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Abstract
In this paper, a Hessian type system is studied. After converting the existence of an
entire solution to the existence of a fixed point of a continuous mapping, the
existence of entire k-convex radial solutions is established by the monotone iterative
method. Moreover, a nonexistence result is also obtained.
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1 Introduction
In this paper, we study the existence of entire k-convex radial solutions to the following
problem of Hessian type system:

⎧
⎪⎪⎨

⎪⎪⎩

σk(λ(D2u + μ|∇u|I)) = p(|x|)f1(u)f2(v), x ∈ B1(0),

σl(λ(D2v + ν|∇v|I)) = q(|x|)g1(u)g2(v), x ∈ B1(0),

u = v = 0, x ∈ ∂B1(0),

(1.1)

where k, l = 1, 2, . . . , N , μ,ν ≥ 0 are constants, B1(0) is the unit ball in R
N , for any N × N

real symmetric matrix A, λ(A) denotes the eigenvalues of A, D2u(x) = ( ∂2u(x)
∂xi∂xj

) denotes

the Hessian matrix of the function u ∈ C2(B1(0)), ∇u denotes the gradient of u, and
σk(λ) =

∑
1≤i1<···<ik≤N λi1 · · ·λik denotes the kth elementary symmetric function of λ =

(λ1, . . . ,λN ) ∈R
N .

For p, q, f1, f2, g1, g2, we introduce the following conditions:
(H1) p, q ∈ C([0, 1], (0, +∞)). f1, f2, g1, g2 ∈ C((–∞, 0], [0, +∞)) are decreasing.
(H2) For any a > 0, the integral

∫ –a
–∞

dτ

(f1(τ )f2(τ ))
1
k +(g1(τ )g2(τ ))

1
l

is divergent.

(H3) For any a > 0, the integral
∫ 0

–a
dτ

(f1(τ )f2(τ ))
1
k +(g1(τ )g2(τ ))

1
l

is divergent.

Denote

�k :=
{
λ ∈R

N : σj(λ) > 0, 1 ≤ j ≤ k
}

.

We say that a function u ∈ C2(B1(0)) is k-convex in B1(0) if λ(D2u(x)) ∈ �k for all x ∈ B1(0).
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In (1.1), if μ = 0 and f2(v) ≡ 1, the first equation in the system becomes the following
k-Hessian type equation:

σk
(
λ
(
D2u

))
= p

(|x|)f1(u); (1.2)

if μ = ν = 0 and f1(u) = g2(v) ≡ 1, the system becomes the following coupling k-Hessian
system:

⎧
⎨

⎩

σk(λ(D2u)) = p(|x|)f2(v),

σl(λ(D2v)) = q(|x|)g1(u).
(1.3)

Related to k-Hessian equations, if k = 1 the k-Hessian equations become the well-known
Laplacian equations, and if k = N the k-Hessian equations become the Monge–Ampère
equations. Concerning Laplacian equations and Monge–Ampère equations, there are a
great number of research papers, see for examples [1, 6, 7, 22] and the references therein.
Here we specially mention Keller [15], Osserman [21], and Lair and Wood [17] for Lapla-
cian equations and Cheng and Yau [2] and Laser and McKenna [19] for Monge–Ampère
equations. Similar situations occur for coupling k-Hessian system (1.3), although in this
case there are not so many research papers. Here we only mention Lair and Wood [18]
and Cîrstea and Rădulescu [3] for coupling Laplacian systems and Wang and An [24] and
Zhang and Qi [26] for coupling Monge–Ampère systems.

For general k-Hessian equation (1.2), when p ≡ 1 and f (u) = uγ k , γ > 1, Jin, Li, and Xu
[13] showed the nonexistence of entire k-convex positive solutions. When p ≡ 1, Ji and
Bao [11] gave necessary and sufficient conditions on the existence of entire positive k-
convex radial solutions. If we generalize p(|x|)f (u) to f (x, u), de Oliveira, do Ó, and Ubilla
obtained the existence of k-convex radial solutions in the case of supercritical nonlinear-
ity by means of variational techniques (see [5] and the references therein for research in
this direction). For general k-Hessian equation (1.2) and coupling k-Hessian system (1.3),
Zhang and Zhou [27] obtained several results on the existence of entire positive k-convex
radial solutions. We refer to the papers of Feng and Zhang [8] and Gao, He, and Ran [9]
and the references therein for research on coupling k-Hessian system (1.3).

It is obvious that the k-Hessian type equation

σk
(
λ
(
D2u + μ|∇u|I)) = p

(|x|)f (u)

is a generalization of k-Hessian equation (1.2), but it is a special case of the following fully
nonlinear Hessian equation:

F
(
λ
(
D2u + A(x, u,∇u)

))
= f (x, u,∇u). (1.4)

See Guan and Jiao [10] and Jiang and Trudinger [12] and the references therein for research
on fully nonlinear Hessian equation (1.4). Here we also want to mention the work of Dai
[4] for similar study.

Inspired by the works above, and as we know that now there are no papers on the prob-
lem of k-Hessian type system (1.1), we obtain the following results in this paper.
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Theorem 1.1 Under conditions (H1) and (H2), if f1(0)g2(0) �= 0 and f2(0) + g1(0) �= 0, then
problem (1.1) admits an entire k-convex radial solution (u, v) ∈ C2(B1(0)) × C2(B1(0)).

Remark 1.1 In the case of f1(0)g2(0) = 0, if f1(0) = g2(0) = 0, then there is a trivial solution
(u, v) = (0, 0) to problem (1.1); if f1(0) = 0 or g2(0) = 0, then there is a semi-trivial solution
(u, v) = (0, v) or (u, v) = (u, 0) to problem (1.1); moreover, the semi-trivial solution may
become trivial if f1(0) = 0 with g1(0) = 0 or g2(0) = 0 with f2(0) = 0.

In the case of f2(0) + g1(0) = 0, there is a trivial solution (u, v) = (0, 0) to problem (1.1).

Theorem 1.2 Under conditions (H1) and (H3), problem (1.1) admits no entire k-convex
radial solution (u, v) ∈ C2(B1(0)) × C2(B1(0)).

Remark 1.2 In this case, f1(0)f2(0) = g1(0)g2(0) = 0, and there is a trivial solution (u, v) =
(0, 0) to problem (1.1).

2 Preliminaries
In this section, we give some preliminary results which will be used to prove the main
results in the next section.

Lemma 2.1 Assume ϕ(r) ∈ C2[0, 1] with ϕ′(0) = 0. Then, for u(x) = ϕ(r), there holds that
u ∈ C2(B1(0)) and

λ
(
D2u + η|∇u|I) =

⎧
⎨

⎩

(ϕ′′(r) + ηϕ′(r), ( 1
r + η)ϕ′(r), . . . , ( 1

r + η)ϕ′(r)), r ∈ (0, 1],

(ϕ′′(0),ϕ′′(0), . . . ,ϕ′′(0)), r = 0,

and further

σk
(
λ
(
D2u + η|∇u|I))

=

⎧
⎨

⎩

Ck–1
N–1(ϕ′′(r) + ηϕ′(r))(( 1

r + η)ϕ′(r))k–1 + Ck
N–1(( 1

r + η)ϕ′(r))k , r ∈ (0, 1],

Ck
N (ϕ′′(0))k , r = 0,

where Ck
N = N !

k!(N–k)! .

Proof It is immediate that, for x �= 0, 1 ≤ i, j ≤ N ,

∂u(x)
∂xi

=
(

ϕ′(r)
r

)

xi

and

∂2u(x)
∂xi∂xj

=
(

ϕ′′(r)
r2

)

xixj –
(

ϕ′(r)
r3

)

xixj +
(

ϕ′(r)
r

)

δij.

Further if define

∂u(0)
∂xi

= 0,
∂2u(0)
∂xi∂xj

= ϕ′′(0)δij,

then u ∈ C2(B1(0)).
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Now it is easy to show the two equalities for λ(D2u +η|∇u|I) and σk(λ(D2u +η|∇u|I)). �

Lemma 2.2 Let f ∈ C(–∞, 0] be decreasing. Assume that ϕ ∈ C0[0, 1] ∩ C1(0, 1] is a solu-
tion of the Cauchy problem

⎧
⎨

⎩

ϕ′(r) = ( k
Ck–1

N–1
e–ψk,η(r) ∫ r

0 eψk,η(s) sk–1p(s)
(1+ηs)k–1 f (ϕ(s)) ds)

1
k , 0 < r < 1,

ϕ(1) = 0,

where

ψk,η(r) =
k

Ck–1
N–1

(
Ck

Nηr + Ck
N–1 ln r

)
.

Then ϕ ∈ C2[0, 1], and it satisfies the problem

⎧
⎨

⎩

Ck–1
N–1ϕ

′′(r)(ϕ′(r))k–1r + (Ck
Nηr + Ck

N–1)(ϕ′(r))k = rk p(r)
(1+ηr)k–1 f (ϕ(r)), 0 < r < 1,

ϕ′(0) = 0.

Furthermore, if ϕ is nontrivial, i.e., ϕ(r) < 0 for 0 ≤ r < 1, then

λr :=
(

ϕ′′(r) + ηϕ′(r),
(

1
r

+ η

)

ϕ′(r), . . . ,
(

1
r

+ η

)

ϕ′(r)
)

∈ �k

for 0 ≤ r < 1.

Proof It is easy to see that ϕ(r) ∈ C2[0, 1].
From

ϕ′(r) =
(

k
Ck–1

N–1
e–ψk,η(r)

∫ r

0
eψk,η(s) sk–1p(s)

(1 + ηs)k–1 f
(
ϕ(s)

)
ds

) 1
k

we have

(
ϕ′(r)

)k =
k

Ck–1
N–1

e–ψk,η(r)
∫ r

0
eψk,η(s) sk–1p(s)

(1 + ηs)k–1 f
(
ϕ(s)

)
ds,

and further differentiating with respect to r we have

Ck–1
N–1ϕ

′′(r)
(
ϕ′(r)

)k–1r +
(
Ck

Nηr + Ck
N–1

)(
ϕ′(r)

)k =
rkp(r)

(1 + ηr)k–1 f
(
ϕ(r)

)
.

If ϕ is nontrivial, it is easy to see that ϕ is increasing, so for 0 ≤ r < 1 we conclude ϕ(r) <
ϕ(1) = 0, f (ϕ(r)) > f (ϕ(1)) ≥ 0 and further

σk(λr) = f
(
ϕ(r)

)
> 0 for 0 ≤ r < 1.

By the properties of kth elementary symmetric functions (see for example [20]), we know
σj(λr) > 0 for 1 ≤ j < k and 0 ≤ r < 1. Therefore we conclude the lemma. �
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3 Proofs of the main results
In this section, we prove the main results in this paper, i.e., the existence and nonexistence
of entire k-convex radial solutions for problem (1.1).

Proof of Theorem 1.1 From the system

⎧
⎨

⎩

Ck–1
N–1u′′(r)(u′(r))k–1r + (Ck

Nμr + Ck
N–1)(u′(r))k = rk p(r)

(1+μr)k–1 f1(u(r))f2(v(r)),

Cl–1
N–1v′′(r)(v′(r))l–1r + (Cl

Nνr + Cl
N–1)(v′(r))l = rlq(r)

(1+νr)l–1 g1(u(r))g2(v(r)),

we get

⎧
⎪⎨

⎪⎩

u′(r) = ( k
Ck–1

N–1
e–ψk,μ(r) ∫ r

0 eψk,μ(s) sk–1p(s)
(1+μs)k–1 f1(u(s))f2(v(s)) ds)

1
k ,

v′(r) = ( l
Cl–1

N–1
e–ψl,ν (r) ∫ r

0 eψl,ν (s) sl–1q(s)
(1+νs)l–1 g1(u(s))g2(v(s)) ds)

1
k ,

furthermore we have
⎧
⎪⎨

⎪⎩

u(r) =
∫ r

1 ( k
Ck–1

N–1
e–ψk,μ(t) ∫ t

0 eψk,μ(s) sk–1p(s)
(1+μs)k–1 f1(u(s))f2(v(s)) ds)

1
k dt,

v(r) =
∫ r

1 ( l
Cl–1

N–1
e–ψl,ν (t) ∫ t

0 eψl,ν (s) sl–1q(s)
(1+νs)l–1 g1(u(s))g2(v(s)) ds)

1
k dt.

Define

L(u, v)(r) =

⎛

⎝

∫ r
1 ( k

Ck–1
N–1

e–ψk,μ(t) ∫ t
0 eψk,μ(s) sk–1p(s)

(1+μs)k–1 f1(u(s))f2(v(s)) ds)
1
k dt

∫ r
1 ( l

Cl–1
N–1

e–ψl,ν (t) ∫ t
0 eψl,ν (s) sl–1q(s)

(1+νs)l–1 g1(u(s))g2(v(s)) ds)
1
k dt

⎞

⎠

T

,

then we need only to find a fixed point of L. Here we use the monotone iterative method
to find such a fixed point.

It is easy to show that L is a mapping from C2[0, 1] × C2[0, 1] to C2[0, 1] × C2[0, 1], and
it is continuous on C[0, 1] × C[0, 1].

Let {un} and {vn} be the sequence of continuous functions defined by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0(r) = 0,

v0(r) = 0,

un(r) =
∫ r

1 ( k
Ck–1

N–1
e–ψk,μ(t) ∫ t

0 eψk,μ(s) sk–1p(s)
(1+μs)k–1 f1(un–1(s))f2(vn–1(s)) ds)

1
k dt,

vn(r) =
∫ r

1 ( l
Cl–1

N–1
e–ψl,ν (t) ∫ t

0 eψl,ν (s) sl–1q(s)
(1+νs)l–1 g1(un–1(s))g2(vn–1(s)) ds)

1
k dt.

It is easy to see that un and vn are decreasing on [0, 1] for n > 1 and by induction {un} and
{vn} are decreasing as well, i.e., un+1(r) < un(r) and vn+1(r) < vn(r) for 0 ≤ r < 1 and n ≥ 1.

By condition (H1), for each 0 < r < 1 and n > 1,

0 < u′
n(r)

=
(

k
Ck–1

N–1
e–ψk,μ(r)

∫ r

0
eψk,μ(s) sk–1p(s)

(1 + μs)k–1 f1
(
un–1(s)

)
f2

(
vn–1(s)

)
ds

) 1
k
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≤ C(N , k, p)
(
f1

(
un(r)

)
f2

(
vn(r)

)) 1
k

≤ C(N , k, p)
(
f1

(
un(r) + vn(r)

)
f2

(
un(r) + vn(r)

)
ds

) 1
k ,

where C(N , k, p) is a constant dependent on N , k, and p.
Similarly,

0 < v′
n(r) ≤ C(N , l, q)

(
g1

(
un(r) + vn(r)

)
g2

(
un(r) + vn(r)

)) 1
l

and further

0 <
(
un(r) + vn(r)

)′

≤ C(N , k, l, p, q)
((

f1
(
un(r) + vn(r)

)
f2

(
un(r) + vn(r)

)) 1
k

+
(
g1

(
un(r) + vn(r)

)
g2

(
un(r) + vn(r)

)) 1
l
)
,

(3.1)

i.e.,

0 <
(un(r) + vn(r))′

(f1(un(r) + vn(r))f2(un(r) + vn(r)))
1
k + (g1(un(r) + vn(r))g2(un(r) + vn(r)))

1
l

≤ C(N , k, l, p, q),

where C(N , l, q) and C(N , k, l, p, q) are constants dependent on N , l, q and N , k, l, p, q,
respectively.

Integrating from 1 to r, we have

∫ un(r)+vn(r)

0

dτ

(f1(τ )f2(τ ))
1
k + (g1(τ )g2(τ ))

1
l

≥ –C(N , k, l, p, q). (3.2)

By condition (H2), denote

F(w) =
∫ w

0

dτ

(f1(τ )f2(τ ))
1
k + (g1(τ )g2(τ ))

1
l

,

then F is continuous and increasing on (–∞, 0], and it has an inverse function F–1. From
(3.2), we have

F–1(–C(N , k, l, p, q)
) ≤ un(r) + v(r) ≤ 0

for 0 ≤ r ≤ 1 and n ≥ 1.
By condition (H1) and (3.1), we have for n ≥ 1

0 <
(
un(r) + vn(r)

)′

≤ C(N , k, l, p, q)
(

max
F–1(–C(N ,k,l,p,q))≤w≤0

((
f1(w)f2(w)

) 1
k +

(
g1(w)g2(w)

) 1
l
))

= C(N , k, l, p, q, f1, f2, g1, g2),



Cui Advances in Difference Equations        (2021) 2021:462 Page 7 of 9

where C(N , k, l, p, q, f1, f2, g1, g2) is a constant dependent on N , k, l, p, q, f1, f2, g1, and g2. So
{un} and {vn} are bounded in C1[0, 1] and by Arzela–Ascoli theorem {un} and {vn} have
convergent subsequences (still denoted by {un} and {vn}) in C[0, 1]. Denote

u(r) = lim
n→+∞ un(r),

v(r) = lim
n→+∞ vn(r).

By the continuity of L on C[0, 1] × C[0, 1], from

(un, vn) = L(un–1, vn–1),

we conclude that (u, v) is a fixed point of L after letting n → +∞. �

Proof of Theorem 1.2 We prove by contradiction. Suppose that (u, v) is a k-convex radial
solution to problem (1.1). Then u and v are decreasing on [0, 1]. For 0 < r < 1, by Lemma 2.2
we can get

0 < u′(r) ≤ C(N , k, p)
(
f1

(
u(r) + v(r)

)
g2

(
u(r) + v(r)

)) 1
k ,

0 < v′(r) ≤ C(N , l, q)
(
g1

(
u(r) + v(r)

)
g2

(
u(r) + v(r)

)) 1
l .

So

0 <
(u(r) + v(r))′

(f1(u(r) + v(r))f2(u(r) + v(r)))
1
k + (g1(u(r) + v(r))g2(u(r) + v(r)))

1
l

≤ C(N , k, l, p, q).

Integrating for 0 to 1, we have

0 <
∫ 0

u(0)+v(0)

dτ

(f1(τ )f2(τ ))
1
k + (g1(τ )g2(τ ))

1
l

≤ C(N , k, l, p, q),

which contradicts condition (H3). Now we finish the proof. �

At the end of this section, we give some examples for the sake of clearly understanding
the results in this paper.

Assume that α, β , α1, β1, α2, and β2 are positive.

Example 3.1 If α1 + β1 ≤ k and α2 + β2 ≤ l, then the following problem admits an entire
k-convex radial solution (u, v) ∈ C2(B1(0)) × C2(B1(0)):

⎧
⎪⎪⎨

⎪⎪⎩

σk(λ(D2u + μ|∇u|I)) = (1 + |x|)α(1 + |u|)α1 |v|β1 , x ∈ B1(0),

σl(λ(D2v + ν|∇v|I)) = (1 + |x|)β (1 + |u|)α2 (1 + |v|)β2 , x ∈ B1(0),

u = v = 0, x ∈ ∂B1(0).
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Example 3.2 If α1 + β1 ≥ k and α2 + β2 ≥ l, then the following problem admits no entire
k-convex radial solution (u, v) ∈ C2(B1(0)) × C2(B1(0)):

⎧
⎪⎪⎨

⎪⎪⎩

σk(λ(D2u + μ|∇u|I)) = (1 + |x|)α|u|α1 |v|β1 , x ∈ B1(0),

σl(λ(D2v + ν|∇v|I)) = (1 + |x|)β |u|α2 |v|β2 , x ∈ B1(0),

u = v = 0, x ∈ ∂B1(0).

4 Conclusion
In this paper, by converting the existence of an entire solution to the existence of a fixed
point of a continuous mapping, we establish the existence of entire k-convex radial so-
lutions for a Hessian type system. Moreover the nonexistence of entire k-convex radial
solutions is also obtained. In the process of obtaining the existence of entire k-convex ra-
dial solutions, we utilize the monotone iterative method. By different fixed point theorems
(such as the ones in [14] and [25]) or different methods (such as degree theory in [16] and
the regularization method in [23]), we may get different results on Hessian type systems.
In our opinion, it is interesting to fulfil this kind of works in the future.
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