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1 Introduction
In 1930 Kuratowski [L] introduced the notion of a measure of noncompactness. In func-
tional analysis, this idea is particularly important in metric “xed point theory and opera-
tor equation theory in Banach spaces. The theory of in“nite systems of fractional integral
equations (FIEs) plays a pivotal role in di erent “elds, which includes various implica-
tions in the scaling system theory, the theory of algorithms, etc. There are many real life
problems which can be formulated by in“nite systems of integral equations with fractional
order in a very e ective manner.

In recent times, the “xed point theory (FPT) has applications in various scienti“c “elds.
Also, FPT can be applied seeking solutions for FIE.

Di erent real life situations which are formulated via FIEs can be studied using FPT and
measure of noncompactness (MNC) (se2.[24]).

Let a real Banach spac&( . )andB(x,r)={y E: y..x rhLIf (= ) E.Also,
and Conv represent the closure and convex closure of. Moreover, let

a. Mg = collection of all nonempty and bounded subsetsBf

b. Ng = collection of all relatively compact sets,

c. R =collection of all real numbers,

and

d. R, = collection of all nonnegative real numbers.

The following de“nition of an MNC is given in [25].
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Definition 1.1 Afunction :My [0, )is called an MNC inE if it satis“es the fol-
lowing conditions:

(i) The family ker ={ Mg : ( )=0}is nonempty and ker NEg.

()R () (o

@iy ()= ().

(iv) (Conv )= ().

v) ( +(1...)P)_ ()+@...) (P)for [0,1].

(i) If v Mg, n= n, n#1 nforn=1,2,3,..andlim, ( n)=0then

:ﬂnzl n=

Theker family is kernel of measure . Note that the intersection set  from (vi) is
a member of the familyker . Infact, since ( ) ( n) for any n, we conclude that

( )=0. This gives ker .

The “xed point principle and theorem play a key role in the theory of “xed point.

Theorem 1.2 (Shauder R6]) Let V be a nonempty, closed, and convex subset of a Banach
space E. Then every compact, continuous map :V  V has at least one fixed point(FP)
inV.

Theorem 1.3 (Darbo [27]) Let V be a nonempty, bounded, closed, and convex(NBCC)
subset of a Banach space E.Let :V  V be acontinuous mapping. Assume that there is
aconstantp [0, 1)such that

C ) p(C) \Z
where isan arbitrary MNC. Then hasan FPin V.

We introduced the following generalization of the Banach contraction principle, in
which we get a variety of contractive inequalities by substituting di erent functiong.

Theorem 1.4 Let ( ,d) be a complete metric space. Also, let J : be a continuous
self-mapping. Suppose that there exists a function g : R+ R. such that lim¢ 4+ g(t) =0,
g(0)=0,and

d@x,dy) g(d(x.y)) ..9(d@x¥));  xy
Then J has a unique FP.

Definition 1.5 ([28]) Let F be the class of all function§ :R: x R:. R, satisfying:
(1) max{my,my} F(my,my)formiy,m, O;
(2) F is continuous;
(3) F(my+my,ny+ny)  F(mg,ng) +F(mMy,ny);

e.g.F(my,my) =my + my.

2 Mainresult
Theorem 2.1 Let V be an NBCC subset of a Banach space E,and let :V  V bea
continuous operator such that

FLOX) O] [FE e (0O [FECX, (CX))] @1
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forall X V,where , :R. R, arenondecreasing continuous functions and isan
arbitrary MNC. Then  has at least one FP in V.

Proof LetVo =V and constructasequencg/} suchthatV,;; =Conv( V,)foralln N.
If there exists a positive integeNy N suchthat (Vy,) =0, soVy, is relatively compact.
And by Theorem2.1, we give that has anFP.

If possible, assume that (V,) > 0 for all n. Also, we have

Vi Vo -+ Vi Vpg

Since the sequencg (V,)} is decreasing. So,( (Vn)) is decreasing.
Hence, the sequence[ (Vn), ( (Vn))]is decreasing.

Sincelim, F[ (Vn), ( (Vn)]=L.

By using equation 2.1), we have

0 F[ (Vo) ( (Varn))]
=F[ ( Vo), ( ( Vn)]
[F{ Vo) (V)] [FEC V) (O C Vi)Y
= [F{ Vo) ( (V)] [F{ (Vesd) ( (Voed))}]

Asn , we get
0 L L... L=0,

thatis,L=0.

Therefore, limp, (Vn) = 0. According to axiom (vi) of De“nition 1.1, we conclude
thatV =(,=; Vn is an NBCC set, invariant under the mapping and belongs tdker
By Theorem1.2 we have has anFP. O

Theorem 2.2 Let V be an NBCC subset of a Banach space E,and let :V  V bea
continuous operator such that

F[ (X, (CxX)] F{ ). (X))} 2.2)

forall X V,where :R: R. isanondecreasing continuous function and is an
arbitrary MNC. Then  has at least one FP in V.

Proof Taking (t)=t;it 0inTheorem2.1 g
The statement in the next corollary is a result of Theorer. 1

Corollary 2.3 Let V be an NBCC subset of a Banach space E,and let :V  V bea
continuous operator such that

2 ( X)+2 ( (X)) X))+ (X)) (2.3)
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for all X V,where :R. R, isa nondecreasing continuous function and is an
arbitrary MNC. Then  has at least one FP in V.

Proof Taking F(mi,m;)=mj+m;in Theorem2.2 So, we get the required result. O

Corollary 2.4 Let V be an NBCC subset of a Banach space E,and let :V  V bea
continuous operator such that

(X)) p (X (2.4)

forall X V,wherep= % (0,1]and isanarbitrary MNC. Then has at least one FP
inV.

Proof Taking (t)=0in Corollary 2.3 we get the required result. O

Theorem 2.5 Let V be an NBCC subset of a Banach space E,and let :V  V bea
continuous operator such that

FLOX (Cx)] Ff X (X)) (2.9)

for all X V,where :R:, R, isa nondecreasing continuous function and is an
arbitrary MNC, where = % [0,1).Then hasat leastone FPin V.

Proof Taking (t) =ktwheret 0,k 0inTheorem2.1 0

Corollary 2.6 Let V be an NBCC subset of a Banach space E,and let :V  V bea
continuous operator such that

( X) X) (2.6)

for all XV, where (0,1]and is an arbitrary MNC. Then  has at least one FP
inV.

Proof TakingF(m;,my)=m;+mzand (t) 0inTheorem?2.5 So,we getthe resultwhich
is Darboes “xed point theorem. O

Definition 2.7 ([29]) Anelement (4,8) X x X is called acoupled “xed point of a map-
ping7 :Xx X Xif T(AB)=AandT(B,A)=5.

Theorem 2.8 ([25]) Supposethat 1, 2,..., nisthe MNCinEy,E,,... E, respectively.
Moreover, suppose that the function X' : R? R, is convex and F(y1,Y2,.--yn) =0
yi=0fort=1,2,...n,then (X)=F( 1(X1), 2(X2),..., n(Xn)) defines an MNC in
E1,Eo, ... En, where A; denotes the natural projection of X' into E; fort=1,2,...n.

Example 2.9 (25]) Let be an MNC onE. De“ne F(A,B)=A+B;A,B R..ThenF
has all the properties mentioned in Theorer.8 Hence, “(X)= 1(X1)+ o(Xy)isan
MNC in the spaceE x E, whereX;, t =1, 2, denotes the natural projections of’.
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Definition 2.10 ([30]) Suppose thaG is the set of all functionqt : R, R satisfying the
following conditions:

(1) u is a continuous strictly increasing function.

(2) limy KU(sn) = ... lim, s,=0foralls, R;.

For example,

i. Ha(s) =In(s),
ii. p2(s)=1..%,t>0.

Theorem 2.11 Let V be an NBCC subset of a Banach space E,and let :VxV  V be
a continuous operator such that

HF{ ( G1xs2), ( ( (2% 52))}] E[“{ G1xs2)+ ( (1xs2)}] 27)

for all s;,s, V,where ,F,and areasin Theorem 2.1and is an arbitrary MNC.
In addition, we assume p(A+5B) up(A)+u(B); A, B 0Oand (A+B) A+ (B);
A,B 0.Then hasat leasta couple of FPin V.

Proof Consideramapping ¢ :VxV VxVby “(A4,B)=( (A4,8), (B,A);AB
V. Itis trivial that ¢ is continuous.

Lets V x V benonempty. We have “(s)= (s1)+ (s2) is an MNC, wheresy,s, are
the natural projections ofs into E.

We get

uF{ T (T TONY]

[F{ “( Gixs)x (2x ), (T Grxs)x (2% 51)))}]

[F{ ( Gxs)+ ( xs)) ((( Gxsd)+ (2% s0))}]
[F{ ( Gxs)+ ( (axs), (( Gxs))+ (( G2xs)))}]
[F{ ( Gxs2), (( Gaxs2))}]

*u[F{ ( G2xs0) (( G2xs)))]

M G+ G2+ ( )+ (2)}]

u{ e+ ( Te)}

O EONN]

H
=u
u
1!

[
[

By Theorem2.1, we conclude that ¢ has minimum of one “xed pointinV x V. Thatis,
has minimum of one coupled “xed point. O

3 Measure of noncompactness on C([0, T1)

Consider the spaceE = C(l) which is the set of real continuous functions or, where
1 =[0,T]. Then E is a Banach space with the norm

:sup{| ( )|: I}, E.
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Let (= ) E be bounded. For and >0, denote by ( , ) the modulus of the
continuity of ,i.e.,

( , ):supH (1) ( 2)|: 1, 2 |,| 1 aes 1| }

Further, we de“ne
( ,)=Sllp{ (1): }1 0( )=11H6 ( 1)'

It is well known that the function g is an MNC in E such that the Hausdor measure of

noncompactness is given by ( :% o( ) (seeR9)).

4 Solvability of fractional integral equation
For (0,1]and  C,Re( ) >0, we de“ne the left GPF integral of de“ned by [31]

1 o

@l )®)= e t...) ¥ )d .

In this part, we study the following fractional integral equation:

Z()= (.£(.20)).0 " 2)( ). (4.1)
where >1, (0,1], 1=[0,T].
Let

BdOZ{Z E: Z do}

Assume that

(A) :1xR? R,L:IxR Riscontinuous, and there exist constants, », 3 0
satisfying
| (L) (WL L. L]+ ol ., I;L,01,L,11 R
and

1£( 3 ..L(C 0] alhdol, Wk R
(B) There existsly > 0 satisfying
C=supl| (LLW|: LL O LLLL [WZ,Z]) do
and
13<1,
where

L=sup{|L( .Z())|: 1LZ() [..do,do]}
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and

I:sup{|(ol 'Z)( )|:

©) | (,0,01=0,L( ,0)=0
(D) There exists a positive solutiod, of the inequality

LZ() [..do,do]}.

re 2T LT
13 (+1) .

Theorem 4.1 If conditions (A)—(D) hold, then Eq. (4.1) has a solution in E = C(l).

Proof De“ne the operator7 :E  E as follows:

T2)()= (.L£(.20)).0! " 2)()).

Step 1: We prove that the functionQ mapsBy, into By,. Let Bg,. We have

(T2)( )
| (.£(.2()).0 " 2)())... (,0,00+| (,0,0)
L(LZ0)) 04 o|(ol  2)( ). 0
13|20+ 2(ol * 2)()]:

Also,
(ol - Z)( )|
L) ()
) )
/ ) +12()]d
doe f
doT e
( +1)
Hence, 7 <dggives
T 130+ 2ol e do.

7( " 1).6

Due to assumption (D),7” mapsBg, into By,.

Step 2: We prove that7 is continuous onBg,. Let >0 andZ,Z Br, suchthat Z ...

Z < .We have

(T2)()...T2)( )

Page 7 of 12
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(L L£(.20)060 2)() -
L( 20 L ZON]H+ 2|l 2)() ol

Also,
(ol 2)( ) ol 2)( )
_ 1 D)) —
_‘ ()/Oe ( ...) ]{Z()..Z()}d
1 C1)(nn) —
()/Oe ( ...) ]|Z()..Z( )|d
T e( =
< .
(+1)

Hence, Z..Z < gives

.1
Te

(T2)( ). T2))|< 13 + (

+1)

As oOwe get|(TZ2)( ) ...TZ_)( )i

arbitrary and choosezZ and i, »

Now,

(T2)( 2)...T2)( 1)

(. L£(.20))(

Step 3: An estimate of7 with respectto : Assume that (= )
I suchthat| 5 ... 4]

Page 8 of 12

I 2)(0)l

0. This shows that7 is continuous onBy,.

Bdo- Let >0 be
and 2 1.

=[ (2£(22(2).0 " 2)(2) - (LL(12( 1)l 2)( 1)
| (2£(2202).(0 " 2)(2) - (2£(22(2) (! 2)( 1)

[ (2L( 22020 2)(D) - (2£( 120 2), (! * 2)( D)
2)(D) - (1L(0Z2(0). 0! 2)( )|

[ (2£(012(2).0

D+ 1L(2.2(2) . L( n2( )|+ ()

2|(0| ’ Z)( 2) (0| ’ Z)(
2|l " 2)(2) .ol Z)( D]+ 13]2( ) Z( D)+ ()
where
_ =| (z,E,Ij_)... ( 1,,6,1'1)':' 2 ... 1| ) |;
(I, )=sup
L [.L, L7 [..Z,1]
Also,
(ol " Z)( 2) ..ol Z)( D)

_‘1

2 (D)(2.) "
()foe (2...) "2()d

L[ 0
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1 2 (D)) i 1) D
()/Oe (2...)2()d .../Oe (1--2) Z()d’
1 2 (D)) 1 1 (D) 1 ’
—()/Oe (2...) "Z2()d .../Oe (2...) Z2()d
1) i o) B
)/e (2...) Z()d .../Oe (1...) Z()d‘
2 ( Do) )
) “12()[d
CD(2) o Lenge
()_/0 (e (2...) .. ) 3)2( )|d
-
ﬂ Z(2.1)
1 ( 1)(2) LD
()/ T B (1..) ]|d.
As 0, then » nandsoll * 2)( 2)...4l * 2)( 1) O.
Hence,
(T2) 2) ... T2) 1)
2l 2)(2) ol E)( )| * 13 (Z)+ (1)
gives
(TZ,) 2/ 2)( 2ol Z)( D]+ 13 (2, )+ (1)
By the uniform continuityof onlx [..L,£]x [..Z,Z],wehave (I, ) Oas 0.
Takingsupz and 0, we get
o7 ) 13 ol )

Thus, by Corollary2.6, @ has a “xed pointin
in E.

Example 4.2 Consider the following equation:

2020
for  [0,2]=I.
We have
(o122 Z)( y= 4 [ et yz()d .

(2) Jo

By, i-€., equation4.1) has a solution
O

(4.2)
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Also, ( ,L£,I;)=L+% andL( ,Z)=-Z,. Itistrivial thatboth L are continuous
satisfying

[J1 .. 32
8

|‘C( !Jl)"c( !J2)|
and
|(,gg%.@£iﬂ|u_M+%m“iL

Therefore, 1=1, =75, 3=g,and 1 3= 3 <1.

If Z dg, then
do
L=—
8
and
_ 8do
I - ?.
Further,
do 8do
1 —+ — .
| CLD) g b

If we choosedy = 2, then

1 16
L=-, I=—,
4 e?
which gives
o2

On the other hand, assumption (D) is also satis“ed faty = 2.
We observe that all the assumption from (A)...(D) of Theorefnlare satis“ed. By The-
orem4.], it can be said that equation4.2) has a solution inE = C(1).
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