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Abstract
In this paper, we present a new structure of the n-dimensional trigonometric cubic
B-spline collocation algorithm, which we show in three different formats: one-, two-,
and three-dimensional. These constructs are critical for solving mathematical models
in different fields. We illustrate the efficiency and accuracy of the proposed method
by its application to a few two- and three-dimensional test problems. We use other
numerical methods available in the literature to make comparisons.
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1 Introduction
We are all aware that solving partial differential equations is important in a variety of fields
as physics, chemistry, engineering, and other fields. There are two types of solutions to
these equations, analytical and numerical solutions [1–5]. Researchers have recently ap-
peared to use a variety of approaches to find these solutions, including empirical and nu-
merical methods. With the existence of models for these equations, which are difficult
to solve, especially if they are two-, three-, or higher-dimensional, this studying contin-
ued to seek these solutions. Since it was difficult for some researchers in this field to find
analytical solutions for these models of various dimensions over time, they switched to nu-
merical solutions. Several researchers have used a variety of analytical approaches to solve
these multidimensional equations; see [6–15] as examples. We are working on a method
for solving partial differential equations in two- and three-dimensional cases, as well as
other problems, using a trigonometric cubic B-spline collocation method. Our aim is a
continuation of what was done previously [16, 17]. Frazer et al. [18] started the colloca-
tion approach in 1937. After that, Bickley [19] used the collocation technique alongside
the least-squares and Galerkin strategies to consider shaky heat situation problems. Since
then, the collocation technique has been applied to a broad range of issues [20–27]. To
assume halfway differential conditions, polynomial B-splines have been used extensively
together with the collocation technique. To solve various straight and nonlinear boundary
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esteem problems, cubic B-splines, quasi-B-splines, quartic B-splines, quintic B-splines,
and other forms of B-splines are used in conjunction with the collocation technique [20–
25]. Collocation strategies such as Haar wavelet collocation technique [28], a slope repli-
cating component collocation technique [29], and Newton premise capacities collocation
technique [30] are also gaining popularity for illuminating various conditions.

In this paper, we present an n-dimensional trigonometric cubic B-spline collocation al-
gorithm with some numerical examples to investigate the efficacy and accuracy of the
method.

The paper is structured as follows. In Sect. 2, we present formulations of n-dimensional
trigonometric cubic B-splines. Section 3 contains the error estimates. In Sect. 4, we intro-
duce numerical examples. Finally, we give the conclusions.

2 Construct trigonometric cubic B-spline formulas
In this section, we introduce the forms for n-dimensional trigonometric cubic B-splines.

2.1 One-dimensional trigonometric cubic B-spline [31]
Let a ≤ x ≤ b, and let φi(x) be trigonometric cubic B-spline with knots at the points xi.
Then the set of cubic B-splines φ–1(x),φ0(x), . . . ,φN–1(x),φN (x), φN+1 serves as a basis for
functions specified over a range of values. The approximation UN (x) of U(x) using these
splines is defined as

UN (x) =
N+1∑

i=–1

χiφi(x), (1)

where χi are unknown coefficients. We define Ui, dUi
dx , d2Ui

dx2 by

Ui = ℵ1χi–1 + ℵ2χi + ℵ1χi+1,

dUi

dx
= –ℵ3χi–1 + ℵ3χi+1,

d2Ui

dx2 = ℵ4χi–1 + ℵ5χi + ℵ4χi+1,

(2)

where

ℵ1 = sin2
(

h
2

)
csc(h) csc

(
3h
2

)
, ℵ2 =

2
1 + 2 cos(h)

, ℵ3 =
3
4

csc

(
3h
2

)
,

ℵ4 =
3((1 + 3 cos(h)) csc2( h

2 ))
16(2 cos( h

2 ) + cos( 3h
2 ))

, ℵ5 =
–3 cot2( h

2 )
2 + 4 cos(h)

.

The above analysis yields the following theorem.

Theorem 1 The solution of one-dimensional DE using the collocation method with basis
trigonometric cubic B-spline can be determined by equation (2).

2.2 Two-dimensional trigonometric cubic B-spline
In this subsection, we give a formula for a two-dimensional trigonometric cubic B-spline
on a rectangular grid divided into regular rectangular finite elements on both sides.
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h = �x, k = �y by the knots (xm, yn), m = 0, 1, . . . , M, n = 0, 1, . . . , N . The approximation
UN (x, y) of U(x, y) is given by

UN (x, y) =
M+1∑

m=–1

N+1∑

n=–1

χm,nBm,n(x, y), (3)

where χm,n are the amplitudes of the trigonometric cubic B-splines Bm,n(x, y) given by

Bm,n(x, y) = φm(x)φn(y).

Peaks on the knot (xm, yn) and φm(x),φn(y) are identical in form to the one-dimensional
trigonometric cubic B-splines. Then Um,n, ∂Um,n

∂x , ∂Um,n
∂y , ∂2Um,n

∂x2 , ∂2Um,n
∂y2 , ∂2Um,n

∂x ∂y , . . . are given
by

Um,n =
sec( h

2 ) sec( k
2 )

4(2 cos(h) + 1)(2 cos(k) + 1)

×
(

16 cos

(
h
2

)
cos

(
k
2

)
χm,n + 4 cos

(
h
2

)
χm,n–1 + 4 cos

(
h
2

)
χm,n+1

+ 4 cos

(
k
2

)
χm–1,n + 4 cos

(
k
2

)
χm+1,n + χm–1,n–1

+ χm–1,n+1 + χm+1,n–1 + χm+1,n+1

)
,

(4)

∂Um,n

∂x
= –

3 csc( 3h
2 ) sec( k

2 )
16 cos(k) + 8

(
4 cos

(
k
2

)
χm–1,n – 4 cos

(
k
2

)
χm+1,n

+ χm–1,n–1 + χm–1,n+1 – χm+1,n–1 – χm+1,n+1

)
,

∂Um,n

∂y
= –

3 sec( h
2 ) csc( 3k

2 )
16 cos(h) + 8

(
4 cos

(
h
2

)
χm,n–1 – 4 cos

(
h
2

)
χm,n+1

+ χm–1,n–1 – χm–1,n+1 + χm+1,n–1 – χm+1,n+1

)
,

(5)

∂2Um,n

∂x2 =
3 csc2( h

2 ) sec( h
2 )

32(2 cos(h) + 1)(2 cos(k) + 1)

×
(

sec

(
k
2

)(
–8 cos3

(
h
2

)
(χm,n–1 + χm,n+1) +

(
3 cos(h) + 1

)
χm–1,n+1

+
(
3 cos(h) + 1

)
χm+1,n–1

)
+

(
3 cos(h) + 1

)
sec

(
k
2

)
χm–1,n–1

+
(
3 cos(h) + 1

)
sec

(
k
2

)
χm+1,n+1 + 4

(
–8 cos3

(
h
2

)
χm,n

+
(
3 cos(h) + 1

)
χm–1,n +

(
3 cos(h) + 1

)
χm+1,n

))
,

(6)
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∂2Um,n

∂y2

=
3

32(2 cos(h) + 1)(2 cos(k) + 1)

(
–8 sec

(
h
2

)
cot2

(
k
2

)
χm+1,n

+ cot2
(

k
2

)(
sec

(
h
2

)(
3 cos(k) + 1

)
sec3

(
k
2

)(
4 cos

(
h
2

)
χm,n–1

+ χm–1,n–1 + χm–1,n+1

)
– 8 sec

(
h
2

)
χm–1,n – 32χm,n

)
+ sec

(
h
2

)

× (
3 cos(k) + 1

)
csc2

(
k
2

)
sec

(
k
2

)
χm+1,n–1 + sec

(
h
2

)(
3 cos(k) + 1

)
csc2

×
(

k
2

)
sec

(
k
2

)
χm+1,n+1 + 4

(
3 cos(k) + 1

)
csc2

(
k
2

)
sec

(
k
2

)
χm,n+1

)
,

...

(7)

The above analysis yields the following theorem.

Theorem 2 The solution of a two-dimensional DE using the collocation method with basis
trigonometric cubic B-spline can be determined by equations (4)–(7).

2.3 Three-dimensional trigonometric cubic B-spline
Now we obtain the trigonometric cubic B-spline in three dimensions on a framework
divided into components of sides h = �x, k = �y, q = �z by the knots (xm, yn, zr), m =
0, 1, . . . , M, n = 0, 1, . . . , N , r = 0, 1, . . . , R. Functions can be interpolated in terms of piece-
wise trigonometric cubic B-splines: If U(x, y, z) is a function of x, y, and z, then it can be
shown that there exists a unique approximation

UN (x, y, z) =
M+1∑

m=–1

N+1∑

n=–1

R+1∑

r=–1

χm,n,rBm,n,r(x, y, z), (8)

where χm,n,r are the trigonometric cubic B-spline amplitudes, and Bm,n,r(x, y, z) are given
by

Bm,n,r(x, y, z) = φm(x)φn(y)φr(z).

Also, φm(x),φn(y), and φr(z) have the same shape as trigonometric cubic B-splines in
one dimension. The compositions of Um,n,r , ∂Um,n,r

∂x , ∂Um,n,r
∂y , ∂Um,n,r

∂z , ∂2Um,n,r
∂x2 , ∂2Um,n,r

∂y2 , ∂2Um,n,r
∂z2 ,

∂2Um,n,r
∂x ∂y , ∂2Um,n,r

∂x ∂z , . . . , are given in terms of χm,n,r by

Um,n,r

=
sec( h

2 ) sec( k
2 )

8(2 cos(h) + 1)(2 cos(k) + 1)(2 cos(q) + 1)

(
sec

(
q
2

)(
χm,n,r–1

+ χm,n,r+1 + 4 cos

(
h
2

)(
4 cos

(
k
2

)(
4 cos

(
q
2

)
χm,n,r

)
+ χm,n+1,r–1

+ 4 cos

(
q
2

)
χm,n–1,r + 4 cos

(
q
2

)
χm,n+1,r + χm,n–1,r+1 + χm,n+1,r+1

)
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+ 4 cos

(
h
2

)
χm,n–1,r–1 + 4 cos

(
k
2

)(
4 cos

(
q
2

)
(χm–1,n,r + χm+1,n,r)

+ χm–1,n,r–1 + χm–1,n,r+1 + χm+1,n,r–1 + χm+1,n,r+1

)
+ χm–1,n–1,r–1

+ χm–1,n–1,r+1 + χm–1,n+1,r–1 + χm–1,n+1,r+1 + χm+1,n–1,r–1

+ χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1

)
+ 4(χm–1,n–1,r

+ χm–1,n+1,r + χm+1,n–1,r + χm+1,n+1,r)
)

, (9)

∂Um,n,r

∂x

= –
3 csc( 3h

2 ) sec( k
2 ) sec( q

2 )
16(2 cos(k) + 1)(2 cos(q) + 1)

×
(

4 cos

(
q
2

)(
4 cos

(
k
2

)
(χm–1,n,r – χm+1,n,r) + χm–1,n+1,r – χm+1,n–1,r

– χm+1,n+1,r

)
+ 4 cos

(
k
2

)
(χm–1,n,r–1 + χm–1,n,r+1 – χm+1,n,r–1

– χm+1,n,r+1) + 4 cos

(
q
2

)
χm–1,n–1,r + χm–1,n–1,r–1 + χm–1,n–1,r+1

+ χm–1,n+1,r–1 + χm–1,n+1,r+1 – χm+1,n–1,r–1 – χm+1,n–1,r+1

– χm+1,n+1,r–1 – χm+1,n+1,r+1

)
,

∂Um,n,r

∂y

= –
3 sec( h

2 ) csc( 3k
2 ) sec( q

2 )
16(2 cos(h) + 1)(2 cos(q) + 1)

×
(

4 cos

(
h
2

)(
4 cos

(
q
2

)
(χm,n–1,r – χm,n+1,r) + χm,n–1,r+1 – χm,n+1,r–1

– χm,n+1,r+1

)
+ 4 cos

(
h
2

)
χm,n–1,r–1 + 4 cos

(
q
2

)
(χm–1,n–1,r

– χm–1,n+1,r + χm+1,n–1,r – χm+1,n+1,r) + χm–1,n–1,r–1 + χm–1,n–1,r+1

– χm–1,n+1,r–1 – χm–1,n+1,r+1 + χm+1,n–1,r–1 + χm+1,n–1,r+1

– χm+1,n+1,r–1 – χm+1,n+1,r+1

)
,

∂Um,n,r

∂z

= –
3 sec( h

2 ) sec( k
2 ) csc( 3q

2 )
16(2 cos(h) + 1)(2 cos(k) + 1)

×
(

4 cos

(
h
2

)(
4 cos

(
k
2

)
(χm,n,r–1 – χm,n,r+1) + χm,n+1,r–1 – χm,n+1,r+1

)

+ 4 cos

(
h
2

)
(χm,n–1,r–1 – χm,n–1,r+1) + 4 cos

(
k
2

)
(χm–1,n,r–1
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– χm–1,n,r+1 + χm+1,n,r–1 – χm+1,n,r+1) + χm–1,n–1,r–1 – χm–1,n–1,r+1

+ χm–1,n+1,r–1 – χm–1,n+1,r+1 + χm+1,n–1,r–1

– χm+1,n–1,r+1 + χm+1,n+1,r–1 – χm+1,n+1,r+1

)
, (10)

∂2Um,n,r

∂x ∂y

=
9 csc( 3h

2 ) csc( 3k
2 ) sec( q

2 )
64 cos(q) + 32

(
4 cos

(
q
2

)
χm–1,n–1,r

– 4 cos

(
q
2

)
χm–1,n+1,r – 4 cos

(
q
2

)
χm+1,n–1,r + 4 cos

(
q
2

)
χm+1,n+1,r

+ χm–1,n–1,r–1 + χm–1,n–1,r+1 – χm–1,n+1,r–1 – χm–1,n+1,r+1

– χm+1,n–1,r–1 – χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1

)
,

∂2Um,n,r

∂x ∂z

=
9 csc( 3h

2 ) sec( k
2 ) csc( 3q

2 )
64 cos(k) + 32

(
4 cos

(
k
2

)
χm–1,n,r–1

– 4 cos

(
k
2

)
χm–1,n,r+1 – 4 cos

(
k
2

)
χm+1,n,r–1 + 4 cos

(
k
2

)
χm+1,n,r+1

+ χm–1,n–1,r–1 – χm–1,n–1,r+1 + χm–1,n+1,r–1 – χm–1,n+1,r+1

– χm+1,n–1,r–1 + χm+1,n–1,r+1 – χm+1,n+1,r–1 + χm+1,n+1,r+1

)
,

∂2Um,n,r

∂y ∂z

=
9 sec( h

2 ) csc( 3k
2 ) csc( 3q

2 )
64 cos(h) + 32

(
4 cos

(
h
2

)
χm,n–1,r–1

– 4 cos

(
h
2

)
χm,n–1,r+1 – 4 cos

(
h
2

)
χm,n+1,r–1 + 4 cos

(
h
2

)
χm,n+1,r+1

+ χm–1,n–1,r–1 – χm–1,n–1,r+1 – χm–1,n+1,r–1 + χm–1,n+1,r+1

+ χm+1,n–1,r–1 – χm+1,n–1,r+1 – χm+1,n+1,r–1 + χm+1,n+1,r+1

)
,

∂3Um,n,r

∂x ∂y ∂z

=
1

64
(–27) csc

(
3h
2

)
csc

(
3k
2

)
csc

(
3q
2

)
(χm–1,n–1,r–1

– χm–1,n–1,r+1 – χm–1,n+1,r–1 + χm–1,n+1,r+1 – χm+1,n–1,r–1

+ χm+1,n–1,r+1 + χm+1,n+1,r–1 – χm+1,n+1,r+1),

... (11)
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∂2Um,n,r

∂x2

=
3 csc2( h

2 ) sec( h
2 ) sec( k

2 )
64(2 cos(h) + 1)(2 cos(k) + 1)(2 cos(q) + 1)

×
(

sec

(
q
2

)(
–6 cos

(
h
2

)(
4 cos

(
k
2

)
(χm,n,r–1 + χm,n,r+1) + χm,n+1,r–1

+ χm,n+1,r+1

)
– 2 cos

(
3h
2

)(
4 cos

(
k
2

)
(χm,n,r–1 + χm,n,r+1) + χm,n+1,r–1

+ χm,n+1,r+1

)
+ 3 cos(h)

(
4 cos

(
k
2

)
(χm–1,n,r–1 + χm–1,n,r+1 + χm+1,n,r–1

+ χm+1,n,r+1) + χm–1,n+1,r–1 + χm–1,n+1,r+1 + χm+1,n–1,r–1 + χm+1,n–1,r+1

+ χm+1,n+1,r–1 + χm+1,n+1,r+1

)
– 8 cos3

(
h
2

)
(χm,n–1,r–1 + χm,n–1,r+1)

+
(
3 cos(h) + 1

)
χm–1,n–1,r–1 +

(
3 cos(h) + 1

)
χm–1,n–1,r+1 + 4 cos

(
k
2

)

× (χm–1,n,r–1 + χm–1,n,r+1 + χm+1,n,r–1 + χm+1,n,r+1) + χm–1,n+1,r–1

+ χm–1,n+1,r+1 + χm+1,n–1,r–1 + χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1

)

+ 4
(

–8 cos3
(

h
2

)(
4 cos

(
k
2

)
χm,n,r + χm,n–1,r + χm,n+1,r

)
+ 4

(
3 cos(h) + 1

)

× cos

(
k
2

)
χm–1,n,r + 12 cos(h) cos

(
k
2

)
χm+1,n,r +

(
3 cos(h) + 1

)
χm–1,n–1,r

+ 3 cos(h)χm–1,n+1,r + 3 cos(h)χm+1,n–1,r + 3 cos(h)χm+1,n+1,r + 4 cos

(
k
2

)

× χm+1,n,r + χm–1,n+1,r + χm+1,n–1,r + χm+1,n+1,r

))
, (12)

∂2Um,n,r

∂y2

=
3 sec( h

2 ) csc2( k
2 ) sec( k

2 )
64(2 cos(h) + 1)(2 cos(k) + 1)(2 cos(q) + 1)

(
sec

(
q
2

)

× (4 cos

(
h
2

)(
–8 cos3

(
k
2

)
(χm,n,r–1 + χm,n,r+1) + 3 cos(k)χm,n–1,r–1

+
(
3 cos(k) + 1

)
χm,n–1,r+1 +

(
3 cos(k) + 1

)
(χm,n+1,r–1 + χm,n+1,r+1)

)

+ 4 cos

(
h
2

)
χm,n–1,r–1 – 8 cos3

(
k
2

)
(χm–1,n,r–1 + χm–1,n,r+1)

– 6 cos

(
k
2

)
χm+1,n,r–1 – 6 cos

(
k
2

)
χm+1,n,r+1 +

(
3 cos(k) + 1

)
χm–1,n–1,r–1

+
(
3 cos(k) + 1

)
χm–1,n–1,r+1 + 3 cos(k)χm–1,n+1,r–1 + 3 cos(k)χm–1,n+1,r+1

+ 3 cos(k)χm+1,n–1,r–1 + 3 cos(k)χm+1,n–1,r+1 – 2 cos

(
3k
2

)
χm+1,n,r–1
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– 2 cos

(
3k
2

)
χm+1,n,r+1 + 3 cos(k)χm+1,n+1,r–1 + 3 cos(k)χm+1,n+1,r+1

+ χm–1,n+1,r–1 + χm–1,n+1,r+1 + χm+1,n–1,r–1 + χm+1,n–1,r+1

+ χm+1,n+1,r–1 + χm+1,n+1,r+1) + 4
(

4 cos

(
h
2

)(
–8 cos3

(
k
2

)
χm,n,r

+
(
3 cos(k) + 1

)
χm,n–1,r +

(
3 cos(k) + 1

)
χm,n+1,r

)
– 8 cos3

(
k
2

)
χm–1,n,r

– 6 cos

(
k
2

)
χm+1,n,r +

(
3 cos(k) + 1

)
χm–1,n–1,r + 3 cos(k)χm–1,n+1,r

+ 3 cos(k)χm+1,n–1,r – 2 cos

(
3k
2

)
χm+1,n,r + 3 cos(k)χm+1,n+1,r

+ χm–1,n+1,r + χm+1,n–1,r + χm+1,n+1,r

))
, (13)

∂2Um,n,r

∂z2

=
3 sec( h

2 ) sec( k
2 ) cot2( q

2 )
32(2 cos(h) + 1)(2 cos(k) + 1)(2 cos(q) + 1)

(–4 cos

(
h
2

)
sec3

(
q
2

)

×
(

4 cos

(
k
2

)
(χm,n,r–1 + χm,n,r+1) + χm,n–1,r–1 + χm,n–1,r+1 + χm,n+1,r–1

+ χm,n+1,r+1

)
+ 3 sec

(
q
2

)(
4 cos

(
h
2

)(
4 cos

(
k
2

)
(χm,n,r–1 + χm,n,r+1)

+ χm,n+1,r–1 + χm,n+1,r+1

)
+ 4 cos

(
h
2

)
(χm,n–1,r–1 + χm,n–1,r+1)

+ 4 cos

(
k
2

)
(χm–1,n,r–1 + χm–1,n,r+1 + χm+1,n,r–1 + χm+1,n,r+1)

+ χm–1,n–1,r–1 + χm–1,n–1,r+1 + χm–1,n+1,r–1 + χm–1,n+1,r+1 + χm+1,n–1,r–1

+ χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1

)
– 16 cos

(
h
2

)(
4 cos

(
k
2

)

× χm,n,r + χm,n–1,r + χm,n+1,r

)
– 4 cos

(
k
2

)
sec3

(
q
2

)
(χm–1,n,r–1 + χm–1,n,r+1

+ χm+1,n,r–1 + χm+1,n,r+1) – 16 cos

(
k
2

)
(χm–1,n,r + χm+1,n,r) – sec3

(
q
2

)

× (χm–1,n–1,r–1 + χm–1,n–1,r+1 + χm–1,n+1,r–1 + χm–1,n+1,r+1 + χm+1,n–1,r–1

+ χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1) – 4(χm–1,n–1,r + χm–1,n+1,r

+ χm+1,n–1,r + χm+1,n+1,r)), (14)

∂3Um,n,r

∂x2 ∂y

=
9 csc2( h

2 ) sec( h
2 ) csc( 3k

2 ) sec( q
2 )

128(2 cos(h) + 1)(2 cos(q) + 1)
(–4

(
3 cos(h) + 1

)

× cos

(
q
2

)
χm–1,n–1,r + 6 cos

(
h +

q
2

)
χm–1,n+1,r + 6 cos

(
h –

q
2

)
χm–1,n+1,r
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+ 12 cos

(
h – q

2

)
χm,n–1,r + 12 cos

(
h + q

2

)
χm,n–1,r + 4 cos

(
1
2

(3h – q)
)

× χm,n–1,r + 4 cos

(
1
2

(3h + q)
)

χm,n–1,r – 12 cos

(
h – q

2

)
χm,n+1,r

– 12 cos

(
h + q

2

)
χm,n+1,r – 4 cos

(
1
2

(3h – q)
)

χm,n+1,r – 4 cos

(
1
2

(3h + q)
)

× χm,n+1,r – 6 cos

(
h +

q
2

)
χm+1,n–1,r – 6 cos

(
h –

q
2

)
χm+1,n–1,r

+ 6 cos

(
h +

q
2

)
χm+1,n+1,r + 6 cos

(
h –

q
2

)
χm+1,n+1,r –

(
3 cos(h) + 1

)

× χm–1,n–1,r–1 – 3 cos(h)χm–1,n–1,r+1 + 3 cos(h)χm–1,n+1,r–1

+ 3 cos(h)χm–1,n+1,r+1 + 6 cos

(
h
2

)
χm,n–1,r–1 + 2 cos

(
3h
2

)
χm,n–1,r–1

+ 6 cos

(
h
2

)
χm,n–1,r+1 + 2 cos

(
3h
2

)
χm,n–1,r+1 – 6 cos

(
h
2

)
χm,n+1,r–1

– 2 cos

(
3h
2

)
χm,n+1,r–1 – 6 cos

(
h
2

)
χm,n+1,r+1 – 2 cos

(
3h
2

)
χm,n+1,r+1

– 3 cos(h)χm+1,n–1,r–1 – 3 cos(h)χm+1,n–1,r+1 + 3 cos(h)χm+1,n+1,r–1

+ 3 cos(h)χm+1,n+1,r+1 + 4 cos

(
q
2

)
χm–1,n+1,r – 4 cos

(
q
2

)
χm+1,n–1,r

+ 4 cos

(
q
2

)
χm+1,n+1,r – χm–1,n–1,r+1 + χm–1,n+1,r–1 + χm–1,n+1,r+1

– χm+1,n–1,r–1 – χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1),

∂3Um,n,r

∂x ∂y2

=
9 csc( 3h

2 ) csc2( k
2 ) sec( k

2 ) sec( q
2 )

128(2 cos(h) + 1)(2 cos(q) + 1)128(2 cos(k) + 1)(2 cos(q) + 1)

× (–4
(
3 cos(k) + 1

)
cos

(
q
2

)
χm–1,n–1,r + 12 cos

(
k – q

2

)
χm–1,n,r

+ 12 cos

(
k + q

2

)
χm–1,n,r + 4 cos

(
1
2

(3k – q)
)

χm–1,n,r + 4 cos

(
1
2

(3k + q)
)

× χm–1,n,r – 6 cos

(
k +

q
2

)
χm–1,n+1,r – 6 cos

(
k –

q
2

)
χm–1,n+1,r

+ 6 cos

(
k +

q
2

)
χm+1,n–1,r + 6 cos

(
k –

q
2

)
χm+1,n–1,r – 12 cos

(
k – q

2

)

× χm+1,n,r – 12 cos

(
k + q

2

)
χm+1,n,r – 4 cos

(
1
2

(3k – q)
)

χm+1,n,r

– 4 cos

(
1
2

(3k + q)
)

χm+1,n,r + 6 cos

(
k +

q
2

)
χm+1,n+1,r + 6 cos

(
k –

q
2

)

× χm+1,n+1,r –
(
3 cos(k) + 1

)
χm–1,n–1,r–1 – 3 cos(k)χm–1,n–1,r+1
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+ 6 cos

(
k
2

)
χm–1,n,r–1 + 2 cos

(
3k
2

)
χm–1,n,r–1 + 6 cos

(
k
2

)
χm–1,n,r+1

+ 2 cos

(
3k
2

)
χm–1,n,r+1 – 3 cos(k)χm–1,n+1,r–1 – 3 cos(k)χm–1,n+1,r+1

+ 3 cos(k)χm+1,n–1,r–1 + 3 cos(k)χm+1,n–1,r+1 – 6 cos

(
k
2

)
χm+1,n,r–1

– 2 cos

(
3k
2

)
χm+1,n,r–1 – 6 cos

(
k
2

)
χm+1,n,r+1 – 2 cos

(
3k
2

)
χm+1,n,r+1

+ 3 cos(k)χm+1,n+1,r–1 + 3 cos(k)χm+1,n+1,r+1 – 4 cos

(
q
2

)
χm–1,n+1,r

+ 4 cos

(
q
2

)
χm+1,n–1,r + 4 cos

(
q
2

)
χm+1,n+1,r – χm–1,n–1,r+1

– χm–1,n+1,r–1 – χm–1,n+1,r+1 + χm+1,n–1,r–1

+ χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1), (15)

∂3Um,n,r

∂x2 ∂z

=
9 csc2( h

2 ) sec( h
2 ) sec( k

2 ) csc( 3q
2 )

128(2 cos(h) + 1)(2 cos(k) + 1)
(–6 cos

(
h +

k
2

)
χm–1,n,r–1

– 6 cos

(
h –

k
2

)
χm–1,n,r–1 + 6 cos

(
h +

k
2

)
χm–1,n,r+1 + 6 cos

(
h –

k
2

)

× χm–1,n,r+1 + 12 cos

(
h – k

2

)
χm,n,r–1 + 12 cos

(
h + k

2

)
χm,n,r–1

+ 4 cos

(
1
2

(3h – k)
)

χm,n,r–1 + 4 cos

(
1
2

(3h + k)
)

χm,n,r–1 – 12 cos

(
h – k

2

)

× χm,n,r+1 – 12 cos

(
h + k

2

)
χm,n,r+1 – 4 cos

(
1
2

(3h – k)
)

χm,n,r+1

– 4 cos

(
1
2

(3h + k)
)

χm,n,r+1 – 6 cos

(
h +

k
2

)
χm+1,n,r–1 – 6 cos

(
h –

k
2

)

× χm+1,n,r–1 + 6 cos

(
h +

k
2

)
χm+1,n,r+1 + 6 cos

(
h –

k
2

)
χm+1,n,r+1

–
(
3 cos(h) + 1

)
χm–1,n–1,r–1 +

(
3 cos(h) + 1

)
χm–1,n–1,r+1 – 3 cos(h)

× χm–1,n+1,r–1 + 3 cos(h)χm–1,n+1,r+1 + 6 cos

(
h
2

)
χm,n–1,r–1 + 2 cos

(
3h
2

)

× χm,n–1,r–1 – 6 cos

(
h
2

)
χm,n–1,r+1 – 2 cos

(
3h
2

)
χm,n–1,r+1 + 6 cos

(
h
2

)

× χm,n+1,r–1 + 2 cos

(
3h
2

)
χm,n+1,r–1 – 6 cos

(
h
2

)
χm,n+1,r+1 – 2 cos

(
3h
2

)

× χm,n+1,r+1 – 3 cos(h)χm+1,n–1,r–1 + 3 cos(h)χm+1,n–1,r+1 – 3 cos(h)

× χm+1,n+1,r–1 + 3 cos(h)χm+1,n+1,r+1 – 4 cos

(
k
2

)
χm–1,n,r–1 + 4 cos

(
k
2

)

× χm–1,n,r+1 – 4 cos

(
k
2

)
χm+1,n,r–1 + 4 cos

(
k
2

)
χm+1,n,r+1
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– χm–1,n+1,r–1 + χm–1,n+1,r+1 – χm+1,n–1,r–1 + χm+1,n–1,r+1

– χm+1,n+1,r–1 + χm+1,n+1,r+1),

∂3Um,n,r

∂x ∂z2

=
9 csc( 3h

2 ) sec( k
2 ) csc2( q

2 ) sec( q
2 )

128(2 cos(k) + 1)(2 cos(q) + 1)
(8 cos

(
k
2

)
cos3

(
q
2

)
χm–1,n,r

– 8 cos

(
k
2

)
cos3

(
q
2

)
χm+1,n,r + 24 cos

(
k
2

)
cos

(
q
2

)
χm–1,n,r

– 24 cos

(
k
2

)
cos

(
q
2

)
χm+1,n,r – 12 cos

(
k
2

)
cos(q)χm–1,n,r–1

– 12 cos

(
k
2

)
cos(q)χm–1,n,r+1 + 12 cos

(
k
2

)
cos(q)χm+1,n,r–1

+ 12 cos

(
k
2

)
cos(q)χm+1,n,r+1 – 6 sin(k) csc

(
k
2

)
sin

(
q
2

)
sin(q)χm–1,n,r

+ 6 sin(k) csc

(
k
2

)
sin

(
q
2

)
sin(q)χm+1,n,r – 4 cos

(
k
2

)
χm–1,n,r–1

– 4 cos

(
k
2

)
χm–1,n,r+1 + 4 cos

(
k
2

)
χm+1,n,r–1 + 4 cos

(
k
2

)

χm+1,n,r+1 – 3 sin

(
q
2

)
sin(q)χm–1,n+1,r + 3 sin

(
q
2

)
sin(q)χm+1,n–1,r

+ 3 sin

(
q
2

)
sin(q)χm+1,n+1,r + 8 cos3

(
q
2

)
χm–1,n–1,r + 2 cos3

(
q
2

)
χm–1,n+1,r

– 2 cos3
(

q
2

)
χm+1,n–1,r – 2 cos3

(
q
2

)
χm+1,n+1,r + 6 cos

(
q
2

)
χm–1,n+1,r

– 6 cos

(
q
2

)
χm+1,n–1,r – 6 cos

(
q
2

)
χm+1,n+1,r –

(
3 cos(q) + 1

)
χm–1,n–1,r–1

– 3 cos(q)χm–1,n–1,r+1 – 3 cos(q)χm–1,n+1,r–1 – 3 cos(q)χm–1,n+1,r+1

+ 3 cos(q)χm+1,n–1,r–1 + 3 cos(q)χm+1,n–1,r+1 + 3 cos(q)χm+1,n+1,r–1

+ 3 cos(q)χm+1,n+1,r+1 – χm–1,n–1,r+1 – χm–1,n+1,r–1 – χm–1,n+1,r+1

+ χm+1,n–1,r–1 + χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1),

∂3Um,n,r

∂y2 ∂z

=
9 sec( h

2 ) csc2( k
2 ) sec( k

2 ) csc( 3q
2 )

128(2 cos(h) + 1)(2 cos(k) + 1)
– 6 cos

(
h
2

+ k
)

χm,n–1,r–1

– 6 cos

(
1
2

(h – 2k)
)

χm,n–1,r–1 + 6 cos

(
h
2

+ k
)

χm,n–1,r+1

+ 6 cos

(
1
2

(h – 2k)
)

χm,n–1,r+1 + 12 cos

(
h – k

2

)
χm,n,r–1

+ 12 cos

(
h + k

2

)
χm,n,r–1 + 4 cos

(
1
2

(h + 3k)
)

χm,n,r–1
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+ 4 cos

(
1
2

(h – 3k)
)

χm,n,r–1 – 12 cos

(
h – k

2

)
χm,n,r+1

– 12 cos

(
h + k

2

)
χm,n,r+1 – 4 cos

(
1
2

(h + 3k)
)

χm,n,r+1

– 4 cos

(
1
2

(h – 3k)
)

χm,n,r+1 – 6 cos

(
h
2

+ k
)

χm,n+1,r–1

– 6 cos

(
1
2

(h – 2k)
)

χm,n+1,r–1 + 6 cos

(
h
2

+ k
)

χm,n+1,r+1

+ 6 cos

(
1
2

(h – 2k)
)

χm,n+1,r+1 – 4 cos

(
h
2

)
χm,n–1,r–1

+ 4 cos

(
h
2

)
χm,n–1,r+1 – 4 cos

(
h
2

)
χm,n+1,r–1 + 4 cos

(
h
2

)
χm,n+1,r+1

–
(
3 cos(k) + 1

)
χm–1,n–1,r–1 +

(
3 cos(k) + 1

)
χm–1,n–1,r+1

+ 6 cos

(
k
2

)
χm–1,n,r–1 + 2 cos

(
3k
2

)
χm–1,n,r–1 – 6 cos

(
k
2

)
χm–1,n,r+1

– 2 cos

(
3k
2

)
χm–1,n,r+1 – 3 cos(k)χm–1,n+1,r–1 + 3 cos(k)χm–1,n+1,r+1

– 3 cos(k)χm+1,n–1,r–1 + 3 cos(k)χm+1,n–1,r+1 + 6 cos

(
k
2

)
χm+1,n,r–1

+ 2 cos

(
3k
2

)
χm+1,n,r–1 – 6 cos

(
k
2

)
χm+1,n,r+1 – 2 cos

(
3k
2

)
χm+1,n,r+1

– 3 cos(k)χm+1,n+1,r–1 + 3 cos(k)χm+1,n+1,r+1

– χm–1,n+1,r–1 + χm–1,n+1,r+1

– χm+1,n–1,r–1 + χm+1,n–1,r+1 – χm+1,n+1,r–1 + χm+1,n+1,r+1,

∂3Um,n,r

∂y ∂z2

=
9 sec( h

2 ) csc( 3k
2 ) csc2( q

2 ) sec( q
2 )

(128(1 + 2 Cos[h])(1 + 2 Cos[q]))
8 cos

(
h
2

)
cos3

(
q
2

)
χm,n–1,r

– 8 cos

(
h
2

)
cos3

(
q
2

)
χm,n+1,r + 24 cos

(
h
2

)
cos

(
q
2

)
χm,n–1,r

– 24 cos

(
h
2

)
cos

(
q
2

)
χm,n+1,r – 12 cos

(
h
2

)
cos(q)χm,n–1,r–1

– 12 cos

(
h
2

)
cos(q)χm,n–1,r+1 + 12 cos

(
h
2

)
cos(q)χm,n+1,r–1

+ 12 cos

(
h
2

)
cos(q)χm,n+1,r+1 – 6 sin(h) csc

(
h
2

)
sin

(
q
2

)
sin(q)χm,n–1,r

+ 6 sin(h) csc

(
h
2

)
sin

(
q
2

)
sin(q)χm,n+1,r – 4 cos

(
h
2

)
χm,n–1,r–1

– 4 cos

(
h
2

)
χm,n–1,r+1 + 4 cos

(
h
2

)
χm,n+1,r–1 + 4 cos

(
h
2

)
χm,n+1,r+1

+ 3 sin

(
q
2

)
sin(q)χm–1,n+1,r – 3 sin

(
q
2

)
sin(q)χm+1,n–1,r
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+ 3 sin

(
q
2

)
sin(q)χm+1,n+1,r + 8 cos3

(
q
2

)
χm–1,n–1,r – 2 cos3

(
q
2

)
χm–1,n+1,r

+ 2 cos3
(

q
2

)
χm+1,n–1,r – 2 cos3

(
q
2

)
χm+1,n+1,r – 6 cos

(
q
2

)
χm–1,n+1,r

+ 6 cos

(
q
2

)
χm+1,n–1,r – 6 cos

(
q
2

)
χm+1,n+1,r –

(
3 cos(q) + 1

)
χm–1,n–1,r–1

– 3 cos(q)χm–1,n–1,r+1 + 3 cos(q)χm–1,n+1,r–1 + 3 cos(q)χm–1,n+1,r+1

– 3 cos(q)χm+1,n–1,r–1 – 3 cos(q)χm+1,n–1,r+1 + 3 cos(q)χm+1,n+1,r–1

+ 3 cos(q)χm+1,n+1,r+1 – χm–1,n–1,r+1 + χm–1,n+1,r–1 + χm–1,n+1,r+1

– χm+1,n–1,r–1 – χm+1,n–1,r+1 + χm+1,n+1,r–1 + χm+1,n+1,r+1,

... (16)

The above analysis yields the following theorem.

Theorem 3 The solution of a three-dimensional DE using the collocation method with
basis trigonometric cubic B-spline can be determined by equations (9)–(16).

3 The error estimates
Lemma 1 Suppose that Û is an estimation of smoothness class C2. At that point the error
gauges of the insertion on a square work of side h are

‖U – Û‖ ≤ β0h4,
∥∥∥∥
∂U
∂x

–
∂Û
∂x

∥∥∥∥ ≤ β1h3,

∥∥∥∥
∂U
∂z

–
∂Û
∂z

∥∥∥∥ ≤ β2h3,
∥∥∥∥
∂U
∂y

–
∂Û
∂y

∥∥∥∥ ≤ β3h3,

∥∥∥∥
∂2U
∂x2 –

∂2Û
∂x2

∥∥∥∥ ≤ β4h2,
∥∥∥∥
∂2U
∂y2 –

∂2Û
∂y2

∥∥∥∥ ≤ β5h2,
∥∥∥∥
∂2U
∂z2 –

∂2Û
∂z2

∥∥∥∥ ≤ β6h2,

∥∥∥∥
∂2U
∂x ∂y

–
∂2Û
∂x ∂y

∥∥∥∥ ≤ β7h2,
∥∥∥∥

∂2U
∂x ∂z

–
∂2Û
∂x ∂z

∥∥∥∥ ≤ β8h2,
∥∥∥∥

∂2U
∂y ∂z

–
∂2Û
∂y ∂z

∥∥∥∥ ≤ β9h2,

where βi are constants.

For a proof of the lemma, see [9].

4 The numerical outcomes
Presently, we must know whether this method, developed by presenting its constructions
in different dimensions, is accurate and effective or not. To prove that this method is of
high accuracy, we present in this section various numerical examples in different dimen-
sions. We also show some figures of the results obtained in addition to comparison of our
results with preexisting results.

The first test problem [17]. We take the first test problem in the two dimensions in the
form

uxx(x, y) + uyy(x, y) + ux(x, y) + uy(x, y) – 3e2x+3y(x2(18y2 – 4y – 5
)

+ x
(
5 – 8y2 – 6y

))
– 3y2 + 3y) = 0, x, y ∈ [a, b].

(17)
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Table 1 The computational results to the first problem at y = 0.5, x, y ∈ [0, 1]

x Numerical results Exact results Absolute error Quadratic B-Spline [17]

0.1 0.36864 0.36949 8.50648 E-4 1.06992 E-3
0.2 0.80030 0.80230 2.00391 E-3 2.32385 E-3
0.3 1.28317 1.28617 2.99684 E-3 3.40917 E-3
0.4 1.79152 1.79535 3.83645 E-3 4.31609 E-3
0.5 2.27966 2.28422 4.55318 E-3 5.04294 E-3
0.6 2.67314 2.67835 5.21325 E-3 5.60652 E-3
0.7 2.85650 2.86243 5.93213 E-3 6.05466 E-3
0.8 2.65688 2.66375 6.87164 E-3 6.46809 E-3
0.9 1.82191 1.83010 8.19215 E-3 6.93102 E-3

Figure 1 The exact results at y = 0.5 and the numerical results

The exact solution to this problem is

u(x, y) = 3e2x+3y(x – x2)(y – y2). (18)

We take the boundary conditions to the first problem of the form

u(a, y) = u(x, a) = α, u(b, y) = u(x, b) = β . (19)

By substitution of (4)–(7) into (17) with (19) we obtain the numerical results presented
Table 1.

We compared the exact solutions with the results of the two-dimensional trigonometric
cubic B-spline technique using a mesh divided into 50 × 50 in Table 1. Figures 1 and 2
display the numerical results with exact results at y = 0.5 and x = 0.5, respectively. A three-
dimensional graph for numerical results is shown in Fig. 3.

MHD duct flow is the second test issue [7–9, 15]. We take the cross-section of a rectan-
gular duct. The duct is 2a wide and 2b tall, and both sides have the equations x = ±a and
y = ±b. A conducting fluid flows through the duct in the z direction while being exposed
to a constant applied magnetic field M that operates in the xy plane and creates an angle
φ with the y axis. In the standardized form [7, 14] the equations governing the flow can
be expressed as

∂P
∂z

= μν∇2∇z +
A0x

μ0

∂Pz

∂x′ +
A0y

μ0

∂Pz

∂y′ , (20)
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Figure 2 The exact results at x = 0.5 and the numerical results

Figure 3 Three-dimensional graph for numerical results

and the curl of Ohm’s law z-component as

∇2Az + ξμ0

(
A0x

∂Uz

∂x′ + A0y
∂Uz

∂y′

)
= 0 (21)

with the boundary conditions: U = A = 0 at x′ = ±α, y′ = ±b, where ν , μ, and ξ , respec-
tively, denote the fluid kinematic viscosity, density, and electric conductivity. The mag-
netic permeability in vacuum is μ0, the constant axial pressure gradient is dP/dz, the ap-
plied magnetic field x′ and y′ components are B0x and B0y, respectively, and the velocity
and induced magnetic field z components are Uz and Az , respectively. Equations (20) and
(21)take on a dimensionless form following the notation of Lu [14], who used the Kan-
torovieh method to solve this problem:

(
∂2

∂x2 +
∂2

∂y2

)
U + Mx

∂A
∂x

+ My
∂A
∂y

= –1 (22)

and

(
∂2

∂x2 +
∂2

∂y2

)
A + Mx

∂U
∂x

+ My
∂U
∂y

= –1 (23)

with boundary conditions U = A = 0, x = ±α, y = ±1. The distance was scaled to the duct
semiheight b so that x = x′/b, y = y′/b, and α = a/b. The following normalizations were also
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used:

U =
Uz

–b2
νμ

dP
dz

,

A =
Az

–b2
νμ

dP
dz μ0(νμξ ) 1

2
,

Mx = A0x′b
(

ξ

νμ

) 1
2

= M sin(φ),

My = A0y′b
(

ξ

νμ

) 1
2

= M cos(φ),

M = Hartmann no. =
(
M2

x + M2
y
) 1

2 = A0b
(

ξ

νμ

) 1
2

.

(24)

The ratio of magnetic to fluid viscosity is known as the Hartmann number. The flow field
is the classical laminar pipe flow if M = 0. The flow field is primarily determined by the
E × A drift when M = 1. The functions (22) and (23) must be decoupled as

H1 = U + A, (25)

H2 = U – A, (26)
(

∂2

∂x2 +
∂2

∂y2

)
H1 + Mx

∂H1

∂x
+ My

∂H1

∂y
= –1, (27)

and
(

∂2

∂x2 +
∂2

∂y2

)
H2 – Mx

∂H2

∂x
– My

∂H2

∂y
= –1, (28)

with respect to boundary conditions H1 = H2 = 0, x = ±α, y = ±1.
Thus, if H1 is solved as H1(Mx, My) from (28), then

H2(Mx, My) = H1(–Mx, –My). (29)

When either H1 or H2 is known, the answer is absolutely decided. After determining H1,
the function H2 is obtained from (29), and thus the velocity field U is obtained of the form

U =
1
2

(H1 + H2). (30)

The flow in a square duct with a magnetic field parallel to the x-axis and My = 0 can now
be calculated numerically. To compare with earlier findings [7–9, 13], we give M the values
Mx = 0, 2, 5, and 8.

The numerical solutions are obtained by substituting from (4) to (7) into (27) and (28)
as follows:

Table 2 introduce comparison of the results of the two-dimensional trigonometric cubic
B-spline method using mesh of 20 × 20 to the numerical [7–9, 15] and Shercliff analytic
solutions.
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Table 2 U at the middle of the duct

Mx Alexander
[7]

Jones and
Xenophontos
[8]

Bi-CBSG
approach
[9]

Finite
difference
approach
[15]

2-dimensional
trigonometric
cubic B-spline
approach

Analytic
[13]

Maximum
absolute
error

0 0.2982 0.2982 0.29468 0.29410 0.29415 0.29468 5.33 E-4
2 0.2632 0.2631 0.25890 0.25862 0.25865 0.25890 2.52 E-4
5 0.1743 0.1742 0.17160 0.17147 0.17157 0.17160 3.07 E-5
8 0.1201 0.1201 0.11878 0.11865 0.11877 0.11878 1.01 E-5

Figure 4 Various Hartmann number values are used to build a velocity profile

Figure 5 3D graph for the velocity profile with various Hartmann number values

Figures 4 and 5 display the velocity profile with Hartmann numbers 0 (top curve) to 8
(bottom curve) at [–1, 1] using a 20 × 20 mesh.

Table 3 shows some additional results, where the interval is modified from [–1, 1] to
[–0.5, 0.5], and we compare these results to those obtained using the finite difference
method [15] and the analytical solution used in the study [13].

In Figs. 6 and 7, we display the velocity profile with various Hartmann numbers at
[–0.5, 0.5] using a mesh of 50 × 50.

Figures 4, 5, 6, and 7 display the course of action for the speed profile along the x-axis
for various values of the Hartmann number. Increasing the enticing field (increasing the
Hartmann number) decreases the fluid speed near the channel center, as one would ex-
pect; however, the direct effect of the alluring field concentrated is unknown. As a conse-
quence, we can see that the outcomes are completely in line with the physical sense of the
alluring field effect.
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Table 3 The duct’s U is in the middle. Simulations using finite difference and analytic methods were
contrasted

Mx Finite difference
method using a mesh
of 50× 50 [15]

2-dimensional
trigonometric cubic
B-spline method 50× 50

Analytic [13] Maximum
absolute
error

0 0.073648 0.0736339 0.073671 3.710 E-5
2 0.071109 0.0710962 0.071128 3.182 E-5
5 0.060838 0.0608306 0.060846 1.541 E-5
8 0.049359 0.0493580 0.049363 5.012 E-6

Figure 6 Various Hartmann number values are used to build a velocity profile

Figure 7 Three-dimensional graph for the velocity profile with various Hartmann number values

The third test problem: [17, 32–35]. We take the third test problem in dimension two of
the form

uxx(x, y) + uyy(x, y) – sin(πx) sin(πy) = 0, x, y ∈ [a, b]. (31)

The exact solution to the problem is

u(x, y) = –
sin(πx) sin(πy)

2π2 . (32)

We take the boundary conditions to the third problem of the form

u(a, y) = u(x, a) = α, u(b, y) = u(x, b) = β . (33)

By substitution of (4)–(7) into (31) with (33) we obtain the numerical results as in Table 4.
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Table 4 The numerical results for the third issue available at y = 0.4, x, y ∈ [0, 1]

x Numerical results Exact results Absolute error

0.2 –0.02824 –0.028320 7.78107 E-5
0.4 –0.04569 –0.045822 1.25900 E-4
0.6 –0.04569 –0.045822 1.25900 E-4
0.8 –0.02824 –0.028320 7.78107 E-5

Figure 8 The numerical results are compared to the exact results at y = 0.4

Figure 9 The numerical results are compared to the exact results at x = 0.4

Figure 10 Three-dimensional graph of numerical results

Table 4 present the results of the two-dimensional trigonometric cubic B-spline tech-
nique at 15 × 15. In terms of results, we can assume that the results are acceptable.
Figures 8 and 9 display the numerical results with exact results at y = 0.4. The three-
dimensional graph for numerical results is shown in Fig. 10.
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Table 5 The maximum absolute error

The proposed
method

Quadratic
B-spline approach
[17]

MCBDQM
approach
[32]

Spline-based
DQM approach
[33]

Haar wavelet
approach [34]

Spectral collocation
approach based on
Haarwavelets [35]

7.78 E-5 3.72 E-5 2.11 E-5 1.62 E-4 3.08 E-4 3.08 E-4

Table 6 The numerical results for the test problem at z = y = 0.5, x, y, z ∈ [0, 1]

x Numerical solution Exact solution Absolute error Quadratic B-spline
method [17]

0.1 0.0168722 0.0168984 2.62605 E-5 3.24947 E-5
0.2 0.0331474 0.0332012 5.37881 E-5 6.49943 E-5
0.3 0.0480777 0.0481595 8.18473 E-5 9.65554 E-5
0.4 0.0607169 0.0608280 1.11061 E-4 1.27075 E-4
0.5 0.0698822 0.0700264 1.44153 E-4 1.57835 E-4
0.6 0.0741084 0.0742955 1.87066 E-4 1.92337 E-4
0.7 0.0715951 0.0718456 2.50500 E-4 2.37433 E-4
0.8 0.0601448 0.0604965 3.51653 E-4 3.04639 E-4
0.9 0.0370926 0.0376082 5.15536 E-4 4.11161 E-4

Now, we compare the results of the proposed method to the results of various methods
[17, 32–35], which are shown in Table 5 using mesh 15 × 15 grid points.

The fourth test problem: [17]. We take the fourth test problem in dimension three of the
form

uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z) – xyz
(
ex+y+z)(3yxz + yx + zx – 5x

+ zy – 5y – 5z + 9) = 0, x, y, z ∈ [a, b].
(34)

The exact solution to that problem is

u(x, y, z) =
(
x – x2)(y – y2)(z – z2)ex+y+z. (35)

We take the boundary conditions to the fourth problem of the form

u(a, y, z) = u(x, a, z) = u(x, y, a) = α, u(b, y, z) = u(x, b, z) = u(x, y, b) = β . (36)

By substitution of (12)–(14) into (34) with (36) we obtain the numerical results as in Ta-
ble 6.

Table 6 presents comparison of our results with the results of the quadratic cubic B-
spline technique using mesh 20 × 20. In terms of the results based on our observations,
we can see that the results are acceptable. Figure 11 shows the numerical results with
exact solutions at y = z = 0.5. The three-dimensional graph of numerical results is shown
in Fig. 12.

The fifth test problem: [36]. We take the fifth test problem in the dimension two of the
form

uxx(x, y, z) + uyy(x, y, z) + uzz(x, y, z)

– sin(πx) sin(πy) sin(πz) = 0, x, y, z ∈ [a, b].
(37)
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Figure 11 The numerical and exact results at y = z = 0.5

Figure 12 Three-dimensional graph for numerical results

Table 7 The numerical results for the fifth test problem at y = z = 0.5, x, y, z ∈ [0, 1]

x Numerical
results

Exact
results

Absolute
error

Maximum
absolute error
of our method

Maximum
absolute
error [36]

0.2 –0.019821 –0.0198517 3.06956 E-5 4.96665 E-5 8.9227 E-4
0.4 –0.0320711 –0.0321207 4.96665 E-5 – –
0.6 –0.0320711 –0.0321207 4.96665 E-5 – –
0.8 –0.019821 –0.0198517 3.06956 E-5 – –

The exact solution to that problem is

u(x, y, z) = –
sin(πx) sin(πy) sin(πz)

2π2 . (38)

We take the boundary conditions to the third problem of the form

u(a, y, z) = u(x, a, z) = u(x, y, a) = α, u(b, y, z) = u(x, b, z) = u(x, y, b) = β . (39)

By substitution of (12)–(14) into (37) with (39) we obtain the numerical results as in Ta-
ble 7.

In Table 7, we present our results of the two-dimensional trigonometric cubic B-spline
technique using mesh 15 × 15. In terms of observation, we can see that the results are
acceptable. Figure 13 displays the numerical results with exact results at y = z = 0.5. The
three-dimensional graph for numerical results is shown in Fig. 14.
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Figure 13 The numerical results compared to the exact results at y = z = 0.5

Figure 14 Three-dimensional graph for numerical results

5 Conclusion
At the end of this work, we will make a clear contribution to solving some of the problems
facing most researchers in various fields of how to deal with n-dimensional mathemat-
ical models. The topic studied is very important, and we believe that most researchers
are waiting for its results. Thinking about this work came after we followed what was
presented by some researchers on solutions of one-, two-, and three-dimensional partial
differential equations, and we noticed how difficult it is for them to deal with these models
as the dimension increases. As a result, we decided to expand on the trigonometric cubic
B-spline method, which had previously been used to solve one-dimensional mathematical
problems, and we were able to present two- and three-dimensional forms for it. To assess
the accuracy and efficacy of the derived shapes, we used numerical examples of different
measurements. The inferred formulas were found to be accurate and precise when the
numerical results were compared to the actual solution. We may infer that a major con-
tribution has been made toward solving problems involving partial differential equations
in various dimensions from this perspective. As part of our long-term research, we have
generalized a few other B-Splines shapes to serve as solutions to n-dimensional differential
equations.
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