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Abstract
In this paper, we propose and investigate a prey–predator model with Holling type II
response function incorporating Allee and fear effect in the prey. First of all, we obtain
all possible equilibria of the model and discuss their stability by analyzing the
eigenvalues of Jacobian matrix around the equilibria. Secondly, it can be observed
that the model undergoes Hopf bifurcation at the positive equilibrium by taking the
level of fear as bifurcation parameter. Moreover, through the analysis of Allee and fear
effect, we find that: (i) the fear effect can enhance the stability of the positive
equilibrium of the system by excluding periodic solutions; (ii) increasing the level of
fear and Allee can reduce the final number of predators; (iii) the Allee effect also has
important influence on the permanence of the predator. Finally, numerical
simulations are provided to check the validity of the theoretical results.
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1 Introduction
Predator–prey model has always been a hot research topic in biological mathematics [1–
16]. Mastering the dynamic behavior between predators and bait can further understand
the relationship between the two and balance the ecosystem. However, for some popula-
tions, when their density is reduced to a certain extent, the population will maintain at a
very low level or tend to extinction. Biologist Allee summarized this phenomenon as Allee
effect [17]. Allee effect is caused by many reasons, including inbreeding, depression [18],
mating difficulty [19], low density social disorder [20] and so on. More and more scholars
have studied Allee effect in recent years due to its biological significance [21–29]. For some
endangered species, Allee effect is more likely to occur, so Allee effect is very important
for the management of endangered species conservation, population development and
utilization, as well as the introduction of species are very important. Zu et al. [30] pro-
posed a prey–predator system with Holling II type response function incorporating Allee
effect in prey as follows:

⎧
⎨

⎩

dx
dt = x( rx

a+x – d1 – kx) – exy
1+bx ,

dy
dt = –d2y + cexy

1+bx .
(1.1)
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Table 1 Meaning of parameters in model (1.1) and (1.3)

Parameter Meaning

x The prey species density at time t
y The predator species density at time t
r > 0 the maximum birth rate of prey population
a > 0 the level of Allee
f > 0 the level of fear induced by predator population
r
k > 0 The environmental capacity of the prey
di > 0, i = 1, 2 The mortality of prey and predator, respectively
c > 0 The conversion efficiency
b > 0 The handling time of predators
e
b The maximum number of prey per predator per unit time
ex

1+bx , b > 0, e > 0 Holling type II response function

The meaning of all parameters of model (1.1) is shown in Table 1. In the model, authors
consider that it is difficult for the prey population to find a mate to reproduce because of
the small population, that is, Allee effect affects the birth rate of the prey population. Here,
the birth rate of the prey population is expressed as A(a, x) = rx

a+x , where r denotes the max-
imum birth rate of prey population and x is the prey population density at time t, a > 0
presents the level of Allee which can measure the degree of Allee effect on the prey. A(a, x)
satisfied lima→+∞ A(a, x) = 0, limx→0 A(a, x) = 0, lima→0 A(a, x) = r, limx→+∞ A(a, x) = r,
∂A(a,x)

∂a < 0.
However, in nature, fear of predators also has a variety of effects on animals, such as

habitat use, foraging behavior, reproduction and physiological changes. In recent years,
many experts began to study the predator model with fear effect; see [31–36]. In order to
study the effect of fear on free-living songbird population, Zanette et al. [31] used the play
of predator’s call to control the fear factor, and eliminated the effect of direct predation on
the experiment by blocking. The results show that the number of offspring of sparrow will
be reduced by 40% only by adding fear effect to the prey, and the predation risk itself is
enough to affect the change of wild animal population. In order to establish a model to sim-
ulate the impact of fear on species reduction, we use a function K(f , y) to indicate the fear
factor which is used to measure the consumption of anti-predator defense owing to the
fear on the system. From the biological viewpoint and experimental results, the fear factor
K(f , y) should meet [27] K(0, y) = 1, K(f , 0) = 1, limf →+∞ K(f , y) = 0, limy→+∞ K(f , y) = 0,
∂K (f ,y)

∂f < 0 and ∂K (f ,y)
∂y < 0. Wang et al. [32] introduced a simple function K(f , y) = 1

1+fy as the
fear factor where f > 0 presents the level of fear induced by predators and y is the predator
population density at time t, and studied the prey–predator system with Holling II type
response function incorporating fear effect in prey as follows:

⎧
⎨

⎩

dx
dt = x( r

1+fy – d1 – kx) – exy
1+bx ,

dy
dt = –d2y + cexy

1+bx .
(1.2)

Inspired by the previous articles, we wonder what the dynamic behavior of the system will
be if Allee effect and fear effect appear in the prey population at the same time? Since both
Allee effect and fear effect affect the birth rate of the population, we express the birth rate
of the prey in terms of A(a, x)K(f , y) = rx

(a+x)(1+fy) , which describe the impact of Allee and
fear effect on the system. Then we obtain a Holling II type predator–prey model with Allee
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effect and fear effect in prey as follows:

⎧
⎨

⎩

dx
dt = x( rx

(a+x)(1+fy) – d1 – kx) – exy
1+bx ,

dy
dt = –d2y + cexy

1+bx .
(1.3)

The meaning of all parameters of model (1.3) is shown in Table 1. Considering the practical
significance of the model, we assume r > d1, ce > bd2 always hold in this paper.

The rest of the article is arranged as follows: In Sect. 2, we provide a qualitative analysis
of the system, which include the stability of the equilibria and the sufficient condition for
Hopf bifurcation at positive equilibrium and the corresponding biological interpretation.
We analyze the influence of dread and Allee effect on the system in Sect. 3. We do numer-
ical simulation to verify the rationality of the results in Sect. 4. In Sect. 5, we end up this
paper with a short conclusion.

2 Stability analysis of the model
In this part, the existence and stability of equilibria of the model (1.3) are discussed.

2.1 Equilibria and their existence condition
The biological equilibria in the model (1.3) are as below:

(i) The extinction equilibrium B0(0, 0), which invariably exists with no restrictions.
(ii) If 0 < a < a1 holds, the model (1.3) has two predator free equilibria B1(x1, 0) and

B2(x2, 0), where a1 = (
√

r–
√

d1)2

k .Obviously x1 and x2 satisfy equation as follows:

kx2 + (d1 + ak – r)x + d1a = 0.

Set

�1 = (d1 + ak – r)2 – 4akd1.

When �1 > 0 and d1 + ak – r < 0 i.e., 0 < a < a1 holds, then the model (1.3) has two
predator free equilibria, and

x1,2 =
r – d1 – ak ∓ √

�1

2k
. (2.1)

(iii) If r > r1 and ce > bd2 hold, the model (1.3) has unique coexistence equilibrium
B∗(x∗, y∗), where x∗ = d2

ce–bd2
, r1 = (a+x∗)(d1+kx∗)

x∗ > d1, and y∗ is the positive solution of
the equation as follows:

A1y2 + A2y + A3 = 0,

where

A1 =
ef

1 + bx∗ , A2 = d1f + fkx∗ +
e

1 + bx∗ , A3 = d1 + kx∗ –
rx∗

a + x∗ .

Let

�2 = A2
2 – 4A1A3,
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when A3 < 0 i.e., r > r1 holds, then the equation has unique positive solution, that is,
the model (1.3) has unique positive equilibrium B∗(x∗, y∗), and

y∗ =
–A2 +

√
�2

2A1
. (2.2)

2.2 Local stability of the equilibria
The local stability of the model (1.3) near each equilibrium point refers to the behavior
of the solution of the system (1.3) under small disturbance near each equilibrium point.
We study the stability of the model (1.3) near each equilibrium point. First, we derive the
Jacobian matrix of the model (1.3) as follows:

J(x, y) =

(
rx(2a+x)

(a+x)2(1+fy) – d1 – 2kx – ey
(1+bx)2 – frx2

(a+x)(1+fy)2 – ex
1+bx

cey
(1+bx)2

cex
1+bx – d2

)

.

Now, let us give the dynamic behavior of the model system near each steady state one
by one in the form of the following theorems.

Theorem 2.1 B0(0, 0) is always a locally asymptotically stable node.

Proof The Jacobian matrix of model (1.3) around B0 is

J(0, 0) =

(
–d1 0

0 –d2

)

,

its eigenvalues are λ1 = –d1 < 0 and λ2 = –d2 < 0, so the extinction equilibrium B0(0, 0) is
always a locally asymptotically stable node. �

Remark 2.1 According to Theorem 2.1, the extinction equilibrium B0 is always locally
asymptotically stable, which means that when the population density of predator and prey
is located in the attractive region of B0, they will die out. Especially, as the population
density of the prey decreases, both populations will eventually die out.

Theorem 2.2 Suppose 0 < a < a1 holds, then
(i) B1(x1, 0) is a unstable node, if 0 < b < b1 holds; and B1(x1, 0) is a saddle point, if

b > b1 holds, where b1 = ce
d2

– 1
x1

.
(ii) B2(x2, 0) is a saddle point, if 0 < b < b2 holds; and B2(x2, 0) is a stable node, if b > b2

holds, where b2 = ce
d2

– 1
x2

.

Proof (i) Note that rx1
a+x1

– d1 – kx1 = 0, then Jacobian matrix of model (1.3) around B1 is

J(x1, 0) =

(
x1

√
�1

a+x1
– frx2

1
(a+x1) – ex1

1+bx1

0 cex1
1+bx1

– d2

)

,

its eigenvalues are λ1 = x1
√

�1
a+x1

> 0 and λ2 = cex1
1+bx1

– d2, then, if λ2 > 0 i.e., 0 < b < b1 holds,
B1(x1, 0) is a unstable node; and, if λ2 < 0 i.e., b > b1 holds, B1(x1, 0) is a saddle point.

Similarly, it can be proved that (ii) is true. �
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Remark 2.2 If there is no positive equilibrium in the model (1.3), the local stability of
equilibria B0, B1 and B2 determines its asymptotic dynamic behavior. According to The-
orem 2.1 and Theorem 2.2, If the Allee effect of prey is very weak, that is, the parameter
a is smaller and the predator’s processing time b is rather long, then B1 is the saddle and
B2 is locally asymptotically stable. The steady trajectory of B1 is the boundary owing to
Allee effect. It separates quadrant I into two areas (see Fig. 3), the attraction regions of B0

and B2, respectively. If the number of prey is lower, both predator and prey population will
die out. Instead, if the Allee factor on prey is rather strong and the predator’s processing
time b is rather short, then B1 is unstable and B2 is saddle. When t tends to infinity, any
normal trajectory tends to B0, that is, B0 is a globally asymptotically steady node, and both
predator and prey population will die out, independent of the initial population density.
Hence, if there is no positive equilibrium in the model (1.3), according to the intensity of
Allee factor, the processing time of predator and the initial value of population density,
either the predator population is die out or both the predator and the prey are die out.

Theorem 2.3 B∗(x∗, y∗) is locally asymptotically stable if 0 < a < a2 and r1 < r ≤ r2 or
0 < a < a2 and r > r2 and f > f1 hold; B∗(x∗, y∗) is unstable if a ≥ a2 and r > r1 or 0 < a < a2

and r > r2 and 0 < f < f1 hold, where

a2 =
k(x∗)2

d1
,

r2 =
a + x∗

x∗

(

d1 + kx∗ +
(k(x∗)2 – ad1)(1 + bx∗)

b(x∗)2 + 2abx∗ + a

)

,

f1 =
e(b(x∗)2 + 2abx∗ + a)2

(k(x∗)2 – ad1)(1 + bx∗)2((k(x∗)2 – ad1)(1 + bx∗) + (d1 + kx∗)(b(x∗)2 + 2abx∗ + a))

·
(

rx∗

a + x∗ – d1 – kx∗ –
(k(x∗)2 – ad1)(1 + bx∗)

b(x∗)2 + 2abx∗ + a

)

.

Proof Note that rx∗
(a+x∗)(1+fy∗) – d1 – kx∗ – ey∗

1+bx∗ = 0 and r > r1 hold, then Jacobian matrix of
model (1.3) at B∗ is

J
(
x∗, y∗) =

(
J11 J12

J21 0

)

,

where

J11 = x∗
(

ra
(a + x∗)2(1 + fy∗)

– k –
bey∗

(1 + bx∗)2

)

,

J12 = –
fr(x∗)2

(a + x∗)(1 + fy∗)2 –
ex∗

1 + bx∗ < 0,

J21 =
cey∗

(1 + bx∗)2 > 0,

the secular equation is λ2 – J11λ – J12J21 = 0, and the two eigenvalues meet λ1λ2 =
det(J(x∗, y∗)) = –J12J21 > 0, λ1 + λ2 = tr(J(x∗, y∗)) = J11. Then the two eigenvalues have the
same sign. Thus B∗ is locally asymptotically stable if J11 < 0, and unstable if J11 > 0.



Xie Advances in Difference Equations        (2021) 2021:464 Page 6 of 15

By a simple computation, J11 < 0 is equivalent to

(
bex∗

(1 + bx∗)2 +
ae

(a + x∗)(1 + bx∗)

)

y∗ <
k(x∗)2 – ad1

a + x∗ . (2.3)

If k(x∗)2 – ad1 ≤ 0, i.e. a ≥ a2 holds, then the inequality (2.3) does not hold because the
left side of the inequality is positive, that is, B∗(x∗, y∗) is unstable if a ≥ a2 and r > r1 hold.

If k(x∗)2 – ad1 > 0, i.e. 0 < a < a2 holds, we substitute (2.2) into the inequality (2.3) and
obtain

f >
e(b(x∗)2 + 2abx∗ + a)2

(k(x∗)2 – ad1)(1 + bx∗)2((k(x∗)2 – ad1)(1 + bx∗) + (d1 + kx∗)(b(x∗)2 + 2abx∗ + a))

·
(

rx∗

a + x∗ – d1 – kx∗ –
(k(x∗)2 – ad1)(1 + bx∗)

b(x∗)2 + 2abx∗ + a

)
.= f1. (2.4)

If rx∗
a+x∗ – d1 – kx∗ – (k(x∗)2–ad1)(1+bx∗)

b(x∗)2+2abx∗+a ≤ 0, i.e., r1 < r ≤ r2 holds, the inequality (2.4) clearly
holds because the left side of the inequality is positive, Hence B∗(x∗, y∗) is stable if 0 < a < a2

and r1 < r ≤ r2.
If r > r2, at this case J11 < 0 i.e., f > f1. Hence B∗(x∗, y∗) is stable 0 < a < a2 and r > r2 and

f > f1 hold; otherwise E∗(x∗, y∗) is unstable if 0 < a < a2 and r > r2 and 0 < f < f1 hold.
In conclusion, the theorem holds. �

Remark 2.3 When the Allee factor intensity of the predator is strong enough, the model
tends to unstable, at this case, fear effect cannot change the stability of the system. When
the Allee factor intensity of the prey is weak enough and the fear caused by predator is at
low level, the model shows unstable dynamic behavior (see Fig. 5), When the fear caused
by predator is at a high level, the model shows stable behavior (see Fig. 6). A possible
biological explanation for this appearance is that when prey population are very dread of
predators, they will reduce their feeding activities and fit to various defense mechanisms to
rescue themselves from predators. This appearance greatly assists prey species to increase
its biomass, so in a long run, it also contributes to the persistence of the prey species and
enhances the stability and persistence of the whole system.

Theorem 2.4 B0(0, 0) is always a locally asymptotically stable node, if a > max{a1, a3}
holds, where a3 = (r–d1)x∗–k(x∗)2

d1+kx∗ .

Proof From the previous discussion on the existence of equilibrium points, we know that
when a > a1 the boundary equilibrium points do not exist, and when a > a3 i.e., r > r1 the
positive equilibrium point does not exist. Then when a > max{a1, a3} holds, the model
(1.3) only exist extinction equilibrium which is locally asymptotically stable, correspond-
ingly is a globally asymptotically stable node. �

Remark 2.4 According to Theorem 2.4, we know that Allee effect increases the risk of
population death. As Allee effect is very strong and satisfies a > max{a1, a3}, the model
(1.3) has no positive equilibrium and other boundary equilibrium, at this case B0 will be-
come globally asymptotically stable (see Fig. 2). Any normal trajectory tends to B0, as t
goes to infinity. No matter what the initial population density of prey is, prey and predator
cannot coexist.
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Table 2 Stationary states and their stability in model (1.3)

Equilibrium Existence Type

B0(0, 0) Always exists Locally asymptotically stable;
a >max{a1,a3}, Globally asymptotically stable.

B1(x1, 0) 0 < a < a1 0 < a < a1 and 0 < b < b1, Unstable;
0 < a < a1 and b > b1, Saddle.

B2(x2, 0) 0 < a < a1 0 < a < a1 and 0 < b < b2, Saddle;
0 < a < a1 and b > b2, Locally asymptotically stable.

B∗(x∗ , y∗) r > r1 and ce > bd2 0 < a < a2 and r1 < r ≤ r2, Locally asymptotically stable;
0 < a < a2 and r > r2 and f > f1, Locally asymptotically stable;
a ≥ a2 and r > r1, Unstable;
0 < a < a2 and r > r2 and 0 < f < f1, Unstable.

We can use Table 2 show the occurrence and behavior of all equilibria of model (1.3).
Then, we will investigate the occurrence of Hopf bifurcation around the positive equilib-
rium point and the existence of limit cycle emerging across Hopf bifurcation.

2.3 Hopf bifurcation
Theorem 2.5 Suppose 0 < a < a2 and r > r2, then model (1.3) experiences a Hopf bifurca-
tion nearby B∗ at f = f1.

Proof the secular equation is λ2 – J11λ – J12J21 = 0, and the two eigenvalues meet λ1λ2 =
det(J(x∗, y∗)) = –J12J21 > 0 tr(J(x∗, y∗)) = J11, then

det
(
J
(
x∗, y∗))∣∣

f =f1
> 0. (2.5)

tr
(
J
(
x∗, y∗))∣∣

f =f1
= J11|f =f1 = 0. (2.6)

By simple computation, we obtain

d
df

[
tr
(
J
(
x∗, y∗))]

∣
∣
∣
∣
f =f1

=
d
df

(J11)
∣
∣
∣
∣
f =f1

=
(

bex∗

(1 + bx∗)2 +
ae

(a + x∗)(1 + bx∗)

)
dy∗

df

∣
∣
∣
∣
f =f1

.

Obviously B∗ satisfies

rx∗

(a + x∗)(1 + fy∗)
– d1 – kx∗ –

ey∗

1 + bx∗ = 0. (2.7)

By deriving both sides of (2.7) with respect to f at the same time, we have

dy∗

df

∣
∣
∣
∣
f =f1

= –

rx∗y∗|f =f1
(a+x∗)(1+fy∗|f =f1 )2

frx∗
(a+x∗)(1+fy∗|f =f1 )2 + e

1+bx∗
< 0,

hence

d
df

[
tr
(
J
(
x∗, y∗))]∣∣

f =f1
	= 0. (2.8)
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From (2.5), (2.6) and (2.8), we know that model (1.3) experiences Hopf bifurcation nearby
B∗ at f = f1. It should be noted that when the value of fear parameter f exceeds the thresh-
old value f1, the transition from unstable state to stable state occurs through Hopf bifur-
cation (see Fig. 7), that means the fear factor can enhance the stability of the system by
preventing the limit cycle oscillation. �

3 The synthetical impact of fear and Allee effect on predator–prey species
In this part, the influence of fear and Allee effect on each of population when the positive
equilibrium exist and is locally asymptotically stable will be discussed in three situations
as follows.

3.1 Without Allee effect
If the model (1.3) has no Allee effect in prey species, i.e., a = 0, model (1.3) becomes model
(1.2). It is similar to Theorem 2.3, we find that B∗(x∗, y∗) is locally asymptotically stable if
r1 < r ≤ r2 or r > r2 and f > f1 hold; B∗(x∗, y∗) is unstable if r > r2 and 0 < f < f1 hold. In this
case, the stability of positive equilibrium is relate with the growth rate of prey species and
the level of fear. Furthermore, model (1.3) also experiences a Hopf bifurcation around B∗

at f = f1. It should be noted that when the value of fear parameter f exceeds the threshold
value f1, the transition from unstable state to stable state occurs through Hopf bifurcation.

3.2 Without fear effect
If the model (1.3) has no Allee effect in prey species, i.e., f = 0, model (1.3) becomes model
(1.1). In this case, the model has a unique positive B(x∗, y∗), if r > r1 and

x∗ =
d2

ce – bd2
, y∗ =

1 + bx∗

e

(
rx∗

a + x∗ – d1 – kx∗
)

,

then the derivatives of x∗ and y∗ with respect to the level of Allee a are

dx∗

da
= 0,

dy∗

da
= –

rx∗(1 + bx∗)
e(a + x∗)2 < 0.

Hence, the prey population x∗ is unconcerned with the level of Allee a, and the increase
of a can decrease predator population. When a = 0, the predator population y∗ achieves
the maximum value (1+bx∗)(r–d1–kx∗)

e . when a = (r–d1–kx∗)x∗
d1+kx∗ , i.e., y∗ = 0, the predator species

goes to extinction.

3.3 Incorporate fear and Allee effect
Because final density of the prey species x∗ = d2

ce–bd2
is unconcerned with the fear and Allee

effect, we just talk about the influence of fear factor on predator species. y∗ = –A2+
√

�2
2A1

is a
continuous function of f and a, and satisfies

rx∗

(a + x∗)(1 + fy∗)
– d1 – kx∗ –

ey∗

1 + bx∗ = 0.

We can get the following result by taking derivatives to f and a, respectively, from both
sides of the above formula:

∂y∗

∂f
= –

rx∗y∗
(a+x∗)(1+fy∗)2

frx∗
(a+x∗)(1+fy∗)2 + e

1+bx∗
< 0,
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Figure 1 (a) The relationship between y∗ and f ; (b) the relationship between y∗ and a

∂y∗

∂a
= –

rx∗
(a+x∗)2(1+fy∗)
frx∗

(a+x∗)(1+fy∗)2 + e
1+bx∗

< 0.

Hence, the predator population density y∗ decreases with the increase of the level of Allee
a and the fear level f , respectively. The predator population density y∗ achieves the maxi-
mum value (1+bx∗)(r–d1–kx∗)

e , when there is no fear and Allee effect in the system, i.e., a = 0,
f = 0. The relationship between y∗ and f is shown in Fig. 1 (a), and the relationship between
y∗ and a is shown in Fig. 1 (b).

We also find that limf →+∞ y∗ = 0, lima→a∗ y∗ = 0, where a∗ = (r–d1–kx∗)x∗
d1+kx∗ .

That is, the predator species will approach extinction as the increase of fear level, or as
the Allee level trends to a∗.

4 Numerical simulation
In this section, we provide some numerical simulations to confirm the theoretical analysis
and explain the dynamics behavior of model (1.3). We investigated the dynamical behavior
of model (1.3) for varying values of three parameters: the growth rate of prey species r, the
level of fear f and the level of Allee a. We fix the other parameter values as

d1 = 0.9, k = 0.6, e = 0.7, b = 0.8, c = 0.8, d2 = 0.5.

Example 4.1 Set r = 1.1, a = 2, f = 0.5, then the model (1.3) has a unique equilibrium
B0 = (0, 0), which is locally asymptotically stable, at the same time, from Theorem 2.4, it is
also globally asymptotically stable, that means the predator and prey species will die out,
independence on initial value of population density. The simulation results are shown in
Fig. 2.

Example 4.2 Set r = 2, a = 0.1, f = 1, then the model (1.3) has a extinct equilibrium
B0 = (0, 0), which is locally asymptotically stable, and two predator free equilibria B1 =
(0.0914, 0) and B2 = (1.642, 0) which are saddle and locally asymptotically stable, respec-
tively. From Theorem 2.2, the steady trajectory of B1 is the boundary owing to Allee ef-
fect. It separates quadrant I into two areas (see Fig. 3), the attraction regions of B0 and B2,
respectively. when the initial value of population density of prey falls in the attraction re-
gions of B0, both predator and prey population will die out as t tends to infinity; when the
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Figure 2 (a) The phase diagram of model (1.3) for r = 1.1, a = 2, f = 0.5; (b) solution curves for r = 1.1, a = 2,
f = 0.5. The initial values are (4, 0.5), (4, 1), (4, 1.5)

Figure 3 (a) The phase diagram of model (1.3) for r = 2, a = 0.1, f = 1; (b) solution curves for r = 2, a = 0.1,
f = 1. The initial values are (4, 0.5), (4, 1), (4, 1.5)

Figure 4 (a) The phase diagram of model (1.3) for r = 3, a = 0.1, f = 1; (b) solution curves for r = 3, a = 0.1,
f = 1. The initial values are (4, 0.5), (4, 1), (4, 1.5)

initial value of population density of prey falls in the attraction regions of B2, the preda-
tor population will die out as t approaches infinity. The simulation results are shown in
Fig. 3.

Example 4.3 Set r = 3, a = 0.1, f = 1, then a2 = 6.5104, r1 = 2.8638, r2 = 5.3409 and
0 < a < a2 and r1 < r ≤ r2. From Theorem 2.3, the model (1.3) gets unique coexistence
equilibrium B∗ = (3.125, 0.0423), which is locally asymptotically stable, The simulation re-
sults are shown in Fig. 4.
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Figure 5 (a) The phase diagram of model (1.3) for r = 6, a = 0.1, f = 0.008; (b) solution curves for r = 6, a = 0.1,
f = 0.008. The initial values are (3, 12), (9, 5)

Figure 6 (a) The phase diagram of model (1.3) for r = 6, a = 0.1, f = 1; (b) solution curves for r = 6, a = 0.1,
f = 1. The initial values are (0.1, 0.5), (9, 1), (9, 1.5)

Example 4.4 Set r = 6, a = 0.1, f = 0.008, then a2 = 6.5104, r1 = 2.8638, r2 = 5.3409, f1 =
0.0103 and 0 < a < a2, r > r2 and 0 < f < f1. From Theorem 2.3, The model (1.3) gets unique
coexistence equilibrium B∗ = (3.125, 9.5959), which is a unstable source point of spiral
state and the model exist one limit cycle. We can clearly observe that the trajectories of
an initial value inside and outside the limit cycle approach the limit cycle. The simulation
results are shown in Fig. 5.

Example 4.5 Set r = 6, a = 0.1, f = 1, then a2 = 6.5104, r1 = 2.8638, r2 = 5.3409, f1 = 0.0103
and 0 < a < a2, r > r2 and f > f1. From Theorem 2.3, the model (1.3) has a unique coexis-
tence equilibrium B∗ = (3.125, 9.5959), which is locally asymptotically stable. Compared
with Fig. 6, we know that increase the fear effect reduces the final number of predators y∗,
and transition from unstable to stable state occurs at B∗. At this time, the fear factor can
exclude the limit cycle oscillation and enhance the steadiness of the model. The simulation
results are shown in Fig. 6.

Example 4.6 Set r = 6, a = 0.1, then a2 = 6.5104, r1 = 2.8638, r2 = 5.3409, f1 = 0.0103. From
Theorem 2.5, the model (1.3) experiences a Hopf bifurcation nearby B∗ at f = 0.0103. Ob-
viously, the fear factor f plays an important role managing the populations. For a small
fear factor, prey and predator exhibit periodic oscillation. The population remains stable
when f > f1, with the increase of fear factor, the population of predator becomes smaller
and smaller and tends to zero, but it is still greater than zero. So the increase of fear level
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Figure 7 Bifurcation diagrams with parameter n for r = 6, a = 0.1. (a) The variation of x with f ; (b) variation of y
with f

Figure 8 (a) The phase diagram of model (1.3) for r = 6, a = 0, f = 0.008; (b) solution curves for r = 6, a = 0,
f = 0.008. The initial values are (3, 13), (9, 5)

will not lead to the extinction of prey and predator population. The Hopf bifurcation dia-
grams taking f as bifurcation parameter are shown in Fig. 7.

Example 4.7 Set r = 6, a = 0, f = 0.008, then a2 = 6.5104, r1 = 2.7750, r2 = 5.4, f1 = 0.0085
and 0 ≤ a < a2, r > r2 and 0 < f < f1. The model becomes a model without Allee effect,
in this case, similar to Example 4.4, the model (1.3) gets unique coexistence equilibrium
B∗ = (3.125, 13.250), which is a unstable source point of spiral state and the system exist
one limit cycle. We can clearly observe that the trajectories of an initial value inside and
outside the limit cycle approach the limit cycle. The simulation results are shown in Fig. 8.

Example 4.8 Set r = 6, a = 0, f = 1, then a2 = 6.5104, r1 = 2.7750, r2 = 5.4, f1 = 0.0085
and 0 ≤ a < a2, r > r2 and f > f1. The model becomes model (1.2) without Allee effect,
in this case, similar to Example 4.5, the model (1.3) gets unique coexistence equilibrium
B∗ = (3.125, 1.0148), which is locally asymptotically stable. Compared with Fig. 9, we know
that increase the fear effect not only reduces the final number of predators y∗, but also
transforms B∗ from unstable to stable state. At this time, the fear factor can exclude the
limit cycle oscillation and enhance the stability of the system. The simulation results are
shown in Fig. 9.

Example 4.9 Set r = 6, a = 0.1, f = 0, then a2 = 6.5104, r1 = 2.8638, r2 = 5.3409. The model
(1.3) becomes model (1.1) without fear effect, in this case, the model (1.1) has a unique
coexistence equilibrium B∗ = (3.125, 15.1948), which is unstable. Compared with Exam-
ple 4.5, we know that the decrease of the level of fear not only increases final number of
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Figure 9 (a) The phase diagram of model (1.3) for r = 6, a = 0, f = 1; (b) solution curves for r = 6, a = 0, f = 1.
The initial values are (0.1, 0.5), (9, 1), (9, 5)

Figure 10 (a) The phase diagram of model (1.3) for r = 6, a = 0.1, f = 0; (b) solution curves for r = 6, a = 0.1,
f = 0. The initial values are (3, 14), (10, 20)

predators y∗, but also changes B∗ from stable to unstable. The simulation results are shown
in Fig. 10.

Example 4.10 Set r = 6, a = 0, f = 0, then a2 = 6.5104, r1 = 2.7750, r2 = 5.4, f1 = 0.0085. The
model becomes a model without Allee and fear effect, in this case, similar to Example 4.4,
the model (1.3) gets unique coexistence equilibrium B∗ = (3.125, 16.125), which is a unsta-
ble source point of spiral state and the model exist one limit cycle. We can clearly observe
that the trajectories of an initial value inside and outside the limit cycle approach the limit
cycle. Compared with Examples 4.5, 4.8 and 4.9, we know that reducing the fear and Allee
effect not only increases the final number of predators y∗, but also changes B∗ from stable
to unstable. At this time, the final number of predators y∗ obtains the maximum value and
the decrease of fear and Allee effect can emerge the limit cycle oscillation and destroy the
stability of the system. The simulation results are shown in Fig. 11.

5 Conclusion
In this article, we have studied the impact of the fear and Allee effect on a prey–predator
model with Holling type II response function. We analyze the dynamic behavior of the
model mathematically, including existence and stability of equilibria, the occurrence of
Hopf bifurcation around the positive equilibrium point and the existence of limit cy-
cle emerging through Hopf bifurcation. We find that the increase the level of fear effect
can stabilize the system by excluding periodic solutions and decrease the final number of
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Figure 11 (a) The phase diagram of model (1.3) for r = 6, a = 0, f = 0; (b) solution curves for r = 6, a = 0, f = 0.
The initial values are (3, 14), (9, 15)

predators at the positive equilibrium, but not lead to the extinction of the predator popu-
lation, which is different from the system without fear factor. We also find that the Allee
effect has big influence on the permanence of the predator, the final prey population x∗

is unconcerned with fear and Allee effect, and the final predator population y∗ decreases
with the increase of the Allee level a and the fear level f . When there is no fear and Allee
effect in the system, i.e., a = 0, f = 0, the predator population y∗ achieves the maximum
value (1+bx∗)(r–d1–kx∗)

e . When a = (r–d1–kx∗)x∗
d1+kx∗ , the predator species goes to extinction. The ex-

tinction equilibrium B0 is locally stable, which means that when the population density of
prey and predator is located in the attractive region of B0, they will die out. By comparison,
we know that the Allee effect increases the risk of population death. Furthermore, if the
model (1.3) has no positive equilibrium and other boundary equilibrium, in this case, the
Allee effect is very strong, and B0 will become globally asymptotically stable. Any normal
trajectory tends to B0, as t goes to infinity. No matter what the initial value of population
density of prey is, prey and predator species cannot coexist. The system in this paper has
complex dynamic behavior, which enrich the dynamic behavior of predator–prey system.
The research in this paper is of great significance for the study of the complex dynamic
behavior of the ecosystem with Allee effect on predator species.
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