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Abstract
The aim of this study is to introduce a new interpolative contractive mapping
combining the Hardy–Rogers contractive mapping of Suzuki type and Z-contraction.
We investigate the existence of a fixed point of this type of mappings and prove
some corollaries. The new results of the paper generalize a number of existing results
which were published in the last two decades.
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1 Introduction and preliminaries
A century ago, the notion of fixed point theory appeared in the papers that were written
to solve certain differential equations. The first independent fixed point result was given
by Banach [1] in the setting of a complete normed space. The analog of this result in the
framework of the complete metric space was reported by Caccioppoli [2] in 1930. After
then, metric fixed point theory has advanced in many directions in the setting of several
abstract spaces. Regarding the appearance of the notion, fixed point theory is one of the
useful and crucial tools in several disciplines. Most of the daily life problems can be re-
stated in the context of fixed point theory, see, e.g., the book of Rus [3] for interesting
examples.

In the last fourth decades, an enormous number of publications were reported on the
advances of metric fixed point theory regarding very distinct aspects in various settings,
see, e.g., [3–41] and related reference therein. As a natural consequence of this fact, some
authors proposed new notions to combine and unify this tremendous number of publica-
tions in the literature. Here, we mention and use three interesting notions that were pro-
posed for this purpose, namely simulation function (see, e.g., [19–29]), admissible map-
ping (see, e.g., [9–18]), and Suzuki-type contraction (see [4, 5]).

In 2014, Popescu [21] suggested an interesting notion, the so-called ω-orbital admissible
mappings, which is a smart expansion of the notion of α-admissible mappings, see Samet
et al. [19]. In this work, Popescu [21] showed that each admissible mapping is an ω-orbital
admissible mapping, but the converse is not true.
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Definition 1 ([21]) Let ω : Y × Y → [0,∞) be a function where Y is a any nonempty set.
A self mapping H on Y is called ω-orbital admissible if for all u in Y , we have

ω(u, Hu) ≥ 1 �⇒ ω
(
Hu, H2u

) ≥ 1.

One of the interesting uses of ω-admissible mapping is that it is ω-regular in the setting
of metric spaces. This was a condition that helps refine the continuity condition on the
self-mapping accompanied with some additional conditions; see, e.g., [19].

Definition 2 A metric space (Y , d) is called ω-regular if for every sequence {un} in Y ,
which converges to some z ∈ Y and satisfies ω(un, un+1) ≥ 1 for each n ∈ N, we have
ω(un, z) ≥ 1.

Later in 2015, the concept of a simulation function had been introduced by Khojasteh
et al. [9]. These functions cover many types of the existing contractions. We give now the
definition of simulation function as it was redefined by Argoubi [11].

Definition 3 A simulation function is a mapping ζ : [0,∞) × [0,∞) → R satisfying the
following conditions:

(ζ1) ζ (t, s) < s – t for all t, s > 0;
(ζ2) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0, then

lim sup
n→∞

ζ (tn, sn) < 0. (1.1)

We demonstrate here some examples of simulation functions from [10–18].

Example 4 For i = 1, 2, we define the mappings ζi : [0,∞) × [0,∞) →R, as follows:
(i) ζ1(t, s) = φ1(s) – φ2(t) for all t, s ∈ [0,∞), where φ1,φ2 : [0,∞) → [0,∞) are two

continuous functions such that φ1(t) = φ2(t) = 0 if and only if t = 0 and
φ1(t) < t ≤ φ2(t) for all t > 0.

If we take φ2(t) = t, φ1(t) = λt where λ ∈ [0, 1), we get the special case ζB = λs – t
for all s, t ∈ [0,∞).

(ii) ζ2(t, s) = η(s) – t for all s, t ∈ [0,∞), where η : [0,∞) → [0,∞) is an upper
semicontinuous mapping such that η(t) < t for all t > 0 and η(0) = 0.

It is clear that each function ζi (i = 1, 2) forms a simulation function.

The next definition presents the Suzuki-type contraction mappings.

Definition 5 ([5]) A self-mapping H on a metric space (Y , d) is called a Suzuki-type con-
traction if for all x, y ∈ Y with x 	= y, we have

1
2

d(x, Hx) ≤ d(x, y) �⇒ d(Hx, Hy) ≤ d(x, y).

One of the interesting results in metric fixed point theory was given by Karapınar [39],
which involves interpolation. After these initial results, interpolative contraction has been
investigated by several authors, e.g., [15, 30–41]. Recently, interpolative Hardy–Rogers-
type contractions have been investigated by many authors (see [6–8]). In particular, in
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[38], Karapınar used simulation functions to introduce the notion of interpolative Hardy–
Rogers-type Z-contraction mappings and prove some related fixed point results. The aim
of our work is to combine the latter contractions with those of the Suzuki-type and inves-
tigate the existence of fixed points of this new type of mappings under some conditions.

Karapınar’s definition that introduced the notion of interpolative Hardy–Rogers-type
Z-contraction mappings is given as follows.

Definition 6 ([38]) Let H be a self-mapping defined on a metric space (Y , d). If there exist
α,β ,γ ∈ (0, 1) with α + β + γ < 1, and ζ ∈Z such that

ζ
(
d(Hx, Hy), C(x, y)

) ≥ 0,

for all x, y ∈ Y\Fix(H), where Fix(H) is the set of all fixed point of H , and

C(x, y) :=
[
d(x, y)

]β · [d(x, Hx)
]α · [d(y, Hy)

]γ ·
[

1
2
(
d(x, Hy) + d(y, Hx)

)
]1–α–β–γ

, (1.2)

then we say that H is an interpolative Hardy–Rogers-type Z-contraction with respect to ζ .

2 Main results
We introduce now our new contraction type mapping in the following definition.

Definition 7 Let H be a self-mapping on a metric space (Y , d). We say that H is an in-
terpolative Hardy-Rogers–Suzuki-type Z-contraction with respect to some ζ ∈Z if there
exists α,β ,γ ∈ (0, 1) with α + β + γ < 1, ζ ∈Z and a function ω : Y × Y → [0,∞) such that

1
2

d(x, Hx) ≤ d(x, y)

�⇒ ζ
(
ω(x, y)d(Hx, Hy), C(x, y)

) ≥ 0 (2.1)

for all x, y /∈ Fix(H) where C(x, y) is given by (1.2).

Our main result is the following theorem:

Theorem 8 Let (Y , d) be a complete metric space and let H be a self-mapping on Y . Assume
that

(i) H is an interpolative Hardy–Rogers–Suzuki-type Z-contraction with respect to
some ζ ∈Z ;

(ii) H is ω-orbital admissible;
(iii) there exists u0 ∈ Y such that ω(u0, Hu0) ≥ 1;
(iv) Y is ω-regular.
Then H has a fixed point.

Proof Define the sequence un by un = Hnu0. If there exists k ∈ N such that uk = uk+1,
then uk is a fixed point of H . Assume that un 	= un+1 for all n ∈ N. Now as ω(u0, Hu0) ≥
1 and H is ω-orbital admissible, ω(un, un+1) ≥ 1 for all n ∈ N. And as H is an inter-
polative Hardy–Rogers–Suzuki-type Z-contraction with respect to some ζ ∈ Z with
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1
2 d(un, Hun) = 1

2 d(un, un+1) ≤ d(un, un+1), we have

ζ
(
ω(un, un+1)d(un+1, un+2), C(un, un+1)

) ≥ 0

which turns into

0 ≤ ζ
(
ω(un, un+1)d(un+1, un+2), C(un, un+1)

)

< C(un, un+1) – ω(un, un+1)d(un+1, un+2)

�⇒ ω(un, un+1)d(un+1, un+2) < C(un, un+1).

As ω(un, un+1) ≥ 1 for all n ∈N, we have

d(un+1, un+2) ≤ ω(un, un+1)d(un+1, un+2) < C(un, un+1), (2.2)

which implies that

d(un+1, un+2) < d(un, un+1)αd(un, un+1)βd(un+1, un+2)γ

×
[

1
2
(
d(un, un+2) + d(un+1, un+1)

)]1–α–β–γ

, (2.3)

and, using the triangular inequality with the fact that the function f (x) = x1–α–β–γ is in-
creasing for x > 0, we obtain

[
1
2

d(un, un+2)
]1–α–β–γ

≤
[

1
2
(
d(un, un+1) + d(un+1, un+2)

)
]1–α–β–γ

.

So from (2.3) we have

d(un+1, un+2) < d(un, un+1)α+βd(un+1, un+2)γ

×
[

1
2
(
d(un, un+1) + d(un+1, un+2)

)]1–α–β–γ

. (2.4)

If we suppose that d(un, un+1) < d(un+1, un+2) for all n ∈N, then (2.4) yields

d(un+1, un+2)1–γ < d(un, un+1)α+β + d(un+1, un+2)1–α–β–γ ,

which implies that

d(un+1, un+2)α+β < d(un, un+1)α+β ,

a contradiction. Hence d(un+1, un+2) ≤ d(un, un+1) for all n ∈ N. So, we deduce that the
sequence {d(un, un+1)} is nonincreasing, and as d(un, un+1) ≥ 0 for all n ∈ N, {d(un, un+1)}
is a bounded monotone sequence of real numbers, which implies that there exists t ≥ 0
such that limn→∞ d(un, un+1) = t. We have to prove that t = 0. It is easy to see that
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limn→∞ C(un, un+1) = t. So from (2.2) we have limn→∞ ω(un, un+1)d(un+1, un+2) = t by the
squeeze theorem. Accordingly, if we suppose that t > 0, we can apply ζ2 to get

0 ≤ ζ
(
ω(un, un+1)d(un+1, un+2), C(un, un+1)

)
< 0,

which is a contradiction. Hence t = 0, which implies that {un} is a Cauchy sequence. By
completeness of Y , there exists v ∈ Y such that limn→∞ un = v. We will prove that v is a
fixed point of H . Note that as Y is ω-regular and ω(un, un+1) ≥ 1 for all n ∈N, so ω(un, v) ≥
1 for all n ∈N. Now either

1
2

d(un, Hun) ≤ d(un, v) (2.5)

or

1
2

d
(
Hun, H2un

) ≤ d(Hun, v), (2.6)

for if we suppose that 1
2 d(un, Hun) > d(un, v) and 1

2 d(Hun, H2un) > d(Hun, v) then, using the
triangular inequality together with the fact that {d(un, un+1)} is a nonincreasing sequence,
we will get

d(un, un+1) = d(un, Hun) ≤ d(un, v) + d(v, Hun)

<
1
2

d(un, Hun) +
1
2

d
(
Hun, H2un

)

=
1
2

d(un, un+1) +
1
2

d(un+1, un+2)

≤ 1
2

d(un, un+1) +
1
2

d(un, un+1)

= d(un, un+1),

which is a contradiction. So either (2.5) or (2.6) holds. If we assume that (2.5) holds and v
is not a fixed point of H , then by ω-regularity of Y we have

0 ≤ ζ
(
ω(un, v)d(Hun, Hv), C(un, v)

)
.

Using ζ2, we have

0 ≤ C(un, v) – ω(un, v)d(un, Hv)

�⇒ d(un, Hv) ≤ ω(un, v)d(un, Hv)

≤ C(un, v)

=
[
d(un, un+1)

]α[
d(un, v)

]β[
d(v, Hv)

]γ

×
[

1
2
(
d(un, Hv) + d(v, un+1)

)]1–α–β–γ

.

As the limit of the right-hand side of the previous inequality as n → ∞ is zero, by the
squeeze theorem, limn→∞ d(un, Hv) = 0. Hence, by the uniqueness of the limit, we have
v = Hv. Similarly, if (2.6) holds, we can prove that v is a fixed point of H , as wanted. �
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2.1 Consequences
We get the following corollaries by using different examples of the function ζ .

Corollary 9 Let (Y , d) be a complete metric space and let H be a self-mapping on Y . As-
sume that

(i) there exists α,β ,γ ∈ (0, 1), λ ∈ [0, 1) with α + β + γ < 1, and a function
ω : Y × Y → [0,∞) such that

1
2

d(x, Hx) ≤ d(x, y)

�⇒ ω(x, y)d(Hx, Hy) ≤ λC(x, y); (2.7)

(ii) H is ω-orbital admissible;
(iii) there exists u0 ∈ Y such that ω(u0Hu0) ≥ 1;
(iv) Y is ω-regular.
Then H has a fixed point.

Sketch of the proof It is sufficient to replace ζ = λs – t in Theorem 8 where λ ∈ [0, 1) for all
s, t ∈ [0,∞).

Corollary 10 Let (Y , d) be a complete metric space and let H be a self-mapping on Y .
Assume that

(i) there exists α,β ,γ ∈ (0, 1), with α + β + γ < 1, a function ω : Y × Y → [0,∞) and an
upper semi-continuous mapping η : [0,∞) → [0,∞) with η(t) < t for all t > 0 and
η(0) = 0 such that

1
2

d(x, Hx) ≤ d(x, y)

�⇒ ω(x, y)d(Hx, Hy) ≤ η
(
C(x, y)

)
; (2.8)

(ii) H is ω-orbital admissible;
(iii) there exists u0 ∈ Y such that ω(u0Hu0) ≥ 1;
(iv) Y is ω-regular.
Then H has a fixed point.

Sketch of the proof It is sufficient to replace ζ (t, s) = η(s)–t for all s, t ∈ [0,∞) in Theorem 8.

We can obtain more results by reducing the terms in Theorem 8 as follows:

Theorem 11 Let (Y , d) be a complete metric space and let H be a self-mapping on Y .
Assume that there exists α,β ,∈ (0, 1) with α + β < 1, ζ ∈ Z and a function ω : Y × Y →
[0,∞) such that

(i)
1
2

d(x, Hx) ≤ d(x, y)

�⇒ ζ
(
ω(x, y)d(Hx, Hy), D(x, y)

) ≥ 0 (2.9)
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for all x, y /∈ Fix(H) where

D(x, y) :=
[
d(x, y)

]β[
d(x, Hx)

]α[
d(y, Hy)

]1–α–β ; (2.10)

(ii) H is ω-orbital admissible;
(iii) there exists u0 ∈ Y such that ω(u0, Hu0) ≥ 1;
(iv) Y is ω-regular.
Then H has a fixed point.

Proof By analogue of the proof of Theorem 8. �

3 Conclusion
In conclusion, we can use the results of the paper to generate more results by using dif-
ferent examples of the simulation function. Moreover, we can follow the same argument
of the proof of the main result to prove more results with less terms; this will enrich the
fixed point theory.
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