ηn
i–1
)
, A6 =

γ ηn
i–1

2h
–

βηn
i

2h
–

3γ ηn
i+1

2h

A7 = –γ σ1ϕ
α1
n–1, A8 = –βσ1ϕ

α1
n–1, B1 = 1 – γ σ2 +

3γ ζ n
i–1

2h
+

βζ n
i

2h
–

γ ζ n
i+1

2h
,

B2 = –2 – βσ2 –
2γ ζ n

i–1
h

+
2γ ζ n

i+1
h

, B3 = 1 – γ σ2 +
γ ζ n

i–1
2h

–
βζ n

i
2h

–
3γ ζ n

i+1
2h

,

B4 =
3γ ξn

i–1
2h

+
βξn

i
2h

–
γ ξn

i+1
2h

, B5 =
2γ

h
(
ξn

i+1 – ξn
i–1
)
,

B6 =
γ ξn

i–1
2h

–
βξn

i
2h

–
3γ ξn

i+1
2h

, B7 = –γ σ2ϕ
α2
n–1, B8 = –βσ2ϕ

α2
n–1,

(λ1)n
i = σ1

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)[

γ
(
Uq

i+1 + Uq
i–1
)

+ βUq
i
]
,

(λ2)n
i = σ2

n–1∑
q=1

(
ϕ

α2
n–q–1 – ϕα2

n–q
)[

γ
(
V q

i+1 + V q
i–1
)

+ βV q
i
]
.

The system thus obtained on simplifying Eqs. (19) to (22) consists of (2N + 4) unknown
variables (U0, U1, . . . , UN+1) and (V0, V1, . . . , VN+1) in the (2N) linear equations. Four ad-
ditional constraints are necessary to achieve a unique solution to the resulting scheme.
These are obtained as follows by introducing boundary conditions:

Un
0 = f1(tn), Un

N+1 = f2(tn), V n
0 = g1(tn), V n

N+1 = g2(tn).

Eliminating U0, UN+1 and V0, VN+1, the system gets reduced to a matrix system of dimen-
sion (2N) × (2N), and the initial values are obtained by the initial conditions.

Remark 2 The local truncation errors (see [46]) T = [T1i, T2i], i = 1, 2, . . . , N , can be written
as follows:

T1i =
(
h2 – (2γ + β)

)∂2un
i

∂x2 +
(

h2

12
– γ

)
h2 ∂4un

i
∂x4 + O

(
k2–α1 + h6), (23)

T2i =
(
h2 – (2γ + β)

)∂2vn
i

∂x2 +
(

h2

12
– γ

)
h2 ∂4vn

i
∂x4 + O

(
k2–α2 + h6). (24)
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Equations (23) and (24) design two methods for choices of parameters β and γ as follows:
1. If 2γ + β = h2 and γ 
= h2

12 , then Tji = O(k2–α2 + h4), j = 1, 2.
2. If 2γ + β = h2 and γ = h2

12 , then Tji = O(k2–α2 + h6), j = 1, 2.

2.2 Convergence analysis
According to Remark 2, we have chosen 2γ + β = h2, where γ = h2

12 and β = 5h2

6 . Let us
rewrite Eqs. (21) and (22) as follows:

QR = P, (25)

where R = [U , V ]T , U = [Un
1 , Un

2 , . . . , Un
N ]T , V = [V n

1 , V n
2 , . . . , V n

N ]T and a matrix Q is given
as a block matrix

Q =

[
Q11 Q12

Q21 Q22

]
,

where

Q11 = Q0 + h2σ1Q1 +
h
2

Zδ , Q12 =
h
2

Zη,

Q21 =
h
2

Zξ , Q22 = Q0 + h2σ2Q1 +
h
2

Zζ ,

⎫⎪⎪⎬
⎪⎪⎭

, (26)

and square matrices Q0, Q1, and Zx, x = δ,η, ξ , ζ are given by

Q0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–2 1 0 0 · · · 0
1 –2 1 0 · · · 0
0 1 –2 1 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · 1 –2 1
0 0 · · · 0 1 –2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–5/6 –1/12 0 0 · · · 0
–1/12 –5/6 –1/12 0 · · · 0

0 –1/12 –5/6 –1/12 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · –1/12 –5/6 –1/12
0 0 · · · 0 –1/12 –5/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Zx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn
i+1–xn

i–1
3

3xn
i–1–10xn

i –xn
i+1

12 0 0
3xn

i–1+10xn
i –xn

i+1
12

xn
i+1–xn

i–1
3

3xn
i–1–10xn

i –xn
i+1

12 0
0 3xn

i–1+10xn
i –xn

i+1
12

xn
i+1–xn

i–1
3

3xn
i–1–10xn

i –xn
i+1

12
...

...
. . . . . .

0 0 · · · 3xn
i–1+10xn

i –xn
i+1

12
0 0 · · · 0
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· · · 0
· · · 0
· · · 0
. . .

...
xn

i+1–xn
i–1

3
3xn

i–1–10xn
i –xn

i+1
12

3xn
i–1+10xn

i –xn
i+1

12
xn

i+1–xn
i–1

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x = δ,η, ξ , ζ .

A matrix P = [P1, P2]T where

P1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A7U0
0 + A8U0

1 + A7U0
2 – (λ1)n

1

– γ f n
0 – βf n

1 – γ f n
2 – A1Un

0 ,
i = 1,

A7U0
i–1 + A8U0

i + A7U0
i+1

– (λ1)n
i – γ f n

i–1 – βf n
i – γ f n

i+1,
1 < i < N ,

A7U0
N–1 + A8U0

N + A7U0
N+1 – (λ1)n

N

– γ f n
N–1 – βf n

N – γ f n
N+1 – A3Un

N+1,
i = N ,

P2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A7V 0
0 + A8V 0

1 + A7V 0
2 – (λ1)n

1

– γ f n
0 – βf n

1 – γ f n
2 – A1V n

0 ,
i = 1,

A7V 0
i–1 + A8V 0

i + A7V 0
i+1

– (λ1)n
i – γ f n

i–1 – βf n
i – γ f n

i+1,
1 < i < N ,

A7V 0
N–1 + A8V 0

N + A7V 0
N+1 – (λ1)n

N

– γ f n
N–1 – βf n

N – γ f n
N+1 – A3V n

N+1,
i = N .

Let Ū = [u, v]T , u = [u1, u2, . . . , uN ]T , and v = [v1, v2, . . . , vN ]T be the exact solutions of
Eqs. (1) and (2) at nodal points xi, i = 1, 2, . . . , N , and then we have

QŪ = P + T , (27)

where T = [T1i, T2i]T is the local truncation error described in Remark 2. From Eqs. (25)
and (27), we can write the error equation as follows:

Q(Ū – R) = QE = T , (28)

where E = [E1i, E2i]T is the error of discretization with E1i = ui – Un
i and E2i = vi – V n

i .
For sufficiently small step h, the diagonal blocks Q11 and Q22 are invertible and the fol-

lowing condition holds:

∥∥Q12Q–1
22
∥∥∞
∥∥Q21Q–1

11
∥∥∞ < 1.

According to [48], matrix Q is invertible. Moreover,

∥∥Q–1∥∥∞ ≤ max{‖Q–1
11‖∞,‖Q–1

22‖∞}(1 + ‖Q12Q–1
22‖∞)(1 + ‖Q21Q–1

11‖∞)
1 – ‖Q12Q–1

22‖∞‖Q21Q–1
11‖∞

. (29)
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From Eq. (28) and norm inequalities, we have

‖E‖∞ ≤ ∥∥Q–1∥∥∞‖T‖∞. (30)

Since

‖T‖∞ ≤
⎧⎨
⎩

O(k2–α + h4), 2γ + β = h2,γ 
= h2/12,

O(k2–α + h6), 2γ + β = h2,γ = h2/12,

and from classifications of the matrices Q11, Q12, Q21, and Q22 defined in Eq. (26), we have

‖E‖∞ ≤
⎧⎨
⎩

O(k2–α + h2), 2γ + β = h2,γ 
= h2/12,

O(k2–α + h4), 2γ + β = h2,γ = h2/12.
(31)

This shows that Eq. (25) is a second-order convergence method in the case 2γ + β = h2,
γ 
= h2/12, and a fourth-order convergence method in the case 2γ + β = h2, γ = h2/12.

2.3 Stability analysis of the method
The stability analysis of the difference schemes listed in Eqs. (19) to (22) is discussed by
assuming the nonlinear terms δn

r and ηn
r , r = i – 1, i, i + 1, as local constants D and E re-

spectively.
Let Ũn

i and Ṽ n
i be the approximate solutions of Eqs. (19) to (22) and define

Pn
i = Un

i – Ũn
i , Qn

i = V n
i – Ṽ n

i , i = 0, 1, . . . , N + 1, n = 0, 1, . . . , T .

With the above definition and regarding Eqs. (19) and (21), we can get the following round-
off error equations:

a1P1
i–1 + a2P1

i + a3P1
i+1 + a4Q1

i–1 + a5Q1
i + a6Q1

i+1

= a7P0
i–1 + a8P0

i + a7P0
i+1, (32)

a1Pn
i–1 + a2Pn

i + a3Pn
i+1 + a4Qn

i–1 + a5Qn
i + a6Qn

i+1

= a7P0
i–1 + a8P0

i + a7P0
i+1 – σ1

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)[

γ
(
Pq

i+1 + Pq
i–1
)

+ βPq
i
]
, (33)

where a1 = 1 – γ σ1 + D
2h (β + 2γ ), a2 = –2 – βσ1, a3 = 1 – γ σ1 – D

2h (β + 2γ ), a4 = E
2h (β + 2γ ),

a5 = 0, a6 = – E
2h (β + 2γ ), a7 = –γ σ1ϕ

α1
n–1, and a8 = –βσ1ϕ

α1
n–1.

The Von Neumann method assumes that

Pn
i = ςne(Iiφh), (34)

Qn
i = ςne(Iiφh), (35)

where I =
√

–1.
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Substituting Eqs. (34) and (35) into Eq. (32), we get

(
a1eI(i–1)φh + a2eIiφh + a3eI(i+1)φh + a4eI(i–1)φh + a6eI(i+1)φh)ς1

=
(
a7eI(i–1)φh + a8eIiφh + a7eI(i+1)φh)ς0,

after some algebraic manipulation, we have

ς1 =
ϕ

η + Iψ
ς0, (36)

where ϕ = σ1(β + 2γ cos(φh)), η = 2(1 – cos(φh)) + ϕ, and ψ = D+E
h (β + 2γ ) sin(φh).

|ς1| =

√
ϕ2

η2 + ψ2 |ς0| ≤ |ς0|. (37)

Substituting Eqs. (34) and (35) into Eq. (33) results in

(
a1eI(i–1)φh + a2eIiφh + a3eI(i+1)φh + a4eI(i–1)φh + a6eI(i+1)φh)ςn

=
(
a7
(
eI(i–1)φh + eI(i+1)φh) + a8eIiφh)ς0

– σ1

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)[

γ
(
eI(i–1)φh + eI(i+1)φh) + βeIiφh]ςq.

After some rearrangement we get

ςn =
ϕ

η + Iψ

(
ϕ

α1
n–1ς0 +

n–1∑
q=1

(
ϕ

α1
n–q–1 – ϕα1

n–q
)
ςq

)
.

Using mathematical induction, we can prove that |ςn| ≤ |ς0| as follows:
For n = 2,

ς2 =
ϕ

η + Iψ
(
ϕ

α1
1 ς0 +

(
ϕ

α1
0 – ϕ

α1
1
)
ς1
)

=
ϕ

η + Iψ
ϕ

α1
0 ς0 =

ϕ

η + Iψ
ς0 ⇒ |ς2| ≤ |ς0|.

Let k ∈ Z+ be given and suppose |ςn| ≤ |ς0| is true for n = k. Then

ςk+1 =
ϕ

η + Iψ

(
ϕ

α1
k ς0 +

k∑
q=1

(
ϕ

α1
k–q – ϕ

α1
k–q+1
)
ςq

)
.

By Lemma 2, we have 0 < ϕ
α1
q < ϕ

α1
q–1, q = 0, 1, . . . , and consequently (ϕα1

k–q–1 –ϕ
α1
k–q) > 0. Thus

|ςk+1| =

√
ϕ2

η2 + ψ2

(
ϕ

α1
k |ς0| +

k∑
q=1

(
ϕ

α1
k–q – ϕ

α1
k–q+1
)|ςq|
)

≤ ϕ
α1
k |ς0| +

k∑
q=1

(
ϕ

α1
k–q – ϕ

α1
k–q+1
)|ς0| (by induction hypothesis)

=

(
ϕ

α1
k +

k∑
q=1

(
ϕ

α1
k–q – ϕ

α1
k–q+1
))|ς0| = ϕ

α1
0 |ς0| = |ς0|.
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Expanding the summation in the last equation, the intermediate terms cancel each other,
and we are left with the term ϕ

α1
0 |ς0|. Thus, |ςn| ≤ |ς0| holds for n ≥ 1, and we have stability

for β ,γ > 0.
We can obtain similar results for Eqs. (20) and (22).

3 Shifted Jacobi spectral collocation method
This section introduces a numerical scheme based on the shifted Jacobi spectral colloca-
tion method (SJSCM) to obtain the approximate solution of the coupled Burgers system
Eqs. (1) and (2).

The shifted Jacobi polynomial of degree j is denoted by P(μ,η)
L,j (x);μ,η ≥ –1, x ∈ [0, L]

constitute an orthogonal system with respect to the weight function ω
(μ,η)
L (x) = xη(L – x)μ

∫ L

0
P(μ,η)

L,i (x)P(μ,η)
L,j (x)ω(μ,η)

L (x) dx = δijh(μ,η)
L,j ,

where δij is the Kronecker function and

h(μ,η)
L,j =

Lμ+η+1Γ (j + μ + 1)Γ (j + η + 1)
(2j + μ + η + 1)Γ (j + μ + η + 1)j!

. (38)

The shifted Jacobi polynomial can be obtained with the following three-term recurrence
relation:

P(μ,η)
L,j+1(x) = (ajx – bj)P(μ,η)

L,j (x) – cjP(μ,η)(x)
L,j–1 , j ≥ 1,

with P(μ,η)
L,0 (x) = 1 and P(μ,η)

L,1 (x) = 1
L (μ + η + 2)x – (η + 1), where

aj =
(2j + μ + η + 1)(2j + μ + η + 2)

(j + 1)(j + μ + η + 1)L
,

bj =
(2j + μ + η + 1)(2j2 + (1 + η)(μ + η) + 2j(μ + η + 1))

(j + 1)(j + μ + η + 1)(2j + μ + η)
,

cj =
(2j + μ + η + 2)(j + μ)(j + η)

(j + 1)(j + μ + η + 1)(2j + μ + η)
.

The analytic form of shifted Jacobi polynomial P(μ,η)
L,j (x) is given by

P(μ,η)
L,j (x) =

j∑
k=0

(–1)j–k Γ (j + η + 1)Γ (j + k + μ + η + 1)
Γ (k + η + 1)Γ (j + μ + η + 1)(j – k)!k!Lk xk .

The values of the shifted Jacobi polynomials at the boundary points are given by

P(μ,η)
L,j (0) = (–1)j Γ (j + η + 1)

Γ (η + 1)j!
, P(μ,η)

L,j (L) =
Γ (j + μ + 1)
Γ (μ + 1)j!

.

Suppose that f (x) is a square-integrable function with respect to the shifted Jacobi weight
function ω

(μ,η)
L on the interval (0, L), then f (x) can be written in terms of P(μ,η)

L,j as follows:

f (x) =
∞∑
j=0

ajP(μ,η)
L,j , (39)
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where

aj =
1

h(μ,η)
L,j

∫ L

0
f (x)P(μ,η)

L,j (x)ω(μ,η)
L (x) dx, j = 0, 1, . . . .

The shifted Jacobi–Gauss quadrature is used to approximate the previous integral as fol-
lows:

∫ L

0
f (x)P(μ,η)

L,j (x)ω(μ,η)
L (x) dx =

N∑
k=0

f
(
x(μ,η)

G,L,k
)
P(μ,η)

L,j
(
x(μ,η)

G,L,k
)
ω

(μ,η)
G,L,k , (40)

where x(μ,η)
G,L,k , k = 0, 1, . . . , N , are the roots of the shifted Jacobi polynomial P(μ,η)

L,N+1(x) of de-
gree N + 1 and ω

(μ,η)
G,L,k , k = 0, 1, . . . , N , are the corresponding Christoffel numbers

ω
(μ,η)
G,L,k =

Lμ+η+1Γ (N + μ + 2)Γ (N + η + 2)
(N + 1)!Γ (N + μ + η + 2)(L – x(μ,η)

G,L,k)x(μ,η)
G,L,k[∂xP(μ,η)

L,N+1(x(μ,η)
G,L,k)]2

. (41)

Now, if we approximate f (x) in Eq. (39) by the first (N + 1)-terms, then

f (x) 	 fN (x) ≡
N∑

j=0

ajP(μ,η)
L,j (x) = AT�L,N (x), (42)

with AT = [a0 a1 · · · aN ] and �L,N (x) = [P(μ,η)
L,0 (x) P(μ,η)

L,1 (x) · · · P(μ,η)
L,N (x)]T .

Similarly, in terms of the double shifted Jacobi polynomials, a function of two indepen-
dent variables f (x, t) that is infinitely differentiable in [0, L] × [0, τ ] can be extended as
follows:

f (x, t) =
∞∑
i=0

∞∑
j=0

aijP(μ,η)
τ ,i (t)P(μ,η)

L,j (x),

which can be approximated by the first (M + 1) × (N + 1) terms with the truncation error∑∞
i=M+1

∑∞
j=N+1 aijP(μ,η)

τ ,i (t)P(μ,η)
L,j (x) as follows:

f (x, t) 	 fM,N (x, t) ≡
M∑
i=0

N∑
j=0

aijP(μ,η)
τ ,i (t)P(μ,η)

L,j (x) = �T
τ ,M(t)A�L,N (x), (43)

with the coefficient matrix A given by

A =

⎡
⎢⎢⎢⎢⎣

a00 a01 · · · a0N

a10 a11 · · · a1N
...

... · · · ...
aM0 aM1 · · · aMN

⎤
⎥⎥⎥⎥⎦ ,
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where

aij =
1

h(μ,η)
τ ,i

1
h(μ,η)

L,j

∫ τ

0

∫ L

0
f (x, t)P(μ,η)

τ ,i (t)P(μ,η)
L,j (x)ω(μ,η)

τ (t)ω(μ,η)
L (x) dx dt,

i = 0, 1, . . . , M, j = 0, 1, . . . , N .

Using the shifted Jacobi–Gauss quadrature formula [36, 49], we can approximate the co-
efficients aij as follows:

aij =
1

h(μ,η)
τ ,i

1
h(μ,η)

L,j

×
M∑

κ=0

N∑
ζ=0

f
(
x(μ,η)

G,L,ζ , t(μ,η)
G,τ ,κ
)
P(μ,η)

τ ,i
(
t(μ,η)
G,τ ,κ
)
P(μ,η)

L,j
(
x(μ,η)

G,L,ζ
)
ω

(μ,η)
G,τ ,κω

(μ,η)
G,L,ζ , (44)

where x(μ,η)
G,L,ζ , t(μ,η)

G,τ ,κ , ω(μ,η)
G,τ ,κ , and ω

(μ,η)
G,L,ζ are defined by Eqs. (40) and (41).

Theorem 1 ([39]) Let �τ ,M(t) be shifted Jacobi vector defined in Eq. (42), and let α > 0.
Then

Dα
t �τ ,M(t) 	 Dα�τ ,M(t), (45)

where Dα is the (M + 1) × (M + 1) operational matrix of derivatives of order α in the
Liouville–Caputo sense and is defined by

Dα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
...

... · · · ...
0 0 · · · 0

dα(�α�, 0) dα(�α�, 1) · · · dα(�α�, M)
...

... · · · ...
dα(i, 0) dα(i, 1) · · · dα(i, M)

...
... · · · ...

dα(M, 0) dα(M, 1) · · · dα(M, M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where �α� is the floor function and

dα(i, j) =
i∑

k=�α�

(–1)i–kτμ+η–α+1Γ (j + η + 1)Γ (i + η + 1)Γ (i + k + μ + η + 1)
h(μ,η)

τ ,j Γ (k + η + 1)Γ (j + μ + η + 1)Γ (i + μ + η + 1)Γ (k – α + 1)(i – k)!

×
j∑

l=0

(–1)j–lΓ (j + l + μ + η + 1)Γ (μ + 1)Γ (l + k + η – α + 1)
Γ (l + η + 1)Γ (l + k + μ + η – α + 2)(j – l)!l!

.

Similarly, the fractional derivative α of �L,N (x) can be expressed as in Eq. (45):

Dα
x �L,N (x) 	 Dα�L,N (x), (46)

where Dα is the (N + 1) × (N + 1) operational matrix of derivatives of order α.
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3.1 Time-fractional coupled Burgers’ equation
We are going to consider the time-fractional coupled Burgers’ Eqs. (1) and (2), which may
be written as follows:

∂α1 u
∂tα1

–
∂2u
∂x2 + (v – 2u)

∂u
∂x

+ u
∂v
∂x

– f (x, t) = 0, 0 < α1 ≤ 1, (47)

∂α2 v
∂tα2

–
∂2v
∂x2 + (u – 2v)

∂v
∂x

+ v
∂u
∂x

– g(x, t) = 0, 0 < α2 ≤ 1 (48)

with the initial-boundary conditions

u(x, 0) = p(x), v(x, 0) = q(x), a ≤ x ≤ b

u(a, t) = f1(t), u(b, t) = f2(t), v(a, t) = g1(t), v(b, t) = g2(t), t > 0.

Using Eq. (43), we approximate u(x, t), v(x, t), f (x, t), and g(x, t) as follows:

u(x, t) 	 uM,N (x, t) = �T
τ ,M(t)U�L,N (x),

v(x, t) 	 vM,N (x, t) = �T
τ ,M(t)V�L,N (x),

f (x, t) 	 fM,N (x, t) = �T
τ ,M(t)A�L,N (x),

g(x, t) 	 gM,N (x, t) = �T
τ ,M(t)B�L,N (x),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(49)

where U and V are unknown coefficients (M + 1) × (N + 1) matrices, while A and B are
defined by Eq. (43), where

aij =
1

h(μ,η)
τ ,i

1
h(μ,η)

L,j

M∑
κ=0

N∑
ζ=0

f
(
x(μ,η)

G,L,ζ , t(μ,η)
G,τ ,κ
)
P(μ,η)

τ ,i
(
t(μ,η)
G,τ ,κ
)
P(μ,η)

L,j
(
x(μ,η)

G,L,ζ
)
ω

(μ,η)
G,τ ,κω

(μ,η)
G,L,ζ ,

bij =
1

h(μ,η)
τ ,i

1
h(μ,η)

L,j

M∑
κ=0

N∑
ζ=0

g
(
x(μ,η)

G,L,ζ , t(μ,η)
G,τ ,κ
)
P(μ,η)

τ ,i
(
t(μ,η)
G,τ ,κ
)
P(μ,η)

L,j
(
x(μ,η)

G,L,ζ
)
ω

(μ,η)
G,τ ,κω

(μ,η)
G,L,ζ .

Using Theorem 1, we have

∂α1 u(x, t)
∂tα1

	 �T
τ ,M(t)DT

α1 U�L,N (x),

∂u(x, t)
∂x

	 �T
τ ,M(t)UD1�L,N (x),

∂2u(x, t)
∂x2 	 �T

τ ,M(t)UD2�L,N (x),

∂α2 v(x, t)
∂tα2

	 �T
τ ,M(t)DT

α2 V�L,N (x),

∂v(x, t)
∂x

	 �T
τ ,M(t)VD1�L,N (x),

∂2v(x, t)
∂x2 	 �T

τ ,M(t)VD2�L,N (x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(50)
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Substituting Eqs. (49) and (50) in Eqs. (47) and (48) and collocating at (M + 1) × (N – 1)
points, we have

�T
τ ,M(ti)DT

α1 U�L,N (xj) – �T
τ ,M(ti)UD2�L,N (xj)

+
(
�T

τ ,M(ti)V�L,N (xj) – 2�T
τ ,M(ti)U�L,N (xj)

)

× (�T
τ ,M(ti)UD1�L,N (xj)

)
– �T

τ ,M(ti)A�L,N (xj)

+
(
�T

τ ,M(ti)U�L,N (xj)
)(

�T
τ ,M(ti)VD1�L,N (xj)

)	 0,

�T
τ ,M(ti)DT

α2 V�L,N (xj) – �T
τ ,M(ti)VD2�L,N (xj)

+
(
�T

τ ,M(ti)U�L,N (xj) – 2�T
τ ,M(ti)V�L,N (xj)

)

× (�T
τ ,M(ti)VD1�L,N (xj)

)
– �T

τ ,M(ti)B�L,N (xj)

+
(
�T

τ ,M(ti)V�L,N (xj)
)(

�T
τ ,M(ti)UD1�L,N (xj)

)	 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(51)

where xj, j = 0, 1, . . . , N – 2, are the roots of shifted Jacobi polynomial P(μ,η)
L,N–1(x) of degree

N – 1 and ti, i = 0, 1, . . . , M, are the roots of shifted Jacobi polynomial P(μ,η)
τ ,M+1(t) of degree

M + 1. System (51) consists of 2(M + 1)× (N – 1) algebraic equations in the unknown coef-
ficients uij and vij, i = 0, 1, . . . , M, j = 0, 1, . . . , N – 2. Four additional equations are needed to
obtain a unique solution for the resulting scheme. These are accomplished by the bound-
ary conditions

�T
τ ,M(ti)U�L,N (0) = f1(ti),

�T
τ ,M(ti)U�L,N (L) = f2(ti),

�T
τ ,M(ti)V�L,N (0) = g1(ti),

�T
τ ,M(ti)V�L,N (L) = g2(ti),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

i = 0, 1, . . . , M. (52)

System (51) can be combined with Eq. (52) to form the system of 2(M + 1)(N + 1) nonlinear
algebraic equations in 2(M + 1)(N + 1) undefined coefficients, which can be resolved using
Newton’s iterative approach. Consequently, uM,N (x, t) and vM,N (x, t) can be calculated by
the formulae given in Eq. (49).

The convergence and error analysis of the shifted Jacobi polynomial has been considered
in [50, 51]. The Caputo fractional derivative of the shifted Jacobi polynomials satisfies the
following estimate:

∣∣CDαP(μ,η)
L,j (x)

∣∣≤ Cjα+q,

where C is a positive generic constant and q = max{μ,η, –1/2}. [50, Theorem 3] proved
that the expansion coefficient ai,j in Eq. (43) satisfies the following estimate:

|ai,j| = O
(
i–5/2j–5/2) for all i, j > 3.

Finally, by [51, Theorem 3], we find that the truncation error of solutions of Eqs. (47)
and (48) obtained by shifted Jacobi polynomial satisfies the following estimates:

‖u – uM,N‖2 = O
(
M–3/4N–3/4), ‖v – vM,N‖2 = O

(
M–3/4N–3/4).
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4 Numerical solutions
In this section, we discuss three numerical examples representing the time-fractional cou-
pled Burgers equations to ensure the high accuracy and applicability of the suggested
methods. We compute the L2 and L∞ error norms by the following formulae:

L∞ = max
0≤j≤N

∣∣U(xj, t) – u(xj, t)
∣∣, L2 =

√√√√h
N∑

j=0

∣∣U(xj, t) – u(xj, t)
∣∣2,

where

h = max
0≤j≤N

{hj : hj = xj+1 – xj}.

The proposed methods are examined up to τ = 1, where the time step-size of the first al-
gorithm is k = 1/512. In all figures, sub-figures (a) and (b) represent the approximate solu-
tions and absolute errors of the SJSCM, respectively, and sub-figures (c) and (d) represent
the approximate solutions and absolute errors of the non-polynomial B-spline method,
respectively.

Example 1 Consider the system introduced in Eqs. (1) and (2) with initial-boundary con-
ditions:

u(x, 0) = v(x, 0) = 0, a ≤ x ≤ b

u(a, t) = v(a, t) = t3 sin
(
e–a), u(b, t) = v(b, t) = t3 sin

(
e–b), t > 0,

where

f (x, t) =
3!t3–α1 sin(e–x)

Γ (4 – α1)
+ t3e–2x sin

(
e–x) – t3e–x cos

(
e–x),

g(x, t) =
3!t3–α2 sin(e–x)

Γ (4 – α2)
+ t3e–2x sin

(
e–x) – t3e–x cos

(
e–x).

The exact solution of this problem is u(x, t) = v(x, t) = t3 sin(e–x).

The L2 and L∞ error norms and the approximation solutions and absolute error distri-
butions of Example 1 are given in Tables 1 to 3 and Figs. 1 to 3, respectively, for suggested
methods with α1 = α2 = 0.1, 0.4, 0.7 for different values of N on [0, 1] × [0, 1]. Tables 4 to
6 present the L2 and L∞ error norms obtained while varying N ∈ {6, 8, 10, 12}, α1 = α2 =
0.2, 0.4, 0.6 and x ∈ [0, 3]. Figures 4 to 6 display the graphs of approximate solution and
absolute error for u(x, t) = v(x, t) with α1 = α2 = 0.2, 0.4, 0.6, N = 12 on [0, 3] × [0, 1].

Table 1 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 1 when 0 ≤ x ≤ 1, α1 = α2 = 0.1

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

6 5.1510654× 10–7 5.7880948× 10–7 2.422437× 10–6 3.370818× 10–6

8 7.01838× 10–9 9.0064422× 10–9 9.61156× 10–7 1.334979× 10–6

10 4.531374× 10–10 6.070393× 10–10 4.964396× 10–7 6.874885× 10–7

12 1.6627626× 10–10 2.6921354× 10–10 3.126976× 10–7 4.317349× 10–7



Hadhoud et al. Advances in Difference Equations        (2021) 2021:439 Page 18 of 28

Table 2 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 1 when 0 ≤ x ≤ 1, α1 = α2 = 0.4

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

6 5.111073× 10–7 5.776153× 10–7 4.664657× 10–6 6.426346× 10–6

8 7.2802825× 10–9 8.5466062× 10–9 3.26657× 10–6 4.48675× 10–6

10 2.0017725× 10–9 2.8590415× 10–9 2.82207× 10–6 3.86984× 10–6

12 5.450265× 10–11 8.6848639× 10–11 2.64634× 10–6 3.625546× 10–6

Table 3 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 1 when 0 ≤ x ≤ 1, α1 = α2 = 0.7

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

6 5.241454× 10–7 6.069457× 10–7 2.979× 10–5 4.06772× 10–5

8 3.827265× 10–8 5.596145× 10–8 2.84745× 10–5 3.89513× 10–5

10 1.167764× 10–8 1.548701× 10–8 2.80562× 10–5 3.83997× 10–5

12 9.377883× 10–9 1.248364× 10–8 2.789× 10–5 3.81738× 10–5

Figure 1 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 1 at α1 = α2 = 0.1, N = 12, 0≤ x ≤ 1

Figure 2 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 1 at α1 = α2 = 0.4, N = 12, 0≤ x ≤ 1

Figure 3 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using
non-polynomial B-spline method of Example 1 at α1 = α2 = 0.7, N = 12, 0≤ x ≤ 1
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Table 4 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 1 when 0 ≤ x ≤ 3, α1 = α2 = 0.2

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

6 5.114284× 10–4 4.209808× 10–4 4.2199× 10–4 3.88868× 10–4

8 9.3093919× 10–6 6.3927994× 10–6 1.56385× 10–4 1.51978× 10–4

10 5.2277249× 10–7 3.66521× 10–7 7.1066× 10–5 6.84438× 10–5

12 5.0689196× 10–8 3.5408358× 10–8 3.72193× 10–5 3.57879× 10–5

Table 5 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 1 when 0 ≤ x ≤ 3, α1 = α2 = 0.4

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

6 4.9796269× 10–4 4.182894× 10–4 3.83958× 10–4 3.6628× 10–4

8 9.129036× 10–6 6.416412× 10–6 1.47293× 10–4 1.44863× 10–4

10 5.17690046× 10–7 3.590876× 10–7 7.12879× 10–5 6.89816× 10–5

12 5.0265239× 10–8 3.5125245× 10–8 4.1178× 10–5 3.911× 10–5

Table 6 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 1 when 0 ≤ x ≤ 3, α1 = α2 = 0.6

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

6 4.832349× 10–4 4.14606× 10–4 3.747639× 10–4 3.6251× 10–4

8 8.926735× 10–6 6.440879× 10–6 1.67084× 10–4 1.6139× 10–4

10 5.114513× 10–7 3.48196× 10–7 1.008135× 10–4 9.1704× 10–5

12 4.97548× 10–9 3.6180436× 10–8 7.48392× 10–5 6.659× 10–5

Figure 4 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 1 at α1 = α2 = 0.2, N = 12, 0≤ x ≤ 3

Figure 5 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 1 at α1 = α2 = 0.4, N = 12, 0≤ x ≤ 3
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Figure 6 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 1 at α1 = α2 = 0.6, N = 12, 0≤ x ≤ 3

Table 7 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 2 when 0 ≤ x ≤ 1, α1 = α2 = 0.01

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

5 6.9409× 10–8 8.706985× 10–8 2.83686× 10–8 3.931429× 10–8

7 3.1640527× 10–10 4.685609× 10–10 1.24892× 10–8 1.716939× 10–8

9 5.6879768× 10–11 7.195683× 10–11 8.169012× 10–9 1.112287× 10–8

11 2.1982224× 10–11 2.821826× 10–11 6.625736× 10–9 9.039646× 10–9

Table 8 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 2 when 0 ≤ x ≤ 1, α1 = α2 = 0.1

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

5 7.8708446× 10–8 9.936349× 10–8 1.01813× 10–7 1.3893× 10–7

7 3.37123× 10–9 4.26876× 10–9 8.638697× 10–8 1.17964× 10–7

9 6.065073× 10–10 7.651944× 10–10 8.218934× 10–8 1.12234× 10–7

11 2.817315× 10–10 3.645546× 10–10 8.06838× 10–8 1.10175× 10–7

Example 2 Consider Eqs. (1) and (2) with initial-boundary conditions:

u(x, 0) = v(x, 0) = 0, a ≤ x ≤ b

u(a, t) = v(a, t) =
t3

e–a + 2
, u(b, t) =

t3

e–b + 2
, t > 0,

where

f (x, t) =
3!t3–α1 sin(e–x)

(e–x + 2)Γ (4 – α1)
–

2t3e–2x

(e–x + 2)3 +
t3e–x

(e–x + 2)2 ,

g(x, t) =
3!t3–α2 sin(e–x)

(e–x + 2)Γ (4 – α2)
–

2t3e–2x

(e–x + 2)3 +
t3e–x

(e–x + 2)2 .

The exact solutions of this problem are u(x, t) = v(x, t) = t3

e–x+2 .

Example 2 is solved by the presented methods for two sets of parameters: α1 = α2 =
0.01, 0.1, 0.5 on [0, 1] × [0, 1] and α1 = α2 = 0.05, 0.2, 0.4 on [0, 3] × [0, 1]. Tables 7 to 9 list
the L2 and L∞ error norms, and Figs. 7 to 9 illustrate the approximate solutions and the ab-
solute errors of suggested methods for the first set of parameters. Results achieved by the
established methods with respect to the second set of parameters are shown in Tables 10
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Table 9 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 2 when 0 ≤ x ≤ 1, α1 = α2 = 0.5

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

5 6.448889× 10–8 7.7196524× 10–8 3.74912× 10–6 5.119798× 10–6

7 1.38115× 10–8 1.8558× 10–8 3.73579× 10–6 5.1× 10–6

9 6.20399× 10–9 8.2554947× 10–9 3.732156× 10–6 5.094726× 10–6

11 2.63339× 10–9 3.515616× 10–9 3.730849× 10–6 5.09279× 10–6

Figure 7 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at α1 = α2 = 0.01, N = 11, 0≤ x ≤ 1

Figure 8 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at α1 = α2 = 0.1, N = 11, 0≤ x ≤ 1

Figure 9 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at α1 = α2 = 0.5, N = 11, 0≤ x ≤ 1

to 12 and Figs. 10 to 12. It is remarkable that in Example 2 the approximate solutions
obtained using SJSCM and the non-polynomial B-spline method are more accurate than
those obtained using the method in [27].

A comparison between the maximum absolute errors (L∞) obtained via the proposed
methods with the corresponding results obtained in [27] is displayed in Tables 13 and
14.
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Table 10 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 2 when 0 ≤ x ≤ 3, α1 = α2 = 0.05

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

5 2.75698× 10–5 2.13309× 10–5 4.007281× 10–6 3.53822× 10–6

7 1.077029× 10–6 8.115332× 10–7 1.10546× 10–6 9.276× 10–7

9 1.494298× 10–8 1.051348× 10–8 3.629646× 10–7 3.80652× 10–7

11 9.744539× 10–10 7.271968× 10–10 2.095027× 10–7 2.551637× 10–7

Table 11 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 2 when 0 ≤ x ≤ 3, α1 = α2 = 0.2

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

5 2.7154× 10–5 2.1068× 10–5 2.548224× 10–6 2.953777× 10–6

7 1.061264× 10–6 8.12598× 10–7 1.899158× 10–6 1.637765× 10–6

9 1.5098× 10–8 1.481109× 10–8 2.294514× 10–6 1.62347× 10–6

11 1.919235× 10–9 1.45927× 10–9 2.471077× 10–6 1.83265× 10–6

Table 12 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 2 when 0 ≤ x ≤ 3, α1 = α2 = 0.4

N SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

L2(U) = L2(V) L∞(U) = L∞(V) L2(U) = L2(V) L∞(U) = L∞(V)

5 2.63747× 10–5 2.047483× 10–5 1.32849× 10–5 9.403099× 10–6

7 1.039717× 10–6 8.2290569× 10–7 1.492744× 10–5 1.113938× 10–5

9 3.426634× 10–8 3.481425× 10–8 1.539241× 10–5 1.17148× 10–5

11 4.1872258× 10–9 3.043468× 10–9 1.555968× 10–5 1.1919× 10–5

Figure 10 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at α1 = α2 = 0.05, N = 11, 0≤ x ≤ 3

Figure 11 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at α1 = α2 = 0.2, N = 11, 0≤ x ≤ 3
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Figure 12 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 2 at α1 = α2 = 0.4, N = 11, 0≤ x ≤ 3

Table 13 L∞ error norm for u(x, t) = v(x, t) of Example 2 with 0 ≤ x ≤ 3, α1 = α2 = 0.4, N = 5 and
μ = η = 0

k Non-polynomial TQF [27, Table 1] FDM [27, Table 1]

1/64 3.14429× 10–4 1.62969572× 10–3 1.58537183× 10–2

1/128 1.04448× 10–4 4.07935306× 10–4 5.42638453× 10–3

1/256 3.30541× 10–5 9.40924121× 10–5 1.82754471× 10–3

1/512 9.4031× 10–6 1.58381076× 10–5 6.04886113× 10–4

Table 14 L∞ error norm for u(x, t) = v(x, t) of Example 2 with 0 ≤ x ≤ 3, α1 = α2 = 0.4 and μ = η = 0

N SJSCM
(M = N)

TQF (τ = 1/128)
[27, Table 2]

FDM (τ = 1/128)
[27, Table 2]

3 4.14476× 10–4 3.21997018× 10–4 3.02999632× 10–3

4 1.83386× 10–4 2.32880457× 10–4 2.48938916× 10–3

5 2.04748× 10–5 1.24955778× 10–4 1.51170703× 10–3

7 8.229057× 10–7 – –

Example 3 Finally, consider Eqs. (1) and (2) with the initial-boundary conditions:

u(x, 0) = v(x, 0) = 0, a ≤ x ≤ b

u(a, t) = v(a, t) = t6e–a, u(b, t) = t6e–b, t > 0,

where

f (x, t) =
6!t6–α1 e–x

Γ (7 – α1)
– t6e–x,

g(x, t) =
6!t6–α2 e–x

Γ (7 – α2)
– t6e–x.

The exact solutions of Eqs. (1) and (2) are u(x, t) = v(x, t) = t6e–x.

Example 3 is solved by both suggested algorithms in two space intervals, firstly, when
x ∈ [0, 3] and t = 1. Tables 15 to 17 exhibit the L2 and L∞ error norms for u(x, t) = v(x, t)
at α1 = α2 = 0.01, 0.1, and 0.5 with the various choices of N . We can see that the proposed
method’s numerical results achieve greater precision as the number of grid points in both
space and time directions increases. Figures 13 to 15 show the graphical results of numer-
ical solutions and absolute error distributions for u(x, t) = v(x, t) at α1 = α2 = 0.01, 0.1, 0.5.
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Table 15 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 3 when 0 ≤ x ≤ 3, α1 = α2 = 0.01

SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

N L2(U) = L2(V) L∞(U) = L∞(V) N L2(U) = L2(V) L∞(U) = L∞(V)

5 2.000018× 10–4 1.55667× 10–4 15 9.35962× 10–7 7.7069× 10–7

6 1.597× 10–5 1.258× 10–5 18 3.955739× 10–7 3.25713× 10–7

8 8.652582× 10–8 5.769225× 10–8 21 1.529046× 10–7 1.25894× 10–7

10 3.859747× 10–10 3.023012× 10–10 25 5.536353× 10–9 3.76237× 10–9

Table 16 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 3 when 0 ≤ x ≤ 3, α1 = α2 = 0.1

SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

N L2(U) = L2(V) L∞(U) = L∞(V) N L2(U) = L2(V) L∞(U) = L∞(V)

5 1.91879× 10–4 1.45959× 10–4 6 2.494759× 10–5 2.064916× 10–5

6 1.57354× 10–5 1.25669× 10–5 8 7.733064× 10–6 6.378449× 10–6

8 8.558197× 10–8 5.786146× 10–8 10 2.225244× 10–6 1.835108× 10–6

10 3.466398× 10–10 2.693946× 10–10 12 4.146772× 10–8 3.77408× 10–8

Table 17 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 3 when 0 ≤ x ≤ 3, α1 = α2 = 0.5

SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

N L2(U) = L2(V) L∞(U) = L∞(V) N L2(U) = L2(V) L∞(U) = L∞(V)

5 1.432179× 10–4 8.154948× 10–5 6 6.550636× 10–5 5.571277× 10–5

6 1.447048× 10–5 1.23073× 10–5 8 7.67568× 10–5 6.420748× 10–5

8 7.9814818× 10–8 5.851884× 10–8 10 8.0361074× 10–5 6.844183× 10–5

10 3.384447× 10–10 2.633776× 10–10 12 8.179127× 10–5 6.90079× 10–5

Figure 13 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3 at α1 = α2 = 0.01, 0≤ x ≤ 3

Figure 14 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3 at α1 = α2 = 0.1, 0≤ x ≤ 3

Secondly, when x ∈ [0, 1] and t = 1 the L2 and L∞ error norms at α1 = α2 = 0.2, 0.4, and 0.5
are reported in Tables 18 to 20, and the corresponding graphical solutions and absolute
errors distributions are shown in Figs. 16 to 18.
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Figure 15 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3 at α1 = α2 = 0.5, 0≤ x ≤ 3

Table 18 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 3 when 0 ≤ x ≤ 1, α1 = α2 = 0.2

SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

N L2(U) = L2(V) L∞(U) = L∞(V) N L2(U) = L2(V) L∞(U) = L∞(V)

5 1.524323× 10–5 1.884563× 10–5 6 1.880435× 10–6 2.5662615× 10–6

6 1.3191225× 10–8 1.64544× 10–8 8 1.935247× 10–6 2.6462824× 10–6

8 1.5476466× 10–10 1.983014× 10–10 10 1.952716× 10–6 2.670859× 10–6

10 9.0724022× 10–12 1.141775× 10–11 12 1.959632× 10–6 2.679572× 10–6

Table 19 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 3 when 0 ≤ x ≤ 1, α1 = α2 = 0.4

SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

N L2(U) = L2(V) L∞(U) = L∞(V) N L2(U) = L2(V) L∞(U) = L∞(V)

5 4.948996× 10–5 6.13079× 10–5 6 1.21119× 10–5 1.65186× 10–5

6 1.247094× 10–8 1.542544× 10–8 8 1.21657× 10–5 1.66207× 10–5

8 3.80395× 10–11 5.983358× 10–11 10 1.218289× 10–5 1.6646× 10–5

10 1.830749× 10–11 2.80379× 10–11 12 1.218968× 10–5 1.6649× 10–5

Table 20 L2 and L∞ error norms for u(x, t) = v(x, t) of Example 3 when 0 ≤ x ≤ 1, α1 = α2 = 0.6

SJSCM (μ = η = 0,M = N) Non-polynomial, k = 1/512

N L2(U) = L2(V) L∞(U) = L∞(V) N L2(U) = L2(V) L∞(U) = L∞(V)

5 1.0633419× 10–4 1.32559× 10–4 6 6.033058× 10–5 8.22097× 10–5

6 1.342882× 10–8 1.3744817× 10–8 8 6.03903× 10–5 8.24068× 10–5

8 6.013554× 10–10 8.475583× 10–10 10 6.040936× 10–5 8.24265× 10–5

10 3.003675× 10–11 4.244149× 10–11 12 6.041691× 10–5 8.23957× 10–5

Figure 16 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3 at α1 = α2 = 0.2, 0≤ x ≤ 1

Note The computations associated with the experiments discussed above were per-
formed in Wolfram Mathematica 12.2 on a PC with Windows 64-bit OS + processor Intel
Core i7 ∼2.4 GHz. The time taken to execute the non-polynomial algorithm is 14.3906
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Figure 17 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3 at α1 = α2 = 0.4, 0≤ x ≤ 1

Figure 18 (a) and (b) represent approximate solution and absolute error distribution, respectively, using
SJSCM. (c) and (d) represent approximate solution and absolute error distribution, respectively, using the
non-polynomial B-spline method of Example 3 at α1 = α2 = 0.6, 0≤ x ≤ 1

Sec., 29.2656 Sec., and 29.7344 Sec. at N = 5, N = 9, and N = 11, respectively, for SJSCM
the time is 1.1875 Sec., 24.75 Sec., and 77.2813 Sec. at N = 5, N = 9, and N = 11, respec-
tively.

5 Conclusion
In this paper, we solved the coupled TFBEs by two different methods. Firstly, we developed
the non-polynomial B-spline method based on L1-formula to approximate the Liouville–
Caputo time-fractional derivative. The study of stability using the Von Neumann method
showed that the scheme is unconditionally stable. Secondly, we applied the shifted Jacobi
spectral collocation method based on the operational matrix of fractional derivatives in
the Liouville–Caputo sense with the aid of Jacobi–Gauss quadrature. From the tables and
figures introduced in Sect. 4, it is clear that the SJSCM is more accurate and stable than
the non-polynomial B-spline method for all different values α1, α2, and N . We also note
that the accuracy of the non-polynomial B-spline method increases whenever the value
of α1 and α2 decreases. The validity is tested by solving three problems of the presented
methods. The elicited results confirm the high precision of the methods presented.
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