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Abstract
Motivated by the recent studies and developments of the integral transforms with
various special matrix functions, including the matrix orthogonal polynomials as
kernels, in this article we derive the formulas for Fourier cosine and sine transforms of
matrix functions involving generalized Bessel matrix polynomials. With the help of
these transforms several results are obtained, which are extensions of the
corresponding results in the standard cases. The results given here are of general
character and can yield a number of (known and new) results in modern integral
transforms.
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1 Introduction
In the past few decades, the orthogonal matrix polynomials have attracted a lot of research
interest due to their close relations and various applications in many areas of mathematics,
engineering, probability theory, graph theory, and physics; for example, see [1–9]. In [4],
extensions to the matrix framework of the classical families of Legendre, Laguerre, Jacobi,
Chebyshev, Gegenbauer, and Hermite polynomials have been introduced. Meanwhile, one
particular orthogonal polynomial family which frequently appears in the recent studies
and applications [10–12] is that of generalized Bessel polynomials, which in its matrix
form is also defined in [4, 13]. Later on, distinct works on the generalized Bessel matrix
polynomials have been discussed (see [14–17]).

Nowadays, many integral transforms (see, e.g., Fourier, Laplace, Beta, Hankel, Mellin,
Whittaker transforms, etc.), with various special functions (also with the new generalized
special matrix functions) as kernels, have begun to play an important role in modeling
of various physical, engineering, automatization, and biological phenomena, as well as in
several other branches of science (see, for instance, [8, 18–30]).

Fourier transform (FT) is an integral transform that is used in solving different prob-
lems in mathematical physics, applied statistics, and engineering (see, [31, 32]). The idea
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of Fourier transform is a natural extension of the idea of Fourier series. In particular,
Fourier transform can accommodate aperiodic functions, which Fourier series cannot do.
Recently, many results on Fourier transform and its applications have been contributed by
Nicola and Trapasso [33], Urieles et al. [34], Ghodadra and Fülöp [35], Bergold and Lasser
[36], and Al-Lail and Qadir [37].

On the contrary, matrix Fourier expansions and Fourier series in orthonormal matrix
polynomials have been introduced by B. Osihnker in [38, 39]. Defez and Jóbdar [40, 41]
introduced basic properties of matrix Fourier series and Fourier approximation for func-
tions of matrix argument. Recently, Groenevelt and Koelink [42] discussed the generalized
Fourier transform with hypergeometric function and matrix-valued orthogonal polyno-
mials as kernels. Also, applications of matrix summability to Fourier transforms were es-
tablished by Ş. Yildiz [43].

Motivated by some of these aforementioned investigations of the Fourier transforms of
matrix-valued orthogonal polynomials, in our investigation here we study the Fourier-
type transforms of the generalized Bessel matrix polynomials Yn(ξ ; F , L), ξ ∈ C, for
(square) matrix parameters F and L. In particular, we obtain several Fourier cosine and
sine transforms of functions involving generalized Bessel matrix polynomials with pow-
ers of the matrix, as well as matrix exponential, trigonometric, binomial, and Bessel func-
tions. Moreover, pertinent integral transforms of the different results given here, including
simpler and earlier ones, are also investigated.

2 Auxiliary toolbox
In this section, we recall some definitions, lemmas, and terminology which will be used to
prove the main results.

Let C and N denote the sets of complex numbers and positive integers, respectively, and
N0 = N ∪ {0}. Let Cn denote the n-dimensional complex vector space and C

n×n denote
the space of all square matrices with n rows and n columns whose entries are complex
numbers.

Definition 2.1 ([4]) For a matrix F in C
n×n, the spectrum σ (F) is the set of all eigenvalues

of F for which we denote

α(F) = max
{
Re(ξ ) : ξ ∈ σ (F)

}
and α̃(F) = min

{
Re(ξ ) : ξ ∈ σ (F)

}
, (1)

where α(F) refers to the spectral abscissa of F and for which α̃(F) = –α(–F). A matrix F is
said to be positive stable if and only if α̃(F) > 0.

Definition 2.2 ([44]) If F and L are commuting matrices in C
n×n and w ∈C, then

cos
[
(F ± L)w

]
= cos(Fw) cos(Lw) ∓ sin(Fw) sin(Lw),

sin
[
(F ± L)w

]
= sin(Fw) cos(Lw) ± cos(Fw) sin(Lw).

(2)

Remark 2.1 If F , L ∈ C
1×1 = C, then the identities in Definition 2.2 reduce to those in the

scalar setting.
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Definition 2.3 ([4, 45]) Let F be a positive stable matrix in C
n×n. The gamma matrix

function �(F) is defined as

�(F) =
∫ ∞

0
e–wwF–I dw; wF–I = exp

(
(F – I) ln w

)
, (3)

where I is the identity matrix in C
n×n.

Definition 2.4 ([4, 45]) The reciprocal gamma function denoted by �–1(w) = 1
�(w) is an

entire function of the complex variable ξ . Then the image of �–1(w) acting on F ∈ C
n×n

denoted by �–1(F) is a well-defined matrix and invertible, as well as

F + nI is invertible for all integers n ∈ N0. (4)

By applying the matrix functional calculus to F , which is a positive stable matrix in C
n×n,

the Pochhammer symbol of a matrix argument defined by

(F)n =

⎧
⎨

⎩
F(F + I) · · · (F + (n – 1)I) = �–1(F)�(F + nI), n ≥ 1,

I, n = 0.
(5)

Note that, if F = –sI , where s is a positive integer, then (F)n = 0, whenever n > s.

Now, from properties of the gamma matrix function, we give some lemmas which will
be needed in the proof of some theorems.

Lemma 2.1 Let S be a matrix in C
n×n such that α̃(S) > 0 and w ∈ C with Re(w) > 0. The

following integral formulas hold:

∫ ∞

0
ξ S–Ie–wξ dξ = w–S�(S) (6)

and
∫ ∞

0
ξ S–Ie–wiξ dξ = e– 1

2 iπSw–S�(S); i =
√

–1. (7)

We thus observe that

∫ ∞

0
ξ S–I cos(wξ ) dξ = cos

(
1
2
πS

)
w–S�(S) (8)

and
∫ ∞

0
ξ S–I sin(wξ ) dξ = sin

(
1
2
πS

)
w–S�(S). (9)

Putting S = I – R ∈C
n×n in (8) and (9), we get

∫ ∞

0
ξ–R cos(wξ ) dξ =

πwR–I

2
sec

(
1
2
πR

)
�–1(R), α̃(R) > 0, (10)
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and

∫ ∞

0
ξ–R sin(wξ ) dξ =

πwR–I

2
csc

(
1
2
πR

)
�–1(R), α̃(R) > 0. (11)

Similarly, we can present the following lemma.

Lemma 2.2 Let S be a matrix in C
n×n such that α̃(S) > 0, λ, w ∈ C with Re(λ) > 0 and

Re(w) > 0. The following integral formulas hold:

∫ ∞

0
ξ S–Ie–λξ cos(wξ ) dξ = cos

(
arctan

(
w
λ

)
S
)(

λ2 + w2)– 1
2 S

�(S) (12)

and

∫ ∞

0
ξ S–Ie–λξ sin(wξ ) dξ = sin

(
arctan

(
w
λ

)
S
)(

λ2 + w2)– 1
2 S

�(S). (13)

Definition 2.5 ([4, 46]) Let k and r be finite positive integers. The generalized hypergeo-
metric matrix function is defined by the matrix power series

kHr[F; L; w] =
∞∑

m=0

k∏

i=1

(Fi)m

r∏

j=1

[
(Lj)m

]–1 wm

m!
, (14)

where F = Fi, 1 ≤ i ≤ k, and L = Lj, 1 ≤ j ≤ r, are commutative matrices in C
n×n with

Lj + mI being invertible for all integers m ∈ N0.
Note that for k = 1, r = 0, we have the binomial-type matrix function 1H0(F1; –; w), |w| <

1, as follows:

1H0(F ; –; w) = (1 – w)–F1 = I + F1w +
F1(F1 + I)w2

2!
+ · · · +

(F1)nwn

n!
+ · · · .

Also, note that for k = 2, r = 1, we get the Gauss hypergeometric matrix function 2H1 in
the form

2H1(F1, F2; L1; w) =
∞∑

s=0

(F1)s(F2)s
[
(L1)s

]–1 ws

s!
.

Several special matrix functions, including the matrix orthogonal polynomials, are also
presented in terms of the generalized hypergeometric matrix function in [4, 46].

Definition 2.6 ([4, 13, 16]) Let F and L be commuting matrices in C
n×n such that L is an

invertible matrix. For any natural number n ∈ N0 and ξ ∈ C, the nth generalized Bessel
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matrix polynomial Yn(ξ ; F , L) is defined as

Yn(ξ ; F , L) =
n∑

s=0

(–1)s

s!
(–nI)s

(
F + (n – 1)I

)
s

(
ξL–1)s

=
n∑

s=0

n
s!(n – s)!

(
F + (n – 1)I

)
s

(
ξL–1)s

= 2H0

[
–nI, F + (n – 1)I

–
; –ξL–1

]

.

(15)

Remark 2.2 If the matrices F , L ∈C
1×1 = C, then the generalized Bessel matrix polynomial

in (15) reduces to generalized Bessel polynomials in [10–12].

Definition 2.7 ([47, 48]) Let a matrix F ∈C
n×n satisfy the condition:

β is not a negative integer for every β ∈ σ (F), (16)

then Bessel matrix function JF (w) of the first kind associated to F is given by

JF (w) =
∞∑

s=0

(–1)s

(s)!
�–1(F + (s + 1)I

)(w
2

)F+2sI

, w ∈C, (17)

and the modified Bessel matrix functions IF (w) and KF (w) are respectively defined as

IF (w) =
∞∑

s=0

1
(s)!

�–1(F + (s + 1)I
)(w

2

)F+2sI

(18)

and

KF (w) =
π

2
[
sin(πF)

]–1{I–F (w) – IF (w)
}

. (19)

Definition 2.8 ([31, 32]) Let f (ξ ) be a function of ξ specified for ξ > 0. Then the complex
Fourier transform of f (ξ ) associated with complex frequency w is defined by

F (w) = F
{

f (ξ )
}

=
1√
2π

∫ ∞

–∞
f (ξ )e–iξw dξ , w ∈C, (20)

together with the requirement of |F (w)| < ∞.
Similarly, the inverse Fourier transform, denoted by F–1{F (w)} = f (ξ ), is defined by

f (ξ ) = F–1{F (w)
}

=
1√
2π

∫ ∞

–∞
F (w)eiξw dw. (21)

The cosine and sine transformations, respectively, are defined similarly as follows:

F c(w) =
√

2
π

∫ ∞

0
f (ξ ) cos(ξw) dξ , (22)
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f (ξ ) =
√

2
π

∫ ∞

0
F c(w) cos(ξw) dw,

F s(w) =
√

2
π

∫ ∞

0
f (ξ ) sin(ξw) dξ , (23)

and

f (ξ ) =
√

2
π

∫ ∞

0
F s(w) sin(ξw) dw.

Note that if f (ξ ) is an even function, then F (w) = F c(w), and if f (ξ ) is an odd function,
then F (w) = iF s(w).

The following lemma will be required in the proof of our theorems.

Lemma 2.3 ([18]) From the basic formulae of the Fourier cosine transform, if f (ξ ) is re-
placed by ξ 2nf (ξ ), then

F c{ξ 2nf (ξ )
}

(w) = (–1)n d2n

dw2n

(
F c{f }(w)

)
.

Also, if

f (ξ ) =
(
λ2 + ξ 2)–(S+ 1

2 ); α̃(S) > –
1
2

,

then

F c(w) =
√

2(w/2λ)S�–1
(

S +
1
2

I
)

KS(λw),

where S is a positive stable matrix in Cn×n, w,λ ∈ C with Re(w) > 0, Re(λ) > 0, and KS(w)
is the modified Bessel matrix function in (19).

Remark 2.3 Physically, the Fourier transform F (w) can be interpreted as an integral su-
perposition of an infinite number of sinusoidal oscillations with different wavenumbers
w (or different wavelengths τ = 2π

w ). Thus, the definition of the Fourier transform is re-
stricted to absolutely integrable functions. This restriction is too strong for many physical
applications (see [31, 32]).

3 Statement and proof of main theorems
In this section, we investigate several new interesting Fourier cosine and sine transforms
of functions involving generalized Bessel matrix polynomials asserted in the following
theorems:

Theorem 3.1 Let S, F and L be commuting matrices in C
n×n, and let Yn(λξ ; F , L) be given

in (15). For the function

f (ξ ) = ξ SYn(λξ ; F , L), (24)
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we have

F c(w) = –
√

2
π

w–(S+I)�(S + I)
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r(S + I)r

× (–λ(Lw)–1)r sin[(S + rI)π/2]
r!

,

(25)

F s(w) =
√

2
π

w–(S+I)�(S + I)
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r(S + I)r

× (–λ(Lw)–1)r cos[(S + rI)π/2]
r!

,

(26)

where w,λ ∈C are such that Re(w) > 0, Re(λ) > 0, and α̃(S) > –1.

Proof To prove (25) from Definition 2.6 and (22), we observe that

F c(w) =
√

2
π

∫ ∞

0
ξ SYn(λξ ; F , L) cos(ξw) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

∫ ∞

0
ξ S+rI cos(wξ ) dξ .

From the integral (8), we obtain

F c(w) =
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

× w–(S+(r+1)I)�
(
S + (r + 1)I

)
cos

[(
S + (r + 1)I

)
π/2

]

= –
√

2
π

w–(S+I)�(S + I)
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r

× (S + I)r
(–λ(wL)–1)r

r!
sin

[
(S + rI)π/2

]
,

which is the claimed result in (25).
Now, we prove (26), from (24) in (23), we have

F s(w) =
√

2
π

∫ ∞

0
ξ SYn(λξ ; F , L) sin(ξw) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

∫ ∞

0
ξ S+rI sin(wξ ) dξ .

By invoking relation (9), we obtain

F s(w) =
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

× w–(S+(r+1)I)�
(
S + (r + 1)I

)
sin

[(
S + (r + 1)I

)
π/2

]
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= –
√

2
π

w–(S+I)�(S + I)
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r

× (S + I)r
(–λ(wL)–1)r

r!
cos

[
(S + rI)π/2

]
,

which is the desired result in (26). �

Now by taking advantage of the previous results, we obtain the following corollaries:

Corollary 3.1.1 If r is odd, then (25) reduces to

F c(w) =
√

2
π

w–(S+I)�(S + I) cos(Sπ/2)

×
n∑

r=1

(–nI)r
(
F + (n – 1)I

)
r(S + I)r

(–1) r+1
2 (–λ(wL)–1)r

r!
,

and if r is even, then (25) reduces to

F c(w) = –
√

2
π

w–(S+I)�(S + I) sin(Sπ/2)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r(S + I)r

(–1) r
2 (–λ(wL)–1)r

r!
.

Corollary 3.1.2 If r is odd, then (26) reduces to

F s(w) =
√

2
π

w–(S+I)�(S + I) sin(Sπ/2)

×
n∑

r=1

(–nI)r
(
F + (n – 1)I

)
r(S + I)r

(–1) r+1
2 (–λ(wL)–1)r

r!
,

and if r is even, then (26) reduces to

F s(w) =
√

2
π

w–(S+I)�(S + I) cos(Sπ/2)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r(S + I)r

(–1) r
2 (–λ(wL)–1)r

r!
.

Corollary 3.1.3 Replacing the Bessel matrix polynomials Yn(λξ ; F , L) by Yn(λξ 2; F , L) and
choosing S = 0 in (25) and (26), that is, if

f (ξ ) = Yn
(
λξ 2; F , L

)
,

then, we obtain the following results:

F c(w) = 0,
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and

F s(w) =
√

2
π

w–1
4 H0

[
–nI, F + (n – 1)I, 1

2 I, I
–

; 4λ
(
Lw2)–1

]

.

Also, a consequence of Theorem 3.1 is the following theorem:

Theorem 3.2 Let S, F , and L be commuting matrices in C
n×n, and let Yn(λξ ; F , L) be given

in (15). For the function

f (ξ ) = ξ S cos(μξ )Yn(λξ ; F , L), (27)

we have

F c(w) =
–1
2

√
2
π

�(I + S)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
(S + I)r

(λL–1)r sin[(S + rI)π/2]
r!

× {
(w + μ)–(S+(r+1)I) +

∣∣(w – μ)
∣∣–(S+(r+1)I)},

(28)

and

F s(w) =
1
2

√
2
π

�(I + S)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
(S + I)r

(λL–1)r cos[(S + rI)π/2]
r!

× {
(w + μ)–(S+(r+1)I) + |w – μ|–(S+(r+1)I)}

(29)

where w,μ,λ ∈ C are such that Re(w) > 0, Re(μ) > 0, Re(λ) > 0, Re(w) > Re(μ), and α̃(S +
I) > 0.

Proof To describe the relation in (28), the proof is easy, using the well-known identities in
(2). In a similar way, we can get the result in (29). �

Theorem 3.3 Let S, F , and L be commuting matrices in C
n×n. If

f (ξ ) = ξ–SYn(λ; F , Lξ ), (30)

then,

F c(w) =
√

2
π

w(S–I)�(I – S)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)[
(S)r

]–1 (λwL–1)r sin[(S + rI)π/2]
r!

,
(31)
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and

F s(w) =
√

2
π

w(S–I)�(I – S)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)[
(S)r

]–1 (λw(L–1)r cos[(S + rI)π/2]
r!

,
(32)

where Re(w) > 0, Re(λ) > 0, and α̃(I – S) > 0.

Proof The proofs of the two results in (31) and (32) can be obtained by the use of the two
formulas in (10) and (11) with Definition 2.6. �

Theorem 3.4 Let S, F , and L be commuting matrices in C
n×n, and let Yn(λξ ; F , L) be given

in (15). For the function

f (ξ ) = ξ S–Ie–μξYn(λξ ; F , L), (33)

we have

F c(w) =
√

2
π

(
μ2 + w2) –S

2 �(S)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r(S)r

(–λL–1)r cos[(S + rI) arctan(w/μ)]
r!

,
(34)

and

F s(w) =
√

2
π

(
μ2 + w2) –S

2 �(S)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
2(S)r

(–λL–1)r sin[(S + rI) arctan(w/μ)]
r!

,
(35)

where w,μ,λ ∈C are such that Re(w) > 0, Re(μ) > 0, Re(λ) > 0, and α̃(S) > 0.

Proof Using (15) and applying formula (22) on the right-hand side of (33) reveals that

F c(w) =
√

2
π

∫ ∞

0
ξ S–Ie–μξYn(λξ ; F , L) cos(ξw) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

×
∫ ∞

0
ξ S–(1–r)Ie–μξ cos(ξw) dξ .

Using (12), we get

F c(w) =
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

× (
μ2 + w2) –1

2 S
�(S + rI) cos

[
(S + rI) arctan(w/μ)

]
,

which implies formula (34).
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Likewise, we can get the result in (35) by using (13). �

Theorem 3.5 For the function

f (ξ ) = ξ 2ne–μξ2Yn
(
λξ 2; F , L

)
, (36)

where Yn(–; F , L) is as in (15), we have

F c(w) =
√

1
2π

�(n + 1/2)μ–( 1
2 +2n)(–w2/4

)ne(–w2/4μ)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(λw2(4μ2L)–1)r

r!

×Yn+r
(
4μ; 3/2 – 2(n + r), w2),

(37)

where w,μ,λ ∈C are such that Re(w) > 0, Re(μ) > 0, and Re(λ) > 0.

Proof To establish our result in (37), using (36) in (22), we arrive at

F c(w) =
√

2
π

∫ ∞

0
ξ 2ne–μξ2Yn

(
λξ 2; F , L

)
cos(ξw) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

×
∫ ∞

0
ξ 2n+2re–μξ2

∞∑

s=0

(–w2ξ 2)s

(2s)!
dξ

=
√

1
2π

n∑

r=0

∞∑

s=0

(–nI)r
(
F + (n – 1)I

)
r
(–w2)s(–λL–1)r

�(2s + 1)r!

×
∫ ∞

0
ξn+r+s– 1

2 e–μξ dξ

=
√

1
2π

n∑

r=0

∞∑

s=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

×
√

π�(n + r + s + 1
2 )

�( 1
2 )( 1

2 )ss!22sμ(n+r+s+ 1
2 )

(
–w2)s.

(38)

After changing the order of summation and simplifying, we obtain

F c(w) =
∞∑

s=0

(n + r + 1
2 )s(–w2/4μ)s

s!( 1
2 )s

=
√

1
2π

μ–(n+ 1
2 )�

(
n +

1
2

)
e(–w2/4μ)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r

(
n +

1
2

)

r

(–λ(μL)–1)r

r!

(39)

× (–w2/4μ)n+r

( 1
2 )n+r

n+r∑

s=0

(–n – r)s

(
1
2

– n – r
)

s

(–4μ/w2)s

s!
,

which implies formula (37). �
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Theorem 3.6 Let Yn(λξ ; F , L) be given in (15). For the function

f (ξ ) = ξ 2n+1e–μξ2Yn
(
λξ 2; F , L

)
, (40)

we have

F s(w) =
1

2
√

2
μ–(2n+3/2)(–w2/4

)ne(–w2/4μ)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(λw(4μ2L)–1)r

r!
Yn+r

(
4μ;

1
2

– 2(n + r), w2
)

,
(41)

where w,μ,λ ∈C are such that Re(w) > 0, Re(μ) > 0, and Re(λ) > 0.

Proof To describe the relation (41), from (40) in (23), we see that

F s(w) =
√

2
π

∫ ∞

0
ξ 2n+1e–μξ2Yn

(
λξ 2; F , L

)
sin(ξw) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–λL–1)r

r!

×
∫ ∞

0
ξ 2n+2r+1e–μξ2

sin(ξw) dξ

=
√

2
π

n∑

r=0

∞∑

s=0

(–nI)r
(
F + (n – 1)I

)
r

× (–1)s(w)2s+1(–λL–1)r�(n + r + s + 3/2)
2μ(n+r+s+3/2)(2s + 1)!r!

=
√

1
2π

wμ–(n+3/2)�(n + 3/2)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r(n + 3/2)r

(–λ(μL)–1)r

r!

× e(–w2/4μ)
n+r∑

s=0

{
(–n – r)s

s!(3/2)s

}(
w2/4μ

)s.

After simplification, we obtain the desired result

F s(w) =
1

2
√

2
μ–(2n+3/2)

(
–w2

4

)n

e(–w2/4μ)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(λw(4μ2L)–1)r

r!

× 2H0

[
–n – r, – 1

2 – n – r
–

; –4μ/w2

]

.

This completes the proof of Theorem 3.6. �
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Theorem 3.7 Let S and F be positive stable and commuting matrices in C
n×n. For the

function

f (ξ ) = ξ S+ 1
2 Ie–μξ2Yn

(
1; F ,μξ 2), (42)

we have

F c(w) = (–1)n
√

π

2
μ–(S/4+1/4)(S/2 + F + 3/4I)n

× �–1((n – 3/4)I – S/2
)

csc
[
π (S/2 + 1/4I)

]

× 2H2

[
(7/4 – n)I + S/2, (3/4 – n)I + S/2 – F

1
2 , 3/4I + S/2 + F

; –w2/4μ

]

,

(43)

where w,μ ∈ C are such that Re(w) > 0, Re(μ) > 0, and α̃(S + 3/2I) < 2n + α̃(2F), as well as

F s(w) = w(–1)n
√

π

2
μ–(S/2+3/4)(S/2 + F – 1/4I)n

× �–1((n + 1/4)I – S/2
)

csc
[
π (S/2 + 3/4I)

]

× 2H2

[
(3/4 – n)I + S/2, (n – 1/4)I + S/2 + F

3
2 I, –1/4I + S/2 + F

; –w2/4μ

]

,

(44)

where w,μ ∈ C are such that Re(w) > 0, Re(μ) > 0, and α̃(S + 1/2I) > 0, α̃(S) < 2n + 1/2.

Proof To demonstrate the truth of these results, making use of (22) with (42), we observe
that

F c(w) =
√

2
π

∫ ∞

0
ξ S+ 1

2 Ie–μξ2Yn
(
1; F ,μξ 2) cos(ξw) dξ

=
√

1
2π

n∑

r=0

∞∑

s=0

(–nI)r
(
F + (n – 1)I

)
r
(–1/μ)r(–w2)s

r!(2s)!

×
∫ ∞

0
ξ S/2+(1/4–r+s–1)Ie–μξ dξ

=
√

1
2π

n∑

r=0

∞∑

s=0

(–nI)r
(
F + (n – 1)I

)
r
(–1/μ)r(–w2)s

r!(2s)!

× μ(–S/2+(r–s–1/4)I)�
(
S/2 + (s – r + 1/4)I

)
.

Thus, after a simplification, we find that

F c(w) =
√

1
2π

μ–(S/2+1/4I)�(S/2 + 1/4I)

×
∞∑

s=0

(S/2 + 1/4I)s�
(
–S/2 – F – (3/4 + s – 1)I

)
�

(
–S/2 – (3/4 + s)I

)

× �–1(–S/2 – F – (3/4 + s + n – 1)I
)
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× �–1(–S/2 – (3/4 + s – n)I
) (–w2/4μ)s

s!( 1
2 )s

=
√

1
2π

μ–(S/2+1/4I)�(S/2 + 1/4I)�(–S/2 – 3/4I)�(–S/2 – F + 1/4I)

× �–1(–S/2 – F + (1/4 – n)I
)
�–1(–S/2 – (3/4 – n)I

)

×
∞∑

s=0

(S/2 + 1/4I)s
(
S/2 + (7/2 – n)I

)
s

(
S/2 + F + (μ/4 – n)I

)
s

× [
(S/2 + F + 3/4I)s

]–1[(S/2 + 1/4I)s
]–1 (–w2/4μ)s

s!( 1
2 )s

.

The above equation gives the proof of (43).
In a similar way and by using (23) with (42), we can get the result in (44).
Hence, the demonstration of Theorem 3.7 is finished. �

Theorem 3.8 Let S, F , and L be commuting matrices in C
n×n. If

f (ξ ) = ξ S 1
(μ2 + ξ 2)

JS(λξ )Yn
(
ξ 2; F , L

)
, (45)

then, we have

F s(w) =
√

2
π

μS–I sinh(μw)KS(λμ)Yn
(
μ2; F , –L

)
, (46)

where w,μ,λ ∈ C are such that Re(w) > 0, Re(μ) > 0, Re(λ) > 0, and S is a positive stable
matrix in C

n×n such that –1 < α̃(S) < 0, JS(x) is the Bessel matrix function defined in (17)
and KS(x) is the modified Bessel matrix function defined in (19).

Proof The proof of this result indeed follows from applying (23) on (45), we have

F s(w) =
√

2
π

∫ ∞

0
ξ S 1

(μ2 + ξ 2)
JS(λξ )Yn

(
ξ 2; F , L

)
sin(ξw) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–L–1)r

r!

×
∫ ∞

0
ξ (2r+1)I–S 1

(μ2 + ξ 2)
JS(λξ ) sin(ξw) dξ .

Using the Fourier sine transform (see [18, p. 426]), we obtain

F s(w) =
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r

× L–r

r!
μ(S+(2r–1)I) sinh(μw)KS(μλ)

=
√

2
π

μS–I sinh(μw)KS(μλ)
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(μ2L–1)r

r!
.

This completes the proof of equation (46) asserted in Theorem 3.8. �
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Similarly, we can arrive at the following result.

Theorem 3.9 Let Yn(ξ 2; F , L) be given in (15). For the function

f (ξ ) = ξ I–S 1
(μ2 + ξ 2)

JS(λξ )Yn
(
ξ 2; F , L

)
, (47)

we have

F s(w) =
√

π

2
μ–Se(–μw)JS(λw)Yn

(
–μ2; F , –L

)
, (48)

where w,μ,λ ∈C are such that Re(w) > 0, Re(μ) > 0, Re(λ) > 0, Re(w) > Re(λ), S is a positive
stable matrix in Cn×n such that α̃(I – S) > 0, and S, F , and L are commuting matrices in
C

n×n.

Theorem 3.10 Let Yn(ξ 2; F , L) be given in (15). For the function

f (ξ ) =
(
λ2 + ξ 2)–(S+ 1

2 I)Yn
(
ξ 2; F , L

)
, (49)

we have

F c(w) =
√

8
π

(2F)–S�–1
(

S +
1
2

I
)

×
n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
L–r

r!
d2r(wSKS(λw))

dw2r ,
(50)

where w,λ ∈C are such that Re(w) > 0, Re(λ) > 0, S is a positive stable matrix in Cn×n such
that α̃(S) > – 1

2 , KS(x) is modified Bessel matrix function defined in (19), and S, F , and L
are commuting matrices in C

n×n.

Proof In order to establish the result (50), with the help of the Lemma 2.3, we get

F c(w) =
√

2
π

∫ ∞

0

(
λ2 + ξ 2)–(S+ 1

2 I)Yn
(
ξ 2; F , L

)
cos(wξ ) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–L)–r

r!

×
∫ ∞

0
ξ 2r(λ2 + ξ 2)–(S+ 1

2 I)
cos(wξ ) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–L)–r

r!

×
√

2
π

(–1)r√2�–1
(

S +
1
2

I
)

(2F)–S d2r(wSKS(λw))
dw2r .

This completes the proof. �

Similarly, we can arrive at the following result.
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Theorem 3.11 Let Yn(ξ 2; F , L) be given in (15). For the function

f (ξ ) = ξ
(
λ2 + ξ 2)–(n+ 1

2 )Yn
(
ξ 2; F , L

)
, (51)

we have

F c(w) =
–
√

8
π�(n + 1

2 )
(2F)–n d2r+1(wnKn(λw))

dw2r+1 , (52)

where w,λ ∈C are such that Re(w) > 0, Re(λ) > 0, and Kn(w) is the modified Bessel function
defined in [18].

Theorem 3.12 Let Yn(ξ ; F , L) be given in (15). For the function

f (ξ ) = ξ–1e–λ/ξYn(ξ ; F , L), (53)

we have

F c(w) =
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–L)–r(w/λ) r

2

r!

× {
ei πr

4 Kr(2
√

iλw) + e–i πr
4 Kr(2

√
–iλw)

}
,

(54)

where w,λ ∈C are such that Re(w) > 0 and Re(λ) > 0, ξ ∈C\ {0}, and Kr(w) is the modified
Bessel function defined in [18].

Proof Using (15) and (53) in (22), we observe that

F c(w) =
√

2
π

∫ ∞

0
ξ–1e–λ/ξYn(ξ ; F , L) cos(wξ ) dξ

=
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–L)–r

r!

×
∫ ∞

0
ξ r–1e–λ/ξ cos(wξ ) dξ .

(55)

Applying the formula in [18, p. 403], we see that

F c(w) =
√

2
π

n∑

r=0

(–nI)r
(
F + (n – 1)I

)
r
(–L)–r(w/λ) r

2

r!

× {
ei πr

4 Kr(2
√

iλw) + e–i πr
4 Kr(2

√
–iλw)

}
.

(56)

This completes the proof of Theorem 3.12. �

4 Conclusion
In this manuscript, motivated by the recent studies and developments of the integral trans-
forms with various special matrix functions, including the matrix orthogonal polynomials
as kernels and their applications [14, 17, 49, 50], we introduce some Fourier cosine and
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sine transforms of generalized Bessel matrix polynomials, together with certain elemen-
tary matrix functions, as well as exponential and Bessel functions. It is obvious that the
results presented here, which involve certain matrices in C

n×n, reduce to the correspond-
ing scalar ones when n = 1.

In fact, a remarkably large number of Fourier cosine and sine formulas involving a va-
riety of functions have been published (see, e.g., [51, pp. 7–108]). In this connection, we
conclude this manuscript by posing the following problem for further investigation.

Open problem. Try to give matrix versions of the results for Fourier integral transforms
(or formulas) involving a variety of special functions (see, e.g., [51, pp. 7–108]).
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