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Abstract

The aim of this paper is the solvability of generalized proportional fractional(GPF)
integral equation at Banach spaceE. Herein, we have established a new “xed point
theorem which is then applied to the GPF integral equation in order to establish the
existence of solution on the Banach space. At last, we have illustrated a genuine
example that veri“ed our theorem and gave a strong support to prove it.

MSC: 45G05; 47H08; 47H09; 47H10

Keywords: Measure of noncompactness (MNC); Fixed point theorem; Generalized
proportional fractional integral

1 Introduction
In 1930 Kuratowski [1] introduced the notion of a measure of noncompactness. In func-
tional analysis, this idea is particularly important in metric “xed point theory and opera-
tor equation theory in Banach spaces. The theory of in“nite systems of fractional integral
equations (FIEs) plays a pivotal role in di�erent “elds, which includes various implica-
tions in the scaling system theory, the theory of algorithms, etc. There are many real life
problems which can be formulated by in“nite systems of integral equations with fractional
order in a very e�ective manner.

In recent times, the “xed point theory (FPT) has applications in various scienti“c “elds.
Also, FPT can be applied seeking solutions for FIE.

Di�erent real life situations which are formulated via FIEs can be studied using FPT and
measure of noncompactness (MNC) (see [2…24]).

Let a real Banach space (E,� .� ) andB(x,r) = {y � E : � y …x� � r}. If � (�= � ) � E. Also, ¯�
and Conv� represent the closure and convex closure of� . Moreover, let

a. M E = collection of all nonempty and bounded subsets ofE,
b. NE = collection of all relatively compact sets,
c. R = collection of all real numbers,

and
d. R+ = collection of all nonnegative real numbers.

The following de“nition of an MNC is given in [25].
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Definition 1.1 A function � : M E � [0,� ) is called an MNC inE if it satis“es the fol-
lowing conditions:

(i) The family ker� = {� � M E : � (� ) = 0} is nonempty and ker� 	 NE.
(ii) � � � 1 
 � � (� ) � � (� 1).
(iii) � ( ¯� ) = � (� ).
(iv) � (Conv � ) = � (� ).
(v) � (�� + (1 …� )P) � �� (� ) + (1 …� )� (P) for � � [0, 1].
(vi) If � n � M E, � n = ¯� n, � n+1 	 � n for n = 1,2,3, . . .and limn�� � (� n) = 0 then

� � =
⋂�

n=1 � n �= � .

The ker � family is kernel of measure � . Note that the intersection set� � from (vi) is
a member of the familyker � . In fact, since� (� � ) � � (� n) for any n, we conclude that
� (� � ) = 0. This gives� � � ker � .

The “xed point principle and theorem play a key role in the theory of “xed point.

Theorem 1.2 (Shauder [26]) Let V be a nonempty, closed, and convex subset of a Banach
space E. Then every compact, continuous map � : V � V has at least one fixed point(FP)
in V.

Theorem 1.3 (Darbo [27]) Let V be a nonempty, bounded, closed, and convex(NBCC)
subset of a Banach space E. Let � : V � V be a continuous mapping. Assume that there is
a constant p � [0, 1) such that

� (� � ) � p� (� ), � � V ,

where � is an arbitrary MNC. Then � has an FP in V .

We introduced the following generalization of the Banach contraction principle, in
which we get a variety of contractive inequalities by substituting di�erent functionsg.

Theorem 1.4 Let (� ,d) be a complete metric space. Also, let J : � �� � be a continuous
self-mapping. Suppose that there exists a function g : R+ � R+ such that limt� o+ g(t) = 0,
g(0) = 0,and

d(Jx,Jy) � g
(
d(x,y)

)
…g

(
d(Jx,Jy)

)
; 
 x,y � � .

Then J has a unique FP.

Definition 1.5 ([28]) Let F be the class of all functionsF : R+ × R+ � R+ satisfying:
(1) max{m1,m2} � F(m1,m2) for m1,m2 � 0;
(2) F is continuous;
(3) F(m1 + m2,n1 + n2) � F(m1,n1) + F(m2,n2);

e.g.F(m1,m2) = m1 + m2.

2 Main result
Theorem 2.1 Let V be an NBCC subset of a Banach space E, and let � : V � V be a
continuous operator such that

F
[
� (� X),�

(
� (� X)

)]
� 	

[
F
{
� (X),�

(
� (X)

)}]
…	

[
F
{
� (� X),�

(
� (� X)

)}]
(2.1)
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for all X � V, where 	 , � : R+ � R+ are nondecreasing continuous functions and � is an
arbitrary MNC. Then � has at least one FP in V.

Proof Let V0 = V and construct a sequence{Vn} such thatVn+1 = Conv(� Vn) for all n � N.

If there exists a positive integerN0 � N such that� (VN0) = 0, soVN0 is relatively compact.

And by Theorem2.1, we give that� has anFP.

If possible, assume that� (Vn) > 0 for all n. Also, we have

V1 � V2 � · · · � Vn � Vn+1 � . . .

Since the sequence{� (Vn)} is decreasing. So,� (� (Vn)) is decreasing.

Hence, the sequenceF[� (Vn),� (� (Vn))] is decreasing.

Sincelimn�� F[� (Vn),� (� (Vn))] = L.

By using equation (2.1), we have

0 � F
[
� (Vn+1),�

(
� (Vn+1)

)]

= F
[
� (� Vn),�

(
� (� Vn)

)]

� 	
[
F
{
� (Vn),�

(
� (Vn)

)}]
…	

[
F
{
� (� Vn),�

(
� (� Vn)

)}]

= 	
[
F
{
� (Vn),�

(
� (Vn)

)}]
…	

[
F
{
� (Vn+1),�

(
� (Vn+1)

)}]
.

As n � � , we get

0 � L � 	 (L) …	 (L) = 0,

that is,L = 0.

Therefore, limn�� � (Vn) = 0. According to axiom (vi) of De“nition 1.1, we conclude

that V� =
⋂�

n=1 Vn is an NBCC set, invariant under the mapping� and belongs toker � .

By Theorem1.2, we have� has anFP. �

Theorem 2.2 Let V be an NBCC subset of a Banach space E, and let � : V � V be a
continuous operator such that

2F
[
� (� X),�

(
� (� X)

)]
� F

{
� (X),�

(
� (X)

)}
(2.2)

for all X � V, where � : R+ � R+ is a nondecreasing continuous function and � is an
arbitrary MNC. Then � has at least one FP in V.

Proof Taking 	 (t) = t;t � 0 in Theorem2.1. �

The statement in the next corollary is a result of Theorem2.1.

Corollary 2.3 Let V be an NBCC subset of a Banach space E, and let � : V � V be a
continuous operator such that

2� (� X) + 2�
(
� (� X)

)
� � (X) + �

(
� (X)

)
(2.3)
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for all X � V, where � : R+ � R+ is a nondecreasing continuous function and � is an
arbitrary MNC. Then � has at least one FP in V.

Proof Taking F(m1,m2) = m1 + m2 in Theorem 2.2. So, we get the required result. �

Corollary 2.4 Let V be an NBCC subset of a Banach space E, and let � : V � V be a
continuous operator such that

� (� X) � p� (X) (2.4)

for all X � V, where p = 1
2 � (0, 1]and � is an arbitrary MNC. Then � has at least one FP

in V.

Proof Taking � (t) = 0 in Corollary 2.3, we get the required result. �

Theorem 2.5 Let V be an NBCC subset of a Banach space E, and let � : V � V be a
continuous operator such that

F
[
� (� X),�

(
� (� X)

)]
� 
 F

{
� (X),�

(
� (X)

)}
(2.5)

for all X � V, where � : R+ � R+ is a nondecreasing continuous function and � is an
arbitrary MNC, where 
 = k

k+1 � [0, 1).Then � has at least one FP in V.

Proof Taking 	 (t) = kt wheret � 0, k � 0 in Theorem2.1. �

Corollary 2.6 Let V be an NBCC subset of a Banach space E, and let � : V � V be a
continuous operator such that

� (� X) � 
� (X) (2.6)

for all X � V, where 
 � (0, 1] and � is an arbitrary MNC. Then � has at least one FP

in V.

Proof TakingF(m1,m2) = m1+m2 and� (t) � 0 in Theorem2.5. So, we get the result which

is Darbo•s “xed point theorem. �

Definition 2.7 ([29]) An element (A,B) � X × X is called a coupled “xed point of a map-

ping T :X × X � X if T (A,B) = A andT (B,A) = B.

Theorem 2.8 ([25]) Suppose that � 1, � 2, . . . ,� n is the MNC in E1,E2, . . . ,En respectively.
Moreover, suppose that the function X : Rn

+ � R+ is convex and F (y1,y2, . . . ,yn) = 0 �

yt = 0 for t = 1, 2, . . . ,n, then � (X ) = F (� 1(X1),� 2(X2), . . . ,� n(Xn)) defines an MNC in
E1,E2, . . . ,En, where Xt denotes the natural projection of X into Et for t = 1,2, . . . ,n.

Example 2.9 ([25]) Let � be an MNC onE. De“ne F (A,B) = A + B;A,B � R+. ThenF
has all the properties mentioned in Theorem2.8. Hence,� cf (X ) = � 1(X1) + � 2(X2) is an

MNC in the spaceE × E, whereXt , t = 1,2, denotes the natural projections ofX .
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Definition 2.10 ([30]) Suppose thatG is the set of all functionsµ : R+ � R satisfying the

following conditions:

(1) µ is a continuous strictly increasing function.

(2) limn�� µ (sn) = …� � limn�� sn = 0 for all sn � R+.

For example,

i. µ 1(s) = ln(s),
ii. µ 2(s) = 1 …1

st , t > 0.

Theorem 2.11 Let V be an NBCC subset of a Banach space E, and let � : V × V � V be
a continuous operator such that

µ
[
F
{
�

(
� (s1 × s2)

)
, �

(
�

(
� (s1 × s2)

))}]
�

	
2

[
µ

{
� (s1 × s2) + �

(
� (s1 × s2)

)}]
(2.7)

for all s1,s2 � V, where 	 , F , and � are as in Theorem 2.1and � is an arbitrary MNC.

In addition, we assume µ(A + B) � µ (A) + µ (B); A,B � 0 and � (A + B) � � (A) + � (B);

A,B � 0.Then � has at least a couple of FP in V.

Proof Consider a mapping� cf : V × V � V × V by� cf (A,B) = (� (A,B),� (B,A));A,B �

V. It is trivial that � cf is continuous.

Let s � V × V be nonempty. We have� cf (s) = � (s1) + � (s2) is an MNC, wheres1,s2 are

the natural projections ofs into E.

We get

µ
[
F
{
� cf (� cf (s)

)
, �

(
� cf (� cf (s)

))}]

� µ
[
F
{
� cf (� (s1 × s2) × � (s2 × s1)

)
, �

(
� cf (� (s1 × s2) × � (s2 × s1)

))}]

= µ
[
F
{
�

(
� (s1 × s2)

)
+ �

(
� (s2 × s1)

)
, �

(
�

(
� (s1 × s2)

)
+ �

(
� (s2 × s1)

))}]

� µ
[
F
{
�

(
� (s1 × s2)

)
+ �

(
� (s2 × s1)

)
, �

(
�

(
� (s1 × s2)

))
+ �

(
�

(
� (s2 × s1)

))}]

� µ
[
F
{
�

(
� (s1 × s2)

)
, �

(
�

(
� (s1 × s2)

))}]

+ µ
[
F
{
�

(
� (s2 × s1)

)
, �

(
�

(
� (s2 × s1)

))}]

� 	
[
µ

{
� (s1) + � (s2) + �

(
� (s1) + � (s2)

)}]

= 	
[
µ

{
� cf (s) + �

(
� cf (s)

)}]

= 	
[
µ

{
F
(
� cf (s),�

(
� cf (s)

))}]
.

By Theorem2.1, we conclude that� cf has minimum of one “xed point in V × V. That is,

� has minimum of one coupled “xed point. �

3 Measure of noncompactness on C([0, T])
Consider the spaceE = C(I) which is the set of real continuous functions onI, where

I = [0,T ]. Then E is a Banach space with the norm

� � � = sup
{∣
∣� (� )

∣
∣ : � � I

}
, � � E.
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Let � (�= � ) � E be bounded. For� � � and 
 > 0, denote by� (� , 
 ) the modulus of the
continuity of � , i.e.,

� (� , 
 ) = sup
{∣
∣� (� 1) …� (� 2)

∣
∣ : � 1, � 2 � I, |� 1 …� 1| � 


}
.

Further, we de“ne

� (� , 
 ) = sup
{
� (� , 
 ) : � � �

}
; � 0(� ) = lim


 � 0
� (� , 
 ).

It is well known that the function � 0 is an MNC in E such that the Hausdor� measure of
noncompactness� is given by� (� ) = 1

2� 0(� ) (see [25]).

4 Solvability of fractional integral equation
For � � (0, 1] and� � C,Re(� ) > 0, we de“ne the left GPF integral off de“ned by [31]

(
aI � ,� f

)
(t) =

1
� � � (� )

∫ t

a
e

(� …1)(t…� )
� (t …� )� …1f (� )d� .

In this part, we study the following fractional integral equation:

Z(� ) = 	
(
� ,L

(
� ,Z(� )

)
,
(

0I � ,� Z
)
(� )

)
, (4.1)

where� > 1,� � (0, 1],� � I = [0,T ].
Let

Bd0 =
{
Z � E : � Z � � d0

}
.

Assume that
(A) 	 : I × R2 � R,L : I × R � R is continuous, and there exist constants� 1, � 2, � 3 � 0

satisfying

∣
∣	 (� ,L,I1) …	 (� ,L̄, Ī1)

∣
∣ � � 1|L…L̄| + � 2|I1 …̄I1|, � � I;L,I1,L̄, Ī1 � R

and

∣
∣L(� ,J1) …L(� ,J2)

∣
∣ � � 3|J1 …J2|, J1,J2 � R.

(B) There existsd0 > 0 satisfying

¯	 = sup
{∣
∣	 (� ,L,I1)

∣
∣ : � � I,L � […�L, �L], I1 � […�I, �I]

}
� d0

and

� 1� 3 < 1,

where

�L = sup
{∣
∣L

(
� ,Z(� )

)∣
∣ : � � I,Z(� ) � […d0,d0]

}
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and

�I = sup
{∣
∣
(

0I � ,� Z
)
(� )

∣
∣ : � � I,Z(� ) � […d0,d0]

}
.

(C) |	 (� , 0, 0)| = 0,L(� , 0) = 0.

(D) There exists a positive solutiond0 of the inequality

� 1� 3r +
� 2rT �

� � � (� + 1)
.e

(� …1)T
� � r.

Theorem 4.1 If conditions (A)–(D) hold, then Eq. (4.1) has a solution in E = C(I).

Proof De“ne the operatorT : E � E as follows:

(T Z)(� ) = 	
(
� ,L

(
� ,Z(� )

)
,
(

0I � ,� Z
)
(� )

)
.

Step 1: We prove that the functionQ mapsBd0 into Bd0. Let � � Bd0. We have

∣
∣(T Z)(� )

∣
∣

�
∣
∣	

(
� ,L

(
� ,Z(� )

)
,
(

0I � ,� Z
)
(� )

)
…	 (� , 0, 0)

∣
∣ +

∣
∣	 (� , 0, 0)

∣
∣

� � 1
∣
∣L

(
� ,Z(� )

)
… 0

∣
∣ + � 2

∣
∣
(

0I � ,� Z
)
(� ) … 0

∣
∣

� � 1� 3
∣
∣Z(� )

∣
∣ + � 2

∣
∣
(

0I � ,� Z
)
(� )

∣
∣.

Also,

∣
∣
(

0I � ,� Z
)
(� )

∣
∣

=

∣
∣
∣
∣

1
� � � (� )

∫ �

0
e

(� …1)(� …� )
� (� …� )� …1Z(� )d�

∣
∣
∣
∣

�
1

� � � (� )

∫ �

0
e

(� …1)(� …� )
� (� …� )� …1

∣
∣Z(� )

∣
∣d�

�
d0e

(� …1)T
�

� � � (� )

∫ �

0
(� …� )� …1d�

�
d0T � e

(� …1)T
�

� � � (� + 1)
.

Hence,� T � < d0 gives

� T � � � 1� 3d0 +
� 2d0T �

� � � (� + 1)
.e

(� …1)T
� � d0.

Due to assumption (D),T mapsBd0 into Bd0.

Step 2: We prove thatT is continuous onBd0. Let 
 > 0 andZ,Z̄ � Br0 such that � Z …

Z̄ � < 
 . We have

∣
∣(T Z)(� ) … (T Z̄)(� )

∣
∣
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�
∣
∣	

(
� ,L

(
� ,Z(� )

)
,
(

0I � ,� Z
)
(� )

)
…	

(
� ,L

(
� ,Z̄(� )

)
,
(

0I � ,� Z̄
)
(� )

)∣
∣

� � 1
∣
∣L

(
� ,Z(� )

)
…L

(
� ,Z̄(� )

)∣
∣ + � 2

∣
∣
(

0I � ,� Z
)
(� ) …

(
0I � ,� Z̄

)
(� )

∣
∣.

Also,

∣
∣
(

0I � ,� Z
)
(� ) …

(
0I � ,� Z̄

)
(� )

∣
∣

=

∣
∣
∣
∣

1
� � � (� )

∫ �

0
e

(� …1)(� …� )
� (� …� )� …1{Z(� ) …Z̄(� )

}
d�

∣
∣
∣
∣

�
1

� � � (� )

∫ �

0
e

(� …1)(� …� )
� (� …� )� …1

∣
∣Z(� ) …Z̄(� )

∣
∣d�

<

 T � e

(� …1)T
�

� � � (� + 1)
.

Hence,� Z …Z̄ � < 
 gives

∣
∣(T Z)(� ) … (T Z̄)(� )

∣
∣ < � 1� 3
 +


 T � e
(� …1)T

�

� � � (� + 1)
.

As 
 � 0 we get|(T Z)(� ) … (T Z̄)(� )| � 0. This shows thatT is continuous onBd0.
Step 3: An estimate ofT with respect to � 0: Assume that� (�= � ) � Bd0. Let 
 > 0 be

arbitrary and chooseZ � � and � 1, � 2 � I such that|� 2 …� 1| � 
 and � 2 � � 1.
Now,

∣
∣(T Z)(� 2) … (T Z)(� 1)

∣
∣

=
∣
∣	

(
� 2,L

(
� 2,Z(� 2)

)
,
(

0I � ,� Z
)
(� 2)

)
…	

(
� 1,L

(
� 1,Z(� 1)

)
,
(

0I � ,� Z
)
(� 1)

)∣
∣

�
∣
∣	

(
� 2,L

(
� 2,Z(� 2)

)
,
(

0I � ,� Z
)
(� 2)

)
…	

(
� 2,L

(
� 2,Z(� 2)

)
,
(

0I � ,� Z
)
(� 1)

)∣
∣

+
∣
∣	

(
� 2,L

(
� 2,Z(� 2)

)
,
(

0I � ,� Z
)
(� 1)

)
…	

(
� 2,L

(
� 1,Z(� 1)

)
,
(

0I � ,� Z
)
(� 1)

)∣
∣

+
∣
∣	

(
� 2,L

(
� 1,Z(� 1)

)
,
(

0I � ,� Z
)
(� 1)

)
…	

(
� 1,L

(
� 1,Z(� 1)

)
,
(

0I � ,� Z
)
(� 1)

)∣
∣

� � 2
∣
∣
(

0I � ,� Z
)
(� 2) …

(
0I � ,� Z

)
(� 1)

∣
∣ + � 1

∣
∣L

(
� 2,Z(� 2)

)
…L

(
� 1,Z(� 1)

)∣
∣ + � 	 (I, 
 )

� � 2
∣
∣
(

0I � ,� Z
)
(� 2) …

(
0I � ,� Z

)
(� 1)

∣
∣ + � 1� 3

∣
∣Z(� 2) …Z(� 1)

∣
∣ + � 	 (I, 
 ),

where

� 	 (I, 
 ) = sup

{
|	 (� 2,L,I1) …	 (� 1,L,I1)| : |� 2 …� 1| � 
 ; � 1, � 2 � I;

L � […�L, �L];I1 � […�I, �I]

}

.

Also,

∣
∣
(

0I � ,� Z
)
(� 2) …

(
0I � ,� Z

)
(� 1)

∣
∣

=

∣
∣
∣
∣

1
� � � (� )

∫ � 2

0
e

(� …1)(� 2…� )
� (� 2 …� )� …1Z(� )d�

…
1

� � � (� )

∫ � 1

0
e

(� …1)(� 1…� )
� (� 1 …� )� …1Z(� )d�

∣
∣
∣
∣
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�
1

� � � (� )

∣
∣
∣
∣

∫ � 2

0
e

(� …1)(� 2…� )
� (� 2 …� )� …1Z(� )d� …

∫ � 1

0
e

(� …1)(� 1…� )
� (� 1 …� )� …1Z(� )d�

∣
∣
∣
∣

�
1

� � � (� )

∣
∣
∣
∣

∫ � 2

0
e

(� …1)(� 2…� )
� (� 2 …� )� …1Z(� )d� …

∫ � 1

0
e

(� …1)(� 2…� )
� (� 2 …� )� …1Z(� )d�

∣
∣
∣
∣

+
1

� � � (� )

∣
∣
∣
∣

∫ � 1

0
e

(� …1)(� 2…� )
� (� 2 …� )� …1Z(� )d� …

∫ � 1

0
e

(� …1)(� 1…� )
� (� 1 …� )� …1Z(� )d�

∣
∣
∣
∣

�
1

� � � (� )

∫ � 2

� 1

e
(� …1)(� 2…� )

� (� 2 …� )� …1
∣
∣Z(� )

∣
∣d�

+
1

� � � (� )

∫ � 1

0

∣
∣
(
e

(� …1)(� 2…� )
� (� 2 …� )� …1…e

(� …1)(� 1…� )
� (� 1 …� )� …1)Z(� )

∣
∣d�

�
…e

(� …1)T
�

� � � (� + 1)
� Z � (� 2 …� 1)�

+
� Z �

� � � (� )

∫ � 1

0

∣
∣e

(� …1)(� 2…� )
� (� 2 …� )� …1…e

(� …1)(� 1…� )
� (� 1 …� )� …1

∣
∣d� .

As 
 � 0, then� 2 � � 1, and so|(0I � ,� Z)(� 2) … (0I � ,� Z)(� 1)| � 0.

Hence,

∣
∣(T Z)(� 2) … (T Z)(� 1)

∣
∣

� � 2
∣
∣
(

0I � ,� Z
)
(� 2) …

(
0I � ,� Z

)
(� 1)

∣
∣ + � 1� 3� (Z, 
 ) + � 	 (I, 
 )

gives

� (T Z, 
 ) � � 2
∣
∣
(

0I � ,� Z
)
(� 2) …

(
0I � ,� Z

)
(� 1)

∣
∣ + � 1� 3� (Z, 
 ) + � 	 (I, 
 ).

By the uniform continuity of 	 on I × […�L, �L] × […�I, �I], we have� 	 (I, 
 ) � 0 as
 � 0.

Taking supZ � � and 
 � 0, we get

� 0(T � ) � � 1� 3� 0(� ).

Thus, by Corollary2.6,Q has a “xed point in� � Bd0, i.e., equation (4.1) has a solution

in E. �

Example 4.2 Consider the following equation:

Z(� ) =
Z(� )
7 + � 2

+
(0I2,12Z)(� )

10
(4.2)

for � � [0, 2] = I.

We have

(
0I2,12Z

)
(� ) =

4
� (2)

∫ �

0
e…(� …� )(� …� )Z(� )d� .
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Also, 	 (� ,L,I1) = L + I1
10 andL(� ,Z) = Z

7+� 2 . It is trivial that both 	 ,L are continuous

satisfying

∣
∣L(� ,J1) …L(� ,J2)

∣
∣ �

|J1 …J2|
8

and

∣
∣	 (� ,L,I1) …	 (� ,L̄, Ī1)

∣
∣ � | U …Ū | +

1
10

|I1 …Ī1|.

Therefore,� 1 = 1,� 2 = 1
10, � 3 = 1

8, and� 1� 3 = 1
8 < 1.

If � Z � � d0, then

�L =
d0

8

and

�I =
8d0

e2
.

Further,

∣
∣	 (� ,L,I1)

∣
∣ �

d0

8
+

8d0

10e2
� d0.

If we choosed0 = 2, then

�L =
1
4

, �I =
16
e2

,

which gives

¯	 � 2.

On the other hand, assumption (D) is also satis“ed ford0 = 2.

We observe that all the assumption from (A)…(D) of Theorem4.1are satis“ed. By The-

orem 4.1, it can be said that equation (4.2) has a solution inE = C(I).
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