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Abstract
An approach to the generalized Bessel–Maitland function is proposed in the present
paper. It is denoted by J μ

ν ,λ, where μ > 0 and λ,ν ∈ C get increasing interest from
both theoretical mathematicians and applied scientists. The main objective is to
establish the integral representation of J μ

ν ,λ by applying Gauss’s multiplication
theorem and the representation for the beta function as well as Mellin–Barnes
representation using the residue theorem. Moreover, themth derivative of J μ

ν ,λ is
considered, and it turns out that it is expressed as the Fox–Wright function. In
addition, the recurrence formulae and other identities involving the derivatives are
derived. Finally, the monotonicity of the ratio between two modified Bessel–Maitland
functions Iμ

ν ,λ defined by Iμ
ν ,λ(z) = i–2λ–νJ μ

ν ,λ(iz) of a different order, the ratio between
modified Bessel–Maitland and hyperbolic functions, and some monotonicity results
for Iμ

ν ,λ(z) are obtained where the main idea of the proofs comes from the
monotonicity of the quotient of two Maclaurin series. As an application, some
inequalities (like Turán-type inequalities and their reverse) are proved. Further
investigations on this function are underway and will be reported in a forthcoming
paper.
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1 Introduction
Special functions (abbreviated as SFs) are potentially useful in diverse fields of mathemat-
ical physics and engineering. They represent a crucial tool to provide solutions to differ-
ential equations and systems, used as mathematical models. This fact follows from the
point of view of the applied scientists and engineers dealing with the practical application
of differential equations. In this connection, substantial efforts have been carried out on
the special functions and their properties to attract particular attention. For a thorough
treatment of such theory and its more recent achievements, we refer the reader, e.g., to [4–
9, 11, 17–19, 26, 29, 30], while more general aspects of the theory are given in [3, 23, 34].

The modified Bessel–Maitland and modified Struve functions are related to the modi-
fied Bessel function. Their properties can be helpful in a variety of areas in mathematical
physics. A list of applications of modified Bessel function can be found in various problems
that arise in wave mechanics, fluid mechanics, electrical engineering, quantum billiards,
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biophysics, mathematical physics, finite elasticity, probability and statistics, special rela-
tivity, and so on. Regarding treatises on the subject, we refer, e.g., to [12, 20–22, 28, 33]
and the references therein.

The famous Turán’s inequality for the Legendre polynomials Pn(x), that is, (Pn(x))2 –
Pn+1(x)Pn–1(x) ≥ 0, for –1 ≤ x ≤ 1, n ∈N, proved by Szegö [31] and Turán [32], still attracts
the attention of mathematicians and has been extended to several orthogonal polynomi-
als and special functions. Some of the results have been applied in problems that arise
in information theory and credit risk modeling can be found in [24]. In [16], Carey and
Gordy offered a time-independent model prediction in determining the value of assets
at which firms declare bankruptcy. Using the models of Metron [25] and Black and Cox
[15], Carey et al. assumed that the firm’s asset follows a geometric Brownian motion. It is
shown that the bank’s optimal foreclosure solves a first-order condition involving a ratio
of contiguous Kummer functions for which a Turán-type inequality appeared in the study
of the model. A proof of this essential Turán-type inequality is established in [13]. For a
general background on the applications of the Kummer function in economic theory and
econometrics, see [1].

The organization of this paper is as follows. Section 2 is devoted to obtaining the in-
tegral representation as well as Mellin–Barnes integral representation for the generalized
Bessel–Maitland function. Moreover, the mth derivative of J μ

ν,λ is considered, and it turns
out that it is expressed as the Fox–Wright function. In addition, the recurrence relations
and other identities involving the derivatives are derived generalizing some of the works
of [9] and [18]. At the end of the paper, the monotonicity of the ratio between two modi-
fied Bessel–Maitland functions Iμ

ν,λ defined by Iμ
ν,λ(z) = i–2λ–νJ μ

ν,λ(iz) of a different order,
the ratio between modified Bessel–Maitland and hyperbolic functions, and some mono-
tonicity results for Iμ

ν,λ(z) are obtained where the main idea of the proofs comes from the
monotonicity of the quotient of two Maclaurin series. As an application, some inequalities
(like Turán-type inequalities and their reverse) are proved.

We proceed to recall the generalized Bessel–Maitland functionJ μ
ν,λ(z) defined by Pathak

in [27] as

J μ
ν,λ(z) =

(
z
2

)2λ+ν ∞∑
n=0

(–1)n

�(n + λ + 1)�(nμ + λ + ν + 1)

(
z
2

)2n

=
(

z
2

)2λ+ν

1�2

[
(1, 1)

(λ + 1, 1), (λ + ν + 1,μ)

∣∣∣∣ –
z2

4

]
, (1.1)

for μ > 0, λ,ν ∈ C, and z ∈ C\(–∞, 0], where p�q denotes the Fox–Wright generalization
of the hypergeometric function. It is defined by

p�q

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣z
]

=: p�q

[
(ap, Ap)
(bq, Bq)

∣∣∣∣z
]

=
∞∑

n=0

ψn
zn

n!
, (1.2)

with

ψn =
�(a1 + A1n) . . .�(ap + Apn)
�(b1 + B1n) . . .�(bq + Bqn)

,
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for ai, bj ∈ C and Ai, Bj ∈ R (i = 1, . . . , p, j = 1, . . . , q). It is worth noting that the above se-
ries converges absolutely in the whole complex z-plane when � :=

∑q
j=1 Bj –

∑p
i=1 Ai > –1,

while if � = –1, series (1.1) converges absolutely for |z| < ρ and |z| = ρ under the condition
�{σ } > 1/2, where

ρ =

( p∏
i=1

A–Ai
i

)( q∏
j=1

B–Bj
j

)
, σ =

q∑
j=1

bj –
p∑

i=1

ai +
p – q

2
.

On the other hand, the modified Bessel-Maitland function can be defined as Iμ
ν,λ(z) =

i–2λ–νJ μ
ν,λ(iz) which has the power series expansion

Iμ
ν,λ(z) =

(
z
2

)2λ+ν ∞∑
n=0

1
�(n + λ + 1)�(nμ + λ + ν + 1)

(
z
2

)2n

. (1.3)

Remark 1.1 We note the following special cases:

μSν,1(z) := J μ

ν, 1
2

(z) =
(

z
2

)ν+1 ∞∑
n=0

(–1)n

�(n + 3/2)�(nμ + ν + 3/2)

(
z
2

)2n

,

for μ > 0 and z,ν ∈ C, where μSν,1(z) has been introduced by Ali et al. [9];

μJν(z) := J μ
ν,0(z) =

(
z
2

)ν ∞∑
n=0

(–1)n

n!�(nμ + ν + 1)

(
z
2

)2n

,

for μ > 0, ν ∈ C and |z| < ∞ with | arg z| < π , where μJν(z) has been introduced by Galué
[18];

Hν(z) := J 1
ν,1/2(z) =

∞∑
n=0

(–1)n

�(n + 3/2)�(n + ν + 3/2)

(
z
2

)2n+ν+1

, z,ν ∈C,

where Hν(z) is the well-known Struve function of order ν ;

Jν(z) := J 1
ν,0(z) =

∞∑
n=0

(–1)n

n!�(n + ν + 1)

(
z
2

)ν+2n

,

for z,ν ∈C, z �= 0 and �{ν} > –1, where Jν(z) is the Bessel function of order ν .

We shall base our discussion upon the following definitions. A function f : X → R is
convex if

f
(
αx + (1 – α)y

) ≤ αf (x) + (1 – α)f (y),

for all x, y ∈ X and α ∈ [0, 1]. If the above inequality is (<), then f is strictly convex. More-
over, f is (strictly) concave if –f is (strictly) convex. In addition, if f is differentiable, then f
is convex (concave) if and only if f is increasing (decreasing) and if f is twice differentiable,
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then f is convex (concave) if and only if f ′′ is nonnegative (nonpositive). A function g is
log-convex or superconvex on [a, b] if g > 0 and log g is convex on [a, b], that is,

log g
(
αx + (1 – α)y

) ≤ α log g(x) + (1 – α) log g(y),

or equivalently,

g
(
αx + (1 – α)y

) ≤ (
g(x)

)α(
g(y)

)1–α ,

for all x, y ∈ [a, b] and α ∈ [0, 1]. It is worthwhile mentioning that g is log-concave if the
above inequality is reversed. A real-valued function f (x) is called absolutely monotonic on
(0,∞) if it has derivatives of all orders and satisfies f (n)(x) ≥ 0 for all x ∈ (0,∞) and n ≥ 0.

After this preparation, we can pass on the main results of the present paper.

2 Some properties of the generalized Bessel–Maitland function
In this section, we shall recall Gauss’s multiplication theorem [2] which states that

�(mz) = (2π )(1–m)/2mmz–1/2
m∏

i=1

�

(
z +

i – 1
m

)
, z �= 0, –

1
m

, –
2
m

, . . . , m ∈N, (2.1)

where N = {1, 2, 3, . . .}. Therefore

�(nμ + �) = �

(
μ

(
n +

�

μ

))
= (2π )(1–μ)/2μμn+�–1/2

μ∏
i=1

�

(
n +

i + � – 1
μ

)
,

for � �= –μn, –μn – 1, . . . and μ ∈N. Moreover,

�(�) = (2π )(1–μ)/2μ�–1/2
μ∏

i=1

�

(
i + � – 1

μ

)
,

that is,

μ∏
i=1

�

(
i + � – 1

μ

)
=

�(�)
(2π )(1–μ)/2μ�–1/2 . (2.2)

From (2.1) and (2.2), it further follows that

�(nμ + �) = μμn�(�)
μ∏

i=1

(
i + � – 1

μ

)
n
, (2.3)

where (a)n represents the Pochhammer symbol defined by

(a)n :=

⎧⎨
⎩

1, if n = 0,

a(a + 1)(a + 2) . . . (a + n – 1), if n ∈N.

Putting � = λ + ν + 1, we find

�(nμ + λ + ν + 1) = μμn�(λ + ν + 1)
μ∏

i=1

(
i + λ + ν

μ

)
n
.
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Using the series expansion (1.1) of J μ
ν,λ(z), we obtain

J μ
ν,λ(z) =

z2λ+ν

22λ+ν�(λ + 1)�(λ + ν + 1)

×
∞∑

n=0

1
(λ + 1)n( λ+ν+1

μ
)n · · · ( λ+ν+μ

μ
)n

(
–

z2

4μμ

)n

=
z2λ+ν

22λ+ν�(λ + 1)�(λ + ν + 1)

× 1Fμ+1

(
1;λ + 1,

λ + ν + 1
μ

, . . . ,
λ + ν + μ

μ
; –

z2

4μμ

)
,

where pFq stands for the generalized hypergeometric function defined by

pFq(a1, . . . , ap, b1, . . . , bq) =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
.

As a special case, letting μ = 1, λ = 0, ν = 1/2, and ν = –1/2, respectively, we obtain

J 1
1
2 ,0(z) =

√
2z
π

0F1

(
–;

3
2

; –
z2

4

)
=

√
2
πz

sin z,

J 1
– 1

2 ,0(z) =
√

2
πz 0F1

(
–;

1
2

; –
z2

4

)
=

√
2
πz

cos z.

We then proceed to establish the integral representation for J μ
ν,λ(z). Let us recall that

1
�(x + y)

=
k

�(x)�(y)

∫ 1

0
tkx–1(1 – tk)y–1 dt,

for �{x} > 0, �{y} > 0. Letting k = 2, x = n + λ + 1/2, and y = (λ + ν + i)/μ – λ – 1/2 in the
aforementioned integration, we get

1
�(n + (λ + ν + i)/μ)

=
2

�(n + λ + 1/2)�((λ + ν + i)/μ – λ – 1/2)

×
∫ 1

0
t2n+2λ

(
1 – t2)(λ+ν+i)/μ–λ–3/2 dt,

and so

J μ
ν,λ(z) =

∞∑
n=0

(–1)n(z/2)2n+2λ+ν

�(n + λ + 1)
(2π )(μ–1)/2μ–(μn+λ+ν+1/2)

×
μ∏

i=1

2
�(n + λ + 1/2)�((λ + ν + i)/μ – λ – 1/2)

×
∫ 1

0
t2n+2λ

(
1 – t2)(λ+ν+i)/μ–λ–3/2 dt,
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where �{(λ+ν +1)/μ–λ–1/2} > 0. Interchanging the order of the integral and summation,
we obtain

J μ
ν,λ(z) = 2(2π )(μ–1)/2μ–(λ+ν+1/2)

(
z
2

)2λ+ν μ∏
i=1

1
�((λ + ν + i)/μ – λ – 1/2)

×
∫ 1

0

(
1 – t2)(λ+ν+i)/μ–λ–3/2

∞∑
n=0

(–1)n(z/2)2nμ–μnt2n+2λ

�(n + λ + 1)�(n + λ + 1/2)
dt. (2.4)

Using Legendre’s formula

�(z)�
(

z +
1
2

)
=

√
π

22z–1 �(2z),

for z = n + λ + 1
2 , we get

�

(
n + λ +

1
2

)
�(n + λ + 1) =

√
π

22n+2λ
�(2n + 2λ + 1). (2.5)

Substituting in (2.4), we find

J μ
ν,λ(z) =

21–ν

√
π

(2π )(μ–1)/2μ–(λ+ν+1/2)z2λ+ν

μ∏
i=1

1
�((λ + ν + i)/μ – λ – 1/2)

×
∫ 1

0

(
1 – t2)(λ+ν+i)/μ–λ–3/2

∞∑
n=0

(–1)nz2nμ–μnt2n+2λ

�(2n + 2λ + 1)
dt

=
21–ν(2π )(μ–1)/2μ–(λ+ν+1/2)z2λ+ν

√
π�(2λ + 1)

μ∏
i=1

1
�((λ + ν + i)/μ – λ – 1/2)

×
∫ 1

0

(
1 – t2)(λ+ν+i)/μ–λ–3/2t2λ

1F2

(
1;

1
2

+ λ, 1 + λ; –
t2z2

4μμ

)
dt. (2.6)

Suppose that

T(z) := 1F2

(
1;

1
2

+ λ, 1 + λ; –
t2z2

4μμ

)
.

By applying the following integral representation for 1F2(a; b, c; z):

1F2(a; b, c; z) :=
�(c)

�(a)�(c – a)

∫ 1

0
(1 – u)c–a–1ua–1

0F1(–; b; uz) du,

with �{c} > �{a} > 0, then T(z) takes the form

T(z) = λ

∫ 1

0
(1 – u)λ–1

0 F1

(
–;

1
2

+ λ; –
ut2z2

4μμ

)
du, (2.7)

with λ > 0. Now, using the integral representation for 0F1(–; b; t),

0F1(–; b; z) =
2�(b)√

π�(b – 1/2)

∫ 1

0

(
1 – v2)b–3/2

cosh(2v
√

z) dv,
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with �{b} > 1/2, we obtain

T(z) =
2λ�( 1

2 + λ)√
π�(λ)

∫ 1

0

∫ 1

0
(1 – u)λ–1(1 – v2)λ–1

cosh
(
ivt

√
uz2μ–μ

)
du dv

=
2λ�( 1

2 + λ)√
π�(λ)

∫ 1

0

∫ 1

0
(1 – u)λ–1(1 – v2)λ–1

cos
(
vt

√
uz2μ–μ

)
du dv,

with λ > 0, and so (2.6) becomes

J μ
ν,λ(z) =

4λ�( 1
2 + λ)

π�(λ)�(2λ + 1)
(2π )(μ–1)/2μ–(λ+ν+1/2)z2λ+ν2–ν

μ∏
i=1

1
�((λ + ν + i)/μ – λ – 1/2)

×
∫ 1

0

∫ 1

0

∫ 1

0

(
1 – t2)(λ+ν+i)/μ–λ–3/2t2λ(1 – u)λ–1

× (
1 – v2)λ–1

cos
(
vt

√
uz2μ–μ

)
dt du dv.

Remark 2.1 Setting λ = 1/2 and 0 in (2.6), we obtain the corresponding results of [9] and
[18], respectively.

We are now presenting Mellin–Barnes integral representation as well as some differen-
tial results related to the generalized Bessel–Maitland function defined by (1.1).

Theorem 2.1 Let λ > –1, μ > 0, ν ≥ 0, and z ∈C\ (–∞, 0], then J μ
ν,λ(z) can be represented

by the Mellin–Barnes integral as

J μ
ν,λ(z) =

1
2π i

∫
L

�(s)�(1 – s)
�(λ + 1 – s)�(λ + ν + 1 – μs)

(
z
2

)–2s+ν+2λ

ds, (2.8)

where the contour of integration L beginning at c – i∞ and ending at c + i∞ for any c > 0
and separates all poles at s = –n (n ∈N0 = N∪ {0}) to the left and at s = n + 1 to the right.

Proof The poles of the integrand in (2.8) are at the points s = 0, –1, –2, . . . . Consider the
straight line contour c – i∞ to c + i∞ for any c > 0, then all the poles lie to the left of the
contour. Thus, any infinite semi-circle can enclose all these poles and the residue theorem
applies to find

1
2π i

∫
L

�(s)�(1 – s)
�(λ + 1 – s)�(λ + ν + 1 – μs)

(
z
2

)–2s+ν+2λ

ds

=
∞∑

k=0

Res
s=–n

[
�(s)�(1 – s)

�(λ + 1 – s)�(λ + ν + 1 – μs)

(
z
2

)–2s+ν+2λ]

=
∞∑

n=0

lim
s→–n

[
(s + n)�(s)�(1 – s)

�(λ + 1 – s)�(λ + ν + 1 – μs)

(
z
2

)–2s+ν+2λ]

=
∞∑

n=0

lim
s→–n

�(s + n + 1)�(1 – s)
(s + n – 1) · · · s�(λ + 1 – s)�(λ + ν + 1 – μs)

(
z
2

)–2s+ν+2λ

=
∞∑

n=0

(–1)n

�(λ + 1 + n)�(λ + ν + 1 + μn)

(
z
2

)2n+ν+2λ

= J μ
ν,λ(z). �
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Theorem 2.2 For μ > 0, λ,ν ∈C, and z ∈C \ (–∞, 0], we have

dm

dzm

(
J μ

ν,λ(z)
)

= (–1)m
(

z
2

)2λ+ν+m

2–m

×2 �3

[
(2m + 2λ + ν + 1, 2), (1, 1)

(m + λ + 1, 1), (λ + ν + 1 + μm,μ), (m + 2λ + ν + 1, 2)

∣∣∣∣ –
z2

4

]
.

Proof By making use of the series representation (1.1), we find

dm

dzm

(
J μ

ν,λ(z)
)

=
∞∑

n=0

(–1)n

22n+2λ+ν�(n + λ + 1)�(nμ + λ + ν + 1)
dm

dzm

(
z2n+2λ+ν

)

=
∞∑

n=m

(–1)n(2n + 2λ + ν) · · · (2n + 2λ + ν – m – 1)
22n+2λ+ν�(n + λ + 1)�(nμ + λ + ν + 1)

(2n + 2λ + ν)!
(2n + 2λ + ν)!

z2n+2λ+ν–m

=
∞∑

n=m

(–1)n

22n+2λ+ν�(n + λ + 1)�(nμ + λ + ν + 1)
(2n + 2λ + ν)!z2n+2λ+ν–m

(2n + 2λ + ν – m)!

=
∞∑

n=0

(–1)n+m

22n+2m+2λ+ν�(n + m + λ + 1)�(nμ + mμ + λ + ν + 1)

× (2n + 2m + 2λ + ν)!z2n+2λ+ν+m

(2n + m + 2λ + ν)!

= (–1)m
(

z
2

)2λ+ν+m

2–m
∞∑

n=0

1
�(n + m + λ + 1)

× �(2n + 2m + 2λ + ν + 1)
�(nμ + mμ + ν + λ + 1)�(2n + m + 2λ + ν + 1)

(
–

z2

4

)n

,

and the proof is complete. �

Theorem 2.3 If λ ≥ 0, ν,μ > 0, and z ∈ C \ (–∞, 0], the following identities hold:

d
dz

(
z–νJ μ

ν,λ(z)
)

= –2μ–1z1–ν–μJ μ
ν+μ,λ(z), (2.9)

d
dz

(
z–ν–2λ+ 2(λ+ν)

μ J μ
ν,λ(z)

)
=

1
μ

z–2λ–ν+ 2(λ+ν)
μ J μ

ν–1,λ(z), for 2(λ + ν) > μ. (2.10)

Proof By using the series expansion (1.1), the left-hand side of (2.9) becomes

d
dz

(
z–νJ μ

ν,λ(z)
)

=
∞∑

n=1

(–1)nz2λ+2n–1

22n+2λ+ν–1�(n + λ)�(nμ + λ + ν + 1)

=
∞∑

n=0

(–1)n+1z2λ+2n+1

22n+2λ+ν+1�(n + λ + 1)�(nμ + μ + λ + ν + 1)
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= –
z1–ν–μ

21–μ

∞∑
n=0

(–1)nz2λ+2n+ν+μ

22n+2λ+ν+μ�(n + λ + 1)�(nμ + μ + λ + ν + 1)

= –2μ–1z1–ν–μJ μ
ν+μ,λ(z),

which ends the proof of (2.9). A similar argument is used to prove (2.10) as follows:

d
dz

(
z–ν–2λ+ 2(λ+ν)

μ J μ
ν,λ(z)

)

=
2
μ

∞∑
n=0

(–1)n(nμ + λ + ν)z2n–1+ 2(λ+ν)
μ

22n+2λ+ν�(n + λ + 1)�(nμ + λ + ν + 1)

=
2
μ

∞∑
n=0

(–1)nz2n–1+ 2(λ+ν)
μ

22n+2λ+ν�(n + λ + 1)�(nμ + λ + ν)

=
z–2λ–ν+ 2(λ+ν)

μ

μ

∞∑
n=0

(–1)nz2n+2λ+ν–1

22n+2λ+ν–1�(n + λ + 1)�(nμ + λ + ν)

=
1
μ

z–2λ–ν+ 2(λ+ν)
μ J μ

ν–1,λ(z).

Hence, the proof of the present theorem is complete. �

The theorem above generalizes the results given in [18] for λ = 0. Now, it is worth men-
tioning that (2.9) is equivalent to

–νz–ν–1J μ
ν,λ(z) + z–ν

(
J μ

ν,λ(z)
)′ = –2μ–1z1–ν–μJ μ

ν+μ,λ(z),

that is,

–νJ μ
ν,λ(z) + z

(
J μ

ν,λ(z)
)′ = –2μ–1z2–μJ μ

ν+μ,λ(z). (2.11)

Furthermore, from (2.10), we have

z–ν–2λ+ 2(λ+ν)
μ

(
J μ

ν,λ(z)
)′ +

(
–ν – 2λ +

2(λ + ν)
μ

)
z–ν–2λ+ 2(λ+ν)

μ –1(J μ
ν,λ(z)

)

=
1
μ

z–2λ–ν+2(λ+ν)/μJ μ
ν–1,λ(z),

which leads to

z
(
J μ

ν,λ(z)
)′ +

(
–ν – 2λ +

2(λ + ν)
μ

)(
J μ

ν,λ(z)
)

=
1
μ

z
(
J μ

ν–1,λ(z)
)
. (2.12)

From (2.11) and (2.12), it is easy to observe that

(
2(λ + ν)

μ
– 2λ

)(
J μ

ν,λ(z)
)

= 2μ–1z2–μJ μ
ν+μ,λ(z) +

1
μ

z
(
J μ

ν–1,λ(z)
)
. (2.13)
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Theorem 2.4 Let λ ≥ 0, ν,μ > 0, and z ∈C \ (–∞, 0]. The following identities hold:

(
z1– 2

μ
d
dz

)m(
z–ν–2λ+ 2(λ+ν)

μ J μ
ν,λ(z)

)
=

1
μm z

2
μ (λ+ν–m)–2λ–ν+mJ μ

ν–m,λ(z), (2.14)

with 2(λ + ν – m + 1) > μ and

(
1
z

d
dz

)m(
z–νJ μ

ν,λ(z)
)

= (–1)m2(μ–1)mz–ν–μmJ μ
ν+μm,λ(z). (2.15)

Proof We proceed by induction on m. When m = 1, the identity holds. Assume that it
holds when m = k for some integer k ≥ 1. We have to show that it still holds when m = k +1
as follows:

(
z1– 2

μ
d
dz

)k+1(
z–ν–2λ+ 2(λ+ν)

μ J μ
ν,λ(z)

)

=
(

1

z
2
μ –1

d
dz

)(
z1– 2

μ
d
dz

)k(
z–ν–2λ+ 2(λ+ν)

μ J μ
ν,λ(z)

)

=
(

1

z
2
μ –1

d
dz

)[
z

2
μ (λ+ν–1)–2λ–ν+kJ μ

ν–k,λ(z)
]

=
1

z
2
μ –1

d
dz

[
z

2
μ (λ+ν–1)–2λ–ν+k

μk

∞∑
n=0

(–1)nz2n+2λ+ν–k

22n+2λ+ν–k�(n + λ + 1)�(λ + ν + nμ – k)

]

=
1

z
2
μ –1

d
dz

[
1
μk

∞∑
n=0

(–1)nz2n+2 (λ+ν–k)
μ

22n+2λ+ν+kμ�(n + λ + 1)�(λ + ν + nμ – k)

]

=
2

z
2
μ –1

1
μk+1

∞∑
n=0

(–1)nz2n+2 (λ+ν–k)
μ –1

22n+2λ+ν–k�(n + λ + 1)�(λ + ν + nμ – k – 1)

=
1

μk+1 z
2
μ (λ+ν–k–1)–2λ–ν+k+1J μ

ν–k–1,λ(z).

Therefore, the identity also holds when m = k + 1; and consequently it holds for every
integer m ≥ 1. Similarly, relation (2.15) may be proved. �

The above theorem generalizes the result given in [18] for λ = 0.

3 Monotonicity properties of the modified Bessel–Maitland function
We proceed to state the following lemma which will be used in proving the theoretical
results of this section.

Lemma 3.1 ([14]) Let an ∈ R and bn > 0 for n ∈ N0. If A(z) =
∑

n≥0 anzn and B(z) =∑
n≥0 bnzn are a convergent power series in |z| < R and the sequence {an/bn}n≥0 is increasing

(decreasing), then the quotient A(z)/B(z) is increasing (decreasing) on (0, R).

Bear in mind that the above lemma can be applied if the power series is of the form

A(z) =
∑
n≥0

anz2n and B(z) =
∑
n≥0

bnz2n,
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or

A(z) =
∑
n≥0

anz2n+1 and B(z) =
∑
n≥0

bnz2n+1.

Furthermore, let us define the normalized form of the modified Bessel–Maitland func-
tion by

J
μ
ν,λ(z) = �(λ + 1)�(λ + ν + 1)22λ+νz1–2λ–νIμ

ν,λ(z)

=
∞∑

n=0

z2n+1

4n(λ + 1)n(λ + ν + 1)nμ

. (3.1)

Now, we are ready to pass on the main results of this section.

Theorem 3.1 Let k be a nonnegative integer. Then the following assertions hold:
(i) If ν,ν1 ≥ 0, μ > 0, λ > –1, and ν > ν1, then z �→ J

μ
ν,λ(z)/Jμ

ν1,λ(z) is decreasing on
(0,∞);

(ii) If μ ∈N, ν > 1/2, and λ ≥ 0, then z �→ (Jμ
ν,λ(z))(2k+1)/ cosh z is strictly decreasing on

(0,∞);
(iii) If μ ∈N, ν > 1/2, and λ ≥ 0, then z �→ (Jμ

ν,λ(z))(2k+2)/ sinh z is strictly decreasing on
(0,∞);

(iv) If μ ∈N, ν > 1/2, and λ ≥ 0, then z �→ (Jμ
ν,λ(z))(2k+1)/(cosh z + z sinh z) is strictly

decreasing on (0,∞).

Proof (i) Using the power series expansion of Jμ
ν,λ(z), we have

J
μ
ν,λ(z)

J
μ
ν1,λ(z)

=
∑∞

n=0 bn(ν)z2n+1∑∞
n=0 bn(ν1)z2n+1 .

In view of Lemma 3.1, it is enough to establish the monotonicity of

gn(z) =
bn(ν)
bn(ν1)

=
(λ + ν1 + 1)nμ

(λ + ν + 1)nμ

.

So,

gn+1(z)
gn(z)

=
�(nμ + μ + λ + ν1 + 1)�(nμ + λ + ν + 1)
�(nμ + λ + ν1 + 1)�(nμ + μ + λ + ν + 1)

.

Suppose that

β(ν) =
�(nμ + λ + ν + 1)

�(nμ + μ + λ + ν + 1)
. (3.2)

Differentiating (3.2) logarithmically with respect to ν , we find

β ′(ν)
β(ν)

= �(nμ + λ + ν + 1) – �(nμ + μ + λ + ν + 1).
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Here, �(z) denotes for digamma function defined by �(z) = �′(z)/�(z). Using the well-
known formula

�(z) = –γ +
∫ 1

0

tz–1 – 1
t – 1

dt, (3.3)

where γ is the Euler–Mascheroni constant given by

γ = lim
n→∞

( n∑
m=1

1
m

– log n

)
= 0.5772156649,

we have

β ′(ν)
β(ν)

=
∫ 1

0

tnμ+λ+ν(1 – tμ)
t – 1

dt ≤ 0,

which implies that β is a decreasing function with respect to ν , that is, if ν > ν1, then
gn+1(z) ≤ gn(z), and the result follows.

(ii) Straightforward computations using (3.1) show that

(
J

μ
ν,λ(z)

)(2k+1) =
∞∑

n=0

(2n + 2k + 1)!
4n+k(λ + 1)n+k(λ + ν + 1)(n+k)μ(2n)!

z2n,

and

(
J

μ
ν,λ(z)

)(2k+2) =
∞∑

n=0

(2n + 2k + 3)!
4n+k+1(λ + 1)n+k+1(λ + ν + 1)(n+k+1)μ(2n + 1)!

z2n+1.

On the other hand,

J
1
1
2 ,0(z) =

∞∑
n=0

�( 3
2 )

4nn!�(n + 3
2 )

z2n+1 =
∞∑

n=0

1
(2n + 1)!

z2n+1 = sinh z,

J
1
– 1

2 ,0(z) =
∞∑

n=0

�( 1
2 )

4nn!�(n + 1
2 )

z2n+1 = z
∞∑

n=0

1
(2n)!

z2n = z cosh z,

and

(
J

1
– 1

2 ,0(z)
)′ =

∞∑
n=0

(2n + 1)�( 1
2 )

4nn!�(n + 1
2 )

z2n =
∞∑

n=1

z2n

�(2n)
+

∞∑
n=0

z2n

�(2n + 1)

=
∞∑

n=0

z2n+2

�(2n + 2)
+

∞∑
n=0

z2n

�(2n + 1)

= z sinh z + cosh z.

Thanks to Lemma 3.1, it suffices to study the monotonicity of the sequence {cn}n≥0 where

cn =
(2n + 2k + 1)!

4n+k(λ + 1)n+k(λ + ν + 1)(n+k)μ
.
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Using the fact that

�
(
λ + ν + 1 + (n + 1 + k)μ

) ≥ �
(
λ + ν + (n + k)μ + 2

)
=

(
λ + ν + 1 + (n + k)μ

)
�

(
λ + ν + 1 + (n + k)μ

)
,

for μ ∈N, we obtain

cn+1

cn
≤ (2n + 2k + 3)(2n + 2k + 2)

4(λ + n + k + 1)(λ + ν + 1 + nμ + kμ)
< 1,

whenever μ ∈N, ν > 1/2, and λ ≥ 0.
(iii) According to Lemma 3.1, it is enough to show the monotonicity of

dn =
(2n + 2k + 3)!

4n+k+1(λ + 1)n+k+1(λ + ν + 1)(n+k+1)μ
.

Hence,

dn+1

dn
≤ (2n + 2k + 5)(2n + 2k + 4)

4(λ + n + k + 2)(λ + ν + 1 + nμ + kμ + μ)
< 1,

if μ ∈N, ν > 1/2, and λ ≥ 0.
(iv) Consider the sequence {hn}n≥0, where

hn =
(2n + 2k + 1)!

4n+k(2n + 1)(λ + 1)n+k(λ + ν + 1)(n+k)μ
.

Further computations show that

hn+1

hn
≤ (2n + 2k + 3)(2n + 2k + 2)(2n + 1)

4(λ + n + k + 1)(λ + ν + 1 + nμ + kμ)(2n + 3)
< 1,

for μ ∈N, ν > 1/2, and λ ≥ 0, which ends the proof. �

Theorem 3.2 The following assertions hold:
(i) If λ > –1 and ν,μ > 0, then z �→ J

μ
ν,λ(z) is an absolutely monotonic function on

(0,∞);
(ii) If λ > –1, ν,μ > 0, and z > 0, then λ �→ J

μ
ν,λ(z) is decreasing on (–1,∞);

(iii) If λ > –1, ν,μ > 0, and z > 0, then λ �→ J
μ
ν,λ(z) is log-convex on (–1,∞).

Furthermore, the following reverse Turán-type inequality holds:

(
J

μ
ν,λ(z)

)2 ≤ J
μ
ν,λ–1(z)Jμ

ν,λ–1(z);

(iv) If λ > –1, ν,μ > 0, and z > 0, then ν �→ J
μ
ν,λ(z) is decreasing on (0,∞);

(v) If λ > –1, ν,μ > 0, and z > 0, then ν �→ J
μ
ν,λ(z) is log-convex on (0,∞). Moreover, the

following reverse Turán-type inequality is valid:

(
J

μ
ν,λ(z)

)2 ≤ J
μ
ν–1,λ(z)Jμ

ν+1,λ(z).
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Proof (i) The proof follows using the fact that the power series of Jμ
ν,λ(z) has a nonnegative

coefficients for λ > –1, ν,μ > 0, and z > 0 (see [10]).
To complete the proof of (ii)–(v), let us assume that

Uμ
ν,λ(z) :=

�(λ + 1)�(λ + ν + 1)
4n�(n + λ + 1)�(nμ + λ + ν + 1)

. (3.4)

(ii) The proof follows by taking the logarithmic derivative of (3.4) for Uμ
ν,λ(z) as follows:

∂

∂λ
log Uμ

ν,λ(z) = �(λ + 1) + �(λ + ν + 1) – �(n + λ + 1) – �(nμ + λ + ν + 1).

Using representation (3.3), we get

∂

∂λ
log Uμ

ν,λ(z) =
∫ 1

0

tλ(1 – tn) + tλ+ν(1 – tnμ)
t – 1

dt ≤ 0,

for λ > –1 and ν,μ > 0, it follows that λ �→ Uμ
ν,λ(z) is decreasing on (–1,∞). Since the infi-

nite sum of decreasing functions is also decreasing, this leads to λ �→ J
μ
ν,λ(z) is decreasing

on (–1,∞) for λ > –1, ν,μ > 0, and z > 0.
(iii) Since

∂2

∂λ2 log Uμ
ν,λ(z) = � ′(λ + 1) + � ′(λ + ν + 1) – � ′(n + λ + 1) – � ′(nμ + λ + ν + 1),

and by using the well-known formula

� ′(t) =
∞∑

k=0

1
(t + k)2 , t ∈R\{0, –1, –2, . . .},

we find

� ′(λ + 1) – � ′(n + λ + 1) =
∞∑

k=0

n2 + 2n(λ + 1 + k)
(λ + 1 + k)2(n + λ + 1 + k)2 ≥ 0,

and

� ′(λ + ν + 1) – � ′(nμ + λ + ν + 1) =
∞∑

k=0

n2μ2 + 2nμ(λ + ν + 1 + k)
(λ + ν + 1 + k)2(nμ + λ + ν + 1 + k)2 ≥ 0,

which implies

∂2

∂λ2 log Uμ
ν,λ(z) ≥ 0,

for λ > –1, ν,μ > 0, and z > 0, that is, the function λ �→ Uμ
ν,λ(z) is log-convex on (0,∞).

Since the infinite sum of log-convex functions is log-convex too, this leads to λ �→ I
μ
ν,λ(z)

is log-convex on (0,∞) for λ > –1, ν,μ > 0, and z > 0. On the other hand,

logJμ
ν,λ(z) ≤ 1

2
(
logJμ

ν,λ–1(z) + logJμ
ν,λ+1(z)

)
,

or equivalently (Jμ
ν,λ(z))2 ≤ J

μ
ν,λ–1(z)Jμ

ν,λ–1(z).



Zayed Advances in Difference Equations        (2021) 2021:432 Page 15 of 16

(iv) From (3.4), we obtain

∂

∂ν
log Uμ

ν,λ(z) = �(λ + ν + 1) – �(nμ + λ + ν + 1) ≤ 0, (3.5)

which implies that ν �→ J
μ
ν,λ(z) is decreasing on (0,∞).

(v) From (3.5), we have

∂2

∂ν2 log Uμ
ν,λ(z) = � ′(λ + ν + 1) – � ′(nμ + λ + ν + 1) ≥ 0,

this leads to ν �→ J
μ
ν,λ(z) is log-convex on (0,∞) and the proof is complete. �

4 Conclusions
In our present investigation, the integral representation of J μ

ν,λ as well as Mellin–Barnes
representation with the help of Gauss’s multiplication theorem, the well-known represen-
tation for the beta function, and the residue theorem have been established. Further, the
mth derivative of J μ

ν,λ has been considered, and it can be expressed as the Fox–Wright
function. Additionally, the recurrence relations and other identities involving the deriva-
tives have been discussed. We end up showing the monotonicity of the ratio between
two modified Bessel–Maitland functions Iμ

ν,λ of a different order, the ratio between modi-
fied Bessel–Maitland and hyperbolic functions, and some monotonicity results for Iμ

ν,λ(z)
where the main idea of the proofs comes from the monotonicity of the quotient of two
Maclaurin series. This makes it possible to construct some inequalities (like Turán-type
inequalities and their reverse) as an application.
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229–244 (2017)
27. Pathak, R.S.: Certain convergence theorems and asymptotic properties of a generalization of Lommel and Maitland

transformations. Proc. Natl. Acad. Sci. A–36(1), 81–86 (1966)
28. Rizzoni, G.: Fundamentals of Electrical Engineering. McGraw-Hill, New York (2009)
29. Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336(2),

797–811 (2007)
30. Singh, G., Agarwal, P., Chand, M., Jain, S.: Certain fractional kinetic equations involving generalized k-Bessel function.

Trans. A. Razmadze Math. Inst. 172, 559–570 (2018)
31. Szegö, G.: On an inequality of P. Turán concerning Legendre polynomials. Bull. Am. Math. Soc. 54, 401–405 (1948)
32. Turán, P.: On the zeros of the polynomials of Legendre. Căsopis Pest. Mat. Fys. 75, 113–122 (1950)
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