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Abstract
In this paper, we investigate the spatiotemporal patterns of a freshwater tussock
sedge model with discrete time and space variables. We first analyze the kinetic
system and show the parametric conditions for flip and Neimark–Sacker bifurcations
respectively. With spatial diffusion, we then show that the obtained stable
homogeneous solutions can experience Turing instability under certain conditions.
Through numerical simulations, we find periodic doubling cascade, periodic window,
invariant cycles, chaotic behaviors, and some interesting spatial patterns, which are
induced by four mechanisms: pure-Turing instability, flip-Turing instability,
Neimark–Sacker–Turing instability, and chaos.

Keywords: Discrete time and space variables; Bifurcation; Turing pattern; Chaos;
Coupled map lattices

1 Introduction
Tussock sedge is a common North American carex stricata. They grow almost exclusively
on the top of tussocks in dense tufted clumps and have wiry stems and leaves. The spaces
between the clumps can provide the habitat for small animals. Tussock sedge plays an im-
portant role in wetland ecosystem, such as dike reinforcement, slope protection, and soil
erosion prevention. In general, the dead wracks lie at the foot of the tussock, gather in the
low inter-tussock areas, and inhibit the growth of plant. On the other hand, they activate
the wracks. The interaction between the plant and the wrack as well as the unequal dif-
fusions of the two are essential for the formation of spatiotemporal patterns [1]. For the
theoretical significance and application value in the real world, it is very interesting to in-
vestigate the formation mechanism of spatiotemporal patterns from mathematical point
of view. In [2], the authors studied the spatial patterns of the tussock sedge by setting an
experimental site and found that the regular patterns have a close connection with the
space scale. The models they studied are characterized by reaction diffusion equations. In
recent years, many biological and ecological phenomena, especially for spatial patterns,
have been characterized by reaction diffusion equations. Different diffusion forms, cross-
diffusion [3], self-diffusion, sub-diffusion [4], super-diffusion [5, 6], and so on, for example,
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are widely used in reaction diffusion equations, which are the key factors that lead the sys-
tem to undergo Turing instability [1] and form abundant patterns: spots, stripes, labyrinth,
gaps, spirals, circles, and so forth [7–10].

In recent decades, lots of works about Turing instability concentrating on continuous
or semi-discrete reaction diffusion systems have been carried out, please see [11, 12] and
the references therein. For one of the tussock sedge models in [2] with continuous time
and space variables, the authors in [13] found layered Turing patterns which are gener-
ated by an equilibrium and a limit cycle. In [14], the authors showed that the formation
of patterns is related to the domain size, the growth rate of the tussock sedge grasses, and
the carrying capacity of land. Moreover, they derived the conditions for the existence of
the patterns by computing the Leray–Schauder degree. In [15], the author considered an-
other plant-wrack model in a two-dimensional space, but with half inhibition in the plant
biomass equation, and found spotted, labyrinth, and coexistence of stripe-like and spotted
patterns. In many situations, the data acquisition is not time continuous, and the distribu-
tion of biological population is also spatially discontinuous. Furthermore, the algorithm of
simulating spatial patterns is on the basis of the corresponding discrete form of the con-
tinuous system. Based on these considerations, a discrete model or an effective discretiza-
tion method is also very important in connecting the actual model with the simulations.
Therefore, in this article, we mainly concentrate on the pattern formation mechanisms of
a tussock sedge model in [2] but with the discrete time and space variables. We will ap-
ply the coupled map lattices (CMLs) method to discretize the continuous tussock sedge
model to get the corresponding system with discrete time and space variables. The system
obtained by the CMLs method is usually called CMLs model. Surprisingly, dynamics and
patterns of the CMLs model are more abundant compared with a continuous system.

For the CMLs model, some effective methods, such as the Jacobian matrix for stability
analysis, center manifold reduction [16], and calculation of spatial discrete operator [17],
and theoretical results about Turing instability criterion for discrete systems [18] have
been obtained and made accessible to researchers [19–23]. An advantage of the CMLs
model is that it retains the inherent properties of the original system; in the meantime, it
represents a numerical simulation algorithm [24, 25]. The CMLs method has been widely
used in many aspects, such as chemical oscillator [26], ecological system [23], neural dy-
namic system [27, 28]. For more related literature works, please see [7, 29–32] and the
references therein.

There is not much research on the dynamic behavior and pattern formation for the
tussock sedge model of CMLs type. Through a series of theoretical analyses, we find
that the model shows abundant dynamics. If given suitable parameters, the CMLs model
can undergo spatiotemporal bifurcation simultaneously, which leads to four kinds of pat-
tern formation mechanisms: flip-Turing bifurcation, Neimark–Sacker–Turing bifurcation,
chaotic oscillation, and pure-Turing bifurcation. For this reason, the patterns are more
abundant compared with the continuous form.

We organize the paper as follows. In Sect. 2, we first develop the corresponding CMLs
model in Sect. 2.1, and then implement the theoretical analysis on the dynamics of the
homogeneous stationary state for the kinetic system in the reaction stage in Sect. 2.2. In
Sect. 3, we mainly consider the bifurcation behaviors of the homogeneous stationary state,
including the flip bifurcation in Sect. 3.1, Neimark–Sacker bifurcation in Sect. 3.2, and
Turing bifurcation in Sect. 3.3. In Sect. 4, simulations are carried out for the purpose to
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explain the theoretical conclusions and illustrate the dynamics and spatial pattern. Finally,
we further show our conclusions and discussion.

2 The CMLs type model and stability analysis
We first construct the CMLs type model corresponding to the continuous tussock sedge
model, and then analyze its stability.

2.1 The development of CMLs tussock sedge model
One of the continuous tussock sedge models in [2] is

⎧
⎨

⎩

∂P
∂t = P(1 – P) – sP – θPW + dp�P,
∂W
∂t = sP – bW + dw�W ,

(1)

where P(x, y, t) and W (x, y, t) are the plant and wrack biomass at time t and space (x, y)
respectively, and � = ∂2

∂x2 + ∂2

∂y2 . The term s represents a specific rate of leaf senescence.
The decomposition rate of wrack is denoted by b. The diffusion rates of plant and wrack
are dp and dw respectively, and dw > dp. In this model, the wrack has an inhibition on the
growth of plant, namely the linear term –θPW , where θ represents an inhibition rate. For
more information about model (1), please see [2].

Let P = b2

θs P̄, W = b
θ

W̄ , t = T
b , then system (1) is changed into

⎧
⎨

⎩

∂P̄
∂T = s̄P̄ – ξ P̄2 – P̄W̄ + dP̄�P̄,
∂W̄
∂T = P̄ – W̄ + dW̄ �W̄ ,

(2)

where s̄ = 1–s
b , ξ = b

θs , dP̄ = dp
b , and dW̄ = dw

b . In order to keep the notation concise and intu-
itive, we drop –, replace T with t, and rewrite system (2) into the following dimensionless
form:

⎧
⎨

⎩

∂P
∂t = sP – ξP2 – PW + dP�P,
∂W
∂t = P – W + dW �W .

(3)

Based on system (3), we build up our CMLs model. On a two-dimensional rectangular
area, we define some n × n lattice sites. We specify two numbers, the plant biomass P(i,j,t)

and the wrack biomass W(i,j,t), at time t ∈ Z+ on each site (i, j), (i, j ∈ {1, 2, 3, . . . , n}). Between
different sites, we presume that there are local reactions and spatial diffusions [23, 25], and
the biomass of plant and wrack at each site follow the system dynamics with time.

From t to t + 1, the dynamical behaviors of plant and wrack for the CMLs model contain
two stages: “reaction” stage and “diffusion” stage [7, 23–25]. The diffusion behavior occurs
before the reaction behavior. Introducing the time step τ and space step δ and discretizing
the spatial form of system (3), we get the equations governing the dispersal process:

⎧
⎨

⎩

P′
(i,j,t) = P(i,j,t) + τ

δ2 dP∇2
dP(i,j,t),

W ′
(i,j,t) = W(i,j,t) + τ

δ2 dW ∇2
dW(i,j,t),

(4)
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where P′
(i,j,t) and W ′

(i,j,t) are the biomass of plant and wrack that take part in the next reaction
stage. The Laplacian operator � in discrete form is described by ∇2

d :

⎧
⎨

⎩

∇2
dP(i,j,t) = P(i+1,j,t) + P(i–1,j,t) + P(i,j+1,t) + P(i,j–1,t) – 4P(i,j,t),

∇2
dW(i,j,t) = W(i+1,j,t) + W(i–1,j,t) + W(i,j+1,t) + W(i,j–1,t) – 4W(i,j,t).

(5)

Via discretizing the non-spatial form of (3), we achieve the equations that control the
reaction process:

⎧
⎨

⎩

P(i,j,t+1) = f (P′
(i,j,t), W ′

(i,j,t)),

W(i,j,t+1) = g(P′
(i,j,t), W ′

(i,j,t)),
(6)

where

f (P, W ) = P + τ
(
sP – ξP2 – PW

)
,

g(P, W ) = W + τ (P – W ).
(7)

Equations (4)–(7) are the CMLs model of system (3). All the parameters are positive, and
P(i,j,t) ≥ 0, W(i,j,t) ≥ 0. In the next, we investigate the CMLs model’s dynamics under the
following periodic boundary conditions:

P(i,0,t) = P(i,n,t), P(i,1,t) = P(i,n+1,t),

P(0,j,t) = P(n,j,t), P(1,j,t) = P(n+1,j,t),

W(i,0,t) = W(i,n,t), W(i,1,t) = W(i,n+1,t),

W(0,j,t) = W(n,j,t), W(1,j,t) = W(n+1,j,t).

(8)

The discrete time and space tussock sedge model have spatially homogeneous and het-
erogeneous behaviors. For all i, j, and t, the homogeneous behavior satisfies

∇2
dP(i,j,t) = 0, ∇2

dW(i,j,t) = 0. (9)

Together with equations (4)–(7), the homogeneous dynamics, ignoring the spatial sites
index, are governed by

⎧
⎨

⎩

Pt+1 = Pt + τ (sPt – ξP2
t – PtWt),

Wt+1 = Wt + τ (Pt – Wt),

which can be written into the following maps:

(
P

W

)

�→
(

P + τ (sP – ξP2 – PW )
W + τ (P – W )

)

. (10)

The homogeneous dynamics of CMLs model (4)–(7) then can be obtained via analyzing
map (10). For heterogeneous behavior, it requires at least one group of i, j, and t to make
∇2

dP(i,j,t) �= 0 and ∇2
dW(i,j,t) �= 0.
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2.2 Dynamics of the homogenous stationary state
In this subsection, we try to get the parametric conditions that make the homogeneous
stationary state stable. Since the fixed point of map (10) is exactly equivalent to the ho-
mogeneous stationary state of CMLs model (4)–(7), we can analyze the dynamics of the
fixed point of map (10) instead of analyzing the homogeneous stationary state of the CMLs
model. By solving the following equations:

⎧
⎨

⎩

P = f (P, w),

W = g(P, W ),

we get two fixed points of map (10): (P1, W1) = (0, 0) and (P2, W2) = ( s
1+ξ

, s
1+ξ

). For the sta-
bility of the two fixed points, the following theorem gives a series of precise parametric
conditions.

Theorem 1 The fixed point (P1, W1) of map (10) is a saddle. For the fixed point (P2, W2):
(1) If one of (H1) and (H2) holds, it is a saddle, where

(H1)

⎧
⎨

⎩

0 < s < s1,

τ1 < τ < τ2,
(H2)

⎧
⎨

⎩

s > s2,

τ1 < τ < τ2;

(2) If one of (SN1) and (SN2) holds, it is a stable node, and if one of (UN1) and (UN2)
holds, it is an unstable node, where

(SN1)

⎧
⎨

⎩

0 < s < s1,

0 < τ < τ1,
(SN2)

⎧
⎨

⎩

s > s2,

0 < τ < τ1,

(UN1)

⎧
⎨

⎩

0 < s < s1,

τ > τ2,
(UN2)

⎧
⎨

⎩

s > s2,

τ > τ2.

Furthermore, if one of (H3) and (H4) holds, it is a stable degenerate node, and if one
of (H5) and (H6) holds, it is unstable, where

(H3)

⎧
⎨

⎩

s = s1,

0 < τ < τ∗,
(H4)

⎧
⎨

⎩

s = s2,

0 < τ < τ∗,

(H5)

⎧
⎨

⎩

s = s1,

τ > τ∗,
(H6)

⎧
⎨

⎩

s = s2,

τ > τ∗;

(3) If (SF) holds, it is a stable focus, and if (UF) holds, it is an unstable focus, where

(SF)

⎧
⎨

⎩

s1 < s < s2,

0 < τ < τ∗,
(UF)

⎧
⎨

⎩

s1 < s < s2,

τ > τ∗,

where s1 = (1+ξ )(1–
√

1+ξ )2

ξ2 , s2 = (1+ξ )(1+
√

1+ξ )2

ξ2 , τ1 = 1+ξ+sξ–ξ
√

(s–s1)(s–s2)
s(1+ξ ) , τ2 = 1+ξ+sξ+ξ

√
(s–s1)(s–s2)

s(1+ξ ) ,
τ∗ = 1+ξ+sξ

s(1+ξ ) .
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Proof By computing the eigenvalues of the Jacobian matrix of map (10) at the associated
fixed points respectively, we can determine the stability conditions of the fixed points. For
the fixed point (P1, W1) = (0, 0), the Jacobian matrix is

J(P1, W1) =

(
1 + τ s 0

τ 1 – τ

)

.

Obviously, the eigenvalues of J(P1, W1) are 1 + τ s > 1 and 1 – τ < 1. According to [33], the
fixed point (P1, W1) is a saddle. For the fixed point (P2, W2), the corresponding Jacobian
matrix is

J(P2, W2) =

(
1 – ξ sτ

1+ξ
– sτ

1+ξ

τ 1 – τ

)

.

The two eigenvalues are

λ1,2 =
1
2
[
tr J(P2, W2) ±

√
[
tr J(P2, W2)

]2 – 4 Det J(P2, W2)
]
,

where

tr J(P2, W2) = 2 – τ –
ξ sτ

1 + ξ
,

Det J(P2, W2) =
1 + ξ – ξ sτ

1 + ξ
(1 – τ ) +

sτ 2

1 + ξ
.

According to [33], we can obtain the results by direct calculation. �

In the sequel, the bifurcation behaviors and pattern formation mechanisms around the
fixed point (P2, W2) are investigated, since the fixed point (0, 0) is always unstable. For
description convenience, we call the fixed point of map (10) the homogeneous stationary
state of CMLs model (4)–(7).

3 Bifurcation analysis of the homogeneous stationary state
In this section, we treat τ as the main bifurcation parameter and explore the bifurcation
behavior of the homogeneous stationary state, such as flip bifurcation, Neimark–Sacker
bifurcation, and Turing bifurcation respectively. Based on this theoretical analysis, we get
the parametric conditions to support the formation of spatial patterns.

3.1 Analysis of flip bifurcation
The flip bifurcation can lead the stable node (P2, W2) to be an unstable one. In the mean-
time, new period-2 points appear. The first requirement for the emergence of flip bifurca-
tion is that λ1 or λ2 for the Jacobian matrix J(P2, W2) at the critical value of flip bifurcation
is –1, and the other is neither –1 nor 1. This requirement can be satisfied by the following
conditions:

⎧
⎨

⎩

4 + (–2 – 2sξ
1+ξ

)τ + sτ 2 = 0,

τ (1 + ξ s
1+ξ

) �= 2, 4.
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Solving the above conditions, we can get the critical value of flip bifurcation and arrive at
the following conclusion.

Proposition 2 Suppose that ξ > 0 and one of conditions (C1) : 0 < s < s1 and (C2) : s > s2

holds, then the fixed point (P2, W2) experiences flip bifurcation at the critical value τ = τ1,
where τ1, s1, and s2 are defined in Theorem 1.

When flip bifurcation occurs, new period-2 orbit is bifurcated. In the next, we further
analyze the stability of the period-2 points by flip bifurcation theorem and center manifold
reduction. We first regard τ as an independent variable, and let w = P – P2, z = W – W2,
τ̃ = τ – τ1 for the convenience of later analysis. Map (10) is expressed as follows:

⎛

⎜
⎝

w
z
τ̃

⎞

⎟
⎠ =

⎛

⎜
⎝

a1 a2 0
b1 b2 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

w
z
τ̃

⎞

⎟
⎠ +

⎛

⎜
⎝

f1(w, z, τ̃ )
f2(w, z, τ̃ )
f3(w, z, τ̃ )

⎞

⎟
⎠ , (11)

with

f1(w, z, τ̃ ) =
1
2

a3w2 + a4wz + a5wτ̃ + a6zτ̃ +
1
2

a7w2τ̃ + a8wzτ̃ + O(4),

f2(w, z, τ̃ ) = b3wτ̃ + b4zτ̃ + O(4),

f3(w, z, τ̃ ) = 0,

where the term O(4) represents a polynomial function whose order is at least 4 in the
variables w, z, τ̃ , and

a1 = 1 –
sξτ1

1 + ξ
, a2 = –

sτ1

1 + ξ
, a3 = –2ξτ1, a4 = τ1,

a5 = –
sξ

1 + ξ
, a6 = –

s
1 + ξ

, a7 = –2ξ , a8 = –1, b1 = τ1,

b2 = 1 – τ1, b3 = 1 = –b4.

(12)

Applying the inverse transformation w = a2(w̃ + z̃) and z = (–1 – a1)w̃ + (λ2 – a1)z̃ with
λ2 = 1 + a1 + b2, we can write system (11) as

w̃ �→ –w̃ +
1

a2(1 + λ2)
F1(w̃, z̃, τ̃ ),

z̃ �→ λ2z̃ +
1

a2(1 + λ2)
F2(w̃, z̃, τ̃ ),

τ̃ �→ τ̃ ,

(13)

where

F1(w̃, z̃, τ̃ ) = (λ2 – a1)f1
(
a2(w̃ + z̃), (–1 – a1)w̃ + (λ2 – a1)z̃, τ̃

)

– a2f2
(
a2(w̃ + z̃), (–1 – a1)w̃ + (λ2 – a1)z̃, τ̃

)
,

F2(w̃, z̃, τ̃ ) = (1 + a1)f1
(
a2(w̃ + z̃), (–1 – a1)w̃ + (λ2 – a1)z̃, τ̃

)
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+ a2f2
(
a2(w̃ + z̃), (–1 – a1)w̃ + (λ2 – a1)z̃, τ̃

)
.

In order to get some information about the stability of the bifurcated period-2 orbit, we
need to derive the governing equation subjected on the center manifold. Suppose that the
center manifold W c(0, 0, 0) of system (13) is

W c(0, 0, 0) =
{

(w̃, z̃, τ̃ ) ∈ R3|z̃ = h∗(w̃, τ̃ ), h∗(0, 0) = 0, Dh∗(0, 0) = 0
}

(14)

with h∗(w̃, τ̃ ) = e1w̃2 + e2w̃τ̃ + e3τ̃
2 + O(3). Taking z̃ = h∗(w̃, τ̃ ) into map (13), we have

λ2h∗(w̃, τ̃ ) +
F2(w̃, h∗(w̃, τ̃ ), τ̃ )

a2(1 + λ2)

= e1

[

–w̃ +
F1(w̃, h∗(w̃, τ̃ ), τ̃ )

a2(1 + λ2)

]2

+ e2

[

–w̃ +
F1(w̃, h∗(w̃, τ̃ ), τ̃ )

a2(1 + λ2)

]

τ̃ + e3τ̃
2 + O(3).

Comparing the terms of w̃2, w̃τ̃ , τ̃ 2 on each side, we have

e1 =
(1 + a1)[a2a3 – 2(1 + a1)a4]

2(1 – λ2
2)

,

e2 =
(1 + a1)2a6 – a2

2b3 – (1 + a1)a2(a5 – b4)
a2(1 + λ2)2 ,

e3 = 0.

(15)

Correspondingly, restricted on the center manifold, map (13) is changed into

w̃ �→ –w̃ + μ1w̃2 + μ2w̃τ̃ + μ3w̃2τ̃ + μ4w̃τ̃ 2 + μ5w̃3 + O(4), (16)

where

μ1 =
1

2(1 + λ2)
(λ2 – a1)

[
a2a3 – 2a4(1 + a1)

]
,

μ2 =
1

a2(1 + λ2)
(
a2

[
–a2b3 + (1 + a1)b4

]
+

[
a2a5 – (1 + a1)a6

]
(λ2 – a1)]

)
,

μ3 =
1

a2(1 + λ2)

(

–
1
2

a2(a2 – λ2)
[
a2a7 – 2(1 + a1)a8

]
+ e2a2(a1 – λ2)

× [
–a2a3 + a4(1 + 2a1 – λ2)

]
+ e1

[
(λ2 – a1)

(
a2a5 + a6(λ2 – a1)

)

– a2
(
a2a3 + b4(λ2 – a1)

)]
)

,

μ4 =
e2

a2(1 + λ2)
(
(λ2 – a1)

[
a2a5 + a6(λ2 – a1)

]
– a2

[
a2b3 + b4(λ2 – a1)

])
,

μ5 =
e1(a1 – λ2)

1 + λ2

[
–a2a3 + a4(1 + 2a1 – λ2)

]
.
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For map (16), the occurrence of flip bifurcation requires two other nonzero options [16]:

η1 =
(

∂2F
∂w̃∂τ̃

+
1
2

∂F
∂τ̃

· ∂2F
∂w̃2

)∣
∣
∣
∣
(w̃,τ̃ )=(0,0)

= μ2 �= 0,

η2 =
(

1
6

∂3F
∂w̃3 +

(
1
2

∂2F
∂w̃2

)2)∣
∣
∣
∣
(w̃,τ̃ )=(0,0)

= μ5 + μ2
1 �= 0.

Based on the above analysis and computation, we can make the conclusion that map (10)
may undergo flip bifurcation if the parameters are given suitably. Therefore, for CMLs
model (4)–(7) we can make the following conclusion.

Theorem 3 If one of conditions (C1) and (C2) is satisfied, then CMLs model (4)–(7) ex-
periences a flip bifurcation if η1 �= 0, η2 �= 0, and τ = τ1. Moreover, if η2 > 0, then a stable
period-2 orbit is bifurcated from the homogeneous stationary state (P2, W2), while if η2 < 0,
then the bifurcated period-2 orbit is unstable.

If the re-scaled conversion rate s satisfies 0 < s < s1 or s > s2, as τ increases from less than
τ1 to more than τ1, the positive homogeneous stationary state (P2, W2) changes from stable
node to unstable node. Considering η1 �= 0 and η2 > 0, CMLs model (4)–(7) demonstrates
flip bifurcation at (P2, W2), and a stable period-2 orbit is bifurcated on the right-hand side
of the critical value of the flip bifurcation τ1. This implies that the plant and wrack biomass
may coexist in an oscillatory state between the period-2 points.

3.2 Analysis of Neimark–Sacker bifurcation
Referring to [16], if a fixed point undergoes Neimark–Sacker bifurcation, then an in-
variant cycle enclosing the fixed point is bifurcated. The emergence of the Neimark–
Sacker bifurcation requires the two eigenvalues λ1,2 of the corresponding Jacobian ma-
trix J(P2, W2) to be a pair of conjugate complex numbers, and |λ1,2| = 1. This implies
[tr J(P2, W2)]2 – 4 Det J(P2, W2) < 0 and Det J(P2, W2) = 1, namely

⎧
⎨

⎩

s1 < s < s2,

τ = τ∗,
(17)

where s1, s2, and τ∗ are defined in Theorem 1.
Under condition (17), we make the transformation w = P – P2, z = W – W2 to translate

the fixed point (P2, W2) to the origin (0, 0), which can simplify the latter description and
analysis. In this coordinate transformation, map (10) can be written as follows:

w �→ a1w + a2z +
1
2

a3w2 + a4wz + O
((|w| + |z|)4),

z �→ b1w + b2z + O
((|w| + |z|)4).

(18)

The coefficients a1, a2, a3, a4, b1, b2 are as previously defined in (12), but with τ1 replaced
with τ∗. Because the inverse translation will not change the qualitative behavior of the
fixed point, the eigenvalues of the Jacobian matrix of map (18) at (0, 0) are also conjugate



Li et al. Advances in Difference Equations        (2021) 2021:399 Page 10 of 28

complex numbers and the modulus is 1. For notational convenience, we denote the two
eigenvalues by λ(τ∗) and λ̄(τ∗), and

λ(τ∗), λ̄(τ∗) =
tr J(τ∗)

2
± i

2
√

4 Det J(τ∗) – tr J(τ∗)2 := α ± iβ ,

where J(τ∗) = J(P2, W2)|τ=τ∗ , i2 = –1 and |λ(τ∗)| = |λ̄(τ∗)| = 1.
Except for condition (17), the Neimark–Sacker bifurcation also needs the eigenvalues to

satisfy the nonzero transversality condition d|λ(τ∗)|
dτ

�= 0. Direct computations show that

d|λ(τ∗)|
dτ

=
1 + ξ + ξ s
2(1 + ξ )

> 0. (19)

Moreover, the Neimark–Sacker bifurcation requires that the two eigenvalues are neither
real nor imaginary. This requirement can be guaranteed by the following condition:

(
λ(τ∗)

)θ �= 1, θ = 1, 2, 3, 4, (20)

namely,

τ∗
(

1 +
ξ s

1 + ξ

)

�= 2, 3. (21)

For the sake of the Neimark–Sacker bifurcation, we also need to obtain the normal form
of map (18) by carrying out the center manifold reduction to get the last criterion. Let
w = a2w̃, z = (α – a1)w̃ – β z̃, this invertible transformation leads map (18) to

w̃ �→ αw̃ – β z̃ +
1

a2β
G1(w̃, z̃),

z̃ �→ βw̃ + αz̃ +
1

a2β
G2(w̃, z̃),

(22)

where

G1(w̃, z̃) = a2βτ∗(a1 – ξa2 – α)w̃ + a2βτ∗w̃z̃ + O
((|w| + |z|)4),

G2(w̃, z̃) =
α – a1

β
G1(w̃, z̃).

To ensure the emergence of Neimark–Sacker bifurcation for map (22), we demand the
determinative quantity σ satisfying

σ = – Re

(
(1 – 2λ)λ̄2

1 – λ
ξ11ξ20

)

–
1
2
|ξ11|2 – |ξ02|2 + Re(λ̄ξ21) �= 0, (23)

where

ξ20 =
1

8a2β

[
G1w̃w̃ – G1z̃z̃ + 2G2w̃z̃ + i(G2w̃w̃ – G2z̃z̃ – 2G1w̃z̃)

]

=
1

8a2β

(
–2βξτ∗a2

2 + 2iτ∗a2
[
–β2 – (α – a1)(α + ξa2 – a1)

])
,
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ξ11 =
1

4a2β

[
G1w̃w̃ + G1z̃z̃ + i(G2w̃w̃ + G2z̃z̃)

]

=
1

4a2β

[
–2βτ∗a2(α + ξa2 – a1) – 2iτ∗a2(α – a1)(α + ξa2 – a1)

]
,

ξ02 =
1

8a2β

[
G1w̃w̃ – G1z̃z̃ – 2G2w̃z̃ + i(G2w̃w̃ – G2z̃z̃ + 2G1w̃z̃)

]

=
1

8a2β

(
–2βτ∗a2(2α + ξ s2 – 2a1) + 2iτ∗a2

[
β2 – (α – a1)

× (α + ξa2 – a1)
])

,

ξ21 =
1

16a2β

[
G1w̃w̃w̃ + G1w̃z̃z̃ + G2w̃w̃z̃ + G2z̃z̃z̃ + i(G2w̃w̃w̃

+ G2w̃z̃z̃ – G1w̃w̃z̃ – G1z̃z̃z̃)
]

= 0.

Based on the above analysis and computation, we have the following.

Theorem 4 Suppose that s1 < s < s2 and condition (21) holds. If σ �= 0, then CMLs
model (4)–(7) experiences Neimark–Sacker bifurcation at the homogeneous stationary
state (P2, W2) when τ = τ∗. Moreover, if σ > 0, a repelling invariant cycle is bifurcated when
0 < τ < τ∗; if σ < 0, an attracting invariant cycle is bifurcated when τ > τ∗.

If the re-scaled conversion rate s satisfies s1 < s < s2, as 0 < τ < τ∗, the homogeneous sta-
tionary state (P2, W2) is a stable focus, when τ > τ∗, it is an unstable focus. The dynamic
transition implies the possibility of the occurrence of Neimark–Sacker bifurcation. Con-
sidering σ �= 0, this indicates that the Neimark–Sacker bifurcation emerges when τ = τ∗.
If σ < 0, the bifurcated cycle is stable. This implies that the plant and wrack coexist in the
form of uniform quasi-periodic oscillation.

3.3 Analysis of Turing bifurcation
The breaking of spatial symmetry is the main reason for the occurrence of Turing bifur-
cation. If Turing instability occurs, the stable homogeneous stationary state of the CMLs
model is driven to be unstable due to the uneven spatial diffusions. This induces the for-
mation of spatial patterns. For the occurrence of Turing bifurcation, two conditions are
essential [7, 8, 34]. First we need the nontrivial homogeneous stationary state to be sta-
ble about time. Second we need the stable nontrivial homogeneous stationary state to be
unstable under one or more kinds of spatially heterogeneous perturbations. From The-
orem 1, we know that if one of conditions (SN1), (SN2), (SF), (H3), and (H4) holds, then
(P2, W2) is stable about time.

Throughout this subsection, we suppose that one of (SN1), (SN2), (SF), (H3), and (H4)
holds, and explore the Turing bifurcation of the homogeneous stationary state. To get the
conditions that support the Turing instability, we first discuss the eigenvalue problems of
the discrete Laplacian operator ∇2

d . Taking into account the following equation:

∇2
dXij + λXij = 0, (24)
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adapted to the periodic boundary conditions

Xi,0 = Xi,n, Xi,1 = Xi,n+1, X0,j = Xn,j, X1,j = Xn+1,j.

As in [17], we have that the eigenvalue λkl of ∇2
d satisfies

λkl = 4
[

sin2 (k – 1)π
n

+ sin2 (l – 1)π
n

]

:= 4
(
sin2 φk + sin2 φl

)
, (25)

where k, l ∈ {1, 2, 3, . . . , n}. Corresponding to the eigenvalue λkl , the eigenfunction is de-
noted by Xij

kl , namely, ∇2
dXij

kl + λklX
ij
kl = 0.

In the sequel, we investigate the stability of (P2, W2) under small spatial heterogenous
perturbation. Let P̃(i,j,t) = P(i,j,t) – P2, W̃(i,j,t) = W(i,j,t) – W2, and take the perturbation into
CMLs model (4)–(7), since ∇2

dP̃(i,j,t) = ∇2
dP(i,j,t), ∇2

dW̃(i,j,t) = ∇2
dW(i,j,t), we have

P̃(i,j,t+1) = a1

(

P̃(i,j,t) +
τ

δ2 dP∇2
dP̃(i,j,t)

)

+ a2

(

W̃(i,j,t) +
τ

δ2 dW ∇2
dW̃(i,j,t)

)

+ O
((|P̃(i,j,t)| + |W̃(i,j,t)|

)2),

W̃(i,j,t+1) = b1

(

P̃(i,j,t) +
τ

δ2 dP∇2
dP̃(i,j,t)

)

+ b2

(

W̃(i,j,t) +
τ

δ2 dW ∇2
dW̃(i,j,t)

)

+ O
((|P̃(i,j,t)| + |W̃(i,j,t)|

)2),

(26)

where a1, a2, b1, and b2 are given in (12). When the perturbation is small, the linear terms
dominate the dynamics of system (26). Multiplying Xij

kl at both ends of equation (26), we
obtain

Xij
klP̃(i,j,t+1) = Xij

kl(a1P̃(i,j,t) + a2W̃(i,j,t))

+
τ

δ2 Xij
kl
(
a1dP∇2

dP̃(i,j,t) + a2dW ∇2
dW̃(i,j,t)

)
,

Xij
klW̃(i,j,t+1) = Xij

kl(b1P̃(i,j,t) + b2W̃(i,j,t))

+
τ

δ2 Xij
kl
(
b1dP∇2

dP̃(i,j,t) + b2dW ∇2
dW̃(i,j,t)

)
.

(27)

For equation (27), we sum all i and j together to get the following system:

n∑

i,j=1

Xij
klP̃(i,j,t+1) = a1

n∑

i,j=1

Xij
klP̃(i,j,t) + a2

n∑

i,j=1

Xij
klW̃(i,j,t)

+
τ

δ2 a1dP

n∑

i,j=1

Xij
kl∇2

dP̃(i,j,t) +
τ

δ2 a2dW

n∑

i,j=1

Xij
kl∇2

dW̃(i,j,t),

n∑

i,j=1

Xij
klW̃(i,j,t+1) = b1

n∑

i,j=1

Xij
klP̃(i,j,t) + b2

n∑

i,j=1

Xij
klW̃(i,j,t)

+
τ

δ2 b1dP

n∑

i,j=1

Xij
kl∇2

dP̃(i,j,t) +
τ

δ2 b2dW

n∑

i,j=1

Xij
kl∇2

dW̃(i,j,t).

(28)
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Let P̄t+1 =
∑n

i,j=1 Xij
klP̃(i,j,t), W̄t+1 =

∑n
i,j=1 Xij

klW̃(i,j,t), system (28) can be written as follows:

P̄t+1 = a1

(

1 –
τ

δ2 dPλkl

)

P̄t + a2

(

1 –
τ

δ2 dW λkl

)

W̄t ,

W̄t+1 = b1

(

1 –
τ

δ2 dPλkl

)

P̄t + b2

(

1 –
τ

δ2 dW λkl

)

W̄t .
(29)

At all the lattices, the dynamics of the spatially heterogeneous perturbations are gov-
erned by system (29). If the fixed point (0, 0) of system (29) is stable, then the spatially
homogenous stationary state (P2, W2) of CMLs model (4)–(7) is stable. Otherwise, the
state (P2, W2) is unstable. In the latter situation, Turing patterns will come into forma-
tion. In the following, we calculate the eigenvalues of the Jacobian matrix of system (29)
at (0, 0). We are very interested in finding the parametric conditions to make at least one
eigenvalue with module greater than 1.

The Jacobian of system (29) at (0, 0) is

(
a1(1 – τ

δ2 dPλkl) a2(1 – τ

δ2 dW λkl)
b1(1 – τ

δ2 dPλkl) b2(1 – τ

δ2 dW λkl)

)

.

The corresponding eigenvalues are

λ±(k, l, τ ) =
1
2

R(k, l, τ ) ± 1
2
√

R2(k, l, τ ) – 4Q(k, l, τ ), (30)

where

R(k, l, τ ) = a1 + b2 –
τ

δ2 λkl(a1dP + b2dW ),

Q(k, l, τ ) = (a1b2 – a2b1)
(

1 –
τ

δ2 dPλkl

)(

1 –
τ

δ2 dW λkl

)

.
(31)

Let

Z(k, l, τ ) = max
{∣
∣λ±(k, l, τ )

∣
∣
}

,

Zm(τ ) =
n

max
k=1,l=1

Z(k, l, τ ),
(
(k, l) �= (1, 1)

)
.

(32)

Via solving Zm(τ ) = 1, we can obtain the critical value of Turing bifurcation τ ′. More pre-
cisely, when τ is close to τ ′, if R2(k, l, τ ) > 4Q(k, l, τ ) is satisfied, then τ ′ satisfies

n
max

k=1,l=1

{∣
∣R

(
k, l, τ ′)∣∣ – Q

(
k, l, τ ′)} = 1. (33)

If R2(k, l, τ ) ≤ 4Q(k, l, τ ) holds, then τ ′ satisfies

Q
(
k, l, τ ′) = 1. (34)

The above computations signify the following theorem.
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Theorem 5 Suppose that one of conditions (SN1), (SN2), (SF), (H3), and (H4) holds, and
τ is in a neighborhood of τ ′. The homogeneous stationary state (P2, W2) of CMLs model
(4)–(7) restricted to the periodic boundary condition (8) experiences Turing bifurcation if
Zm(τ ) > 1. Therefore, Turing patterns begin to take shape. The homogenous stationary state
(P2, W2) is stable if Zm(τ ) < 1, therefore, no patterns will take shape.

Concluding the whole analysis and computations, we conclude that if the homogeneous
stationary state (P2, W2) only experiences Turing instability, then the patterns are induced
by pure-Turing bifurcation. If the flip bifurcation and Turing instability occur simulta-
neously, the patterns are induced by flip-Turing instability. If Neimark–Sacker bifurca-
tion and Turing instability happen at the same time, the spatial patterns are caused by
Neimark–Sacker–Turing instability.

4 Numerical simulation
We carry out numerical simulations to illustrate the dynamic evolvement of flip, Neimark–
Sacker bifurcations, and Turing instability as well as the related spatiotemporal patterns
in this section.

4.1 Flip bifurcation and the related Turing patterns
We first explain the theoretical results obtained in Proposition 2 and Theorem 3. Then we
combine the flip bifurcation with the Turing bifurcation and present some spatial patterns
induced by pure-Turing instability, flip-Turing instability, and chaos mechanisms respec-
tively. In this subsection, we set ξ = 5.58, s = 5, and the computational rectangular grid is
n = 150.

The location of the fixed point (P2, W2) = ( s
1+ξ

, s
1+ξ

) is independent of τ , but its stabil-
ity is closely related with τ . The fixed point is (P2, W2) = (0.7599, 0.7599). Further direct
calculation shows that s1 = 0.51769, s2 = 2.68605. Obviously, the condition (C2) : s > s2 in
Proposition 2 is satisfied. The critical value of flip bifurcation is τ1 = 0.501806. Set τ = τ1,
then the eigenvalues are –1 and 0.370478, and η1 = –3.98561 < 0, η2 = 0.989406 > 0. As
stated by Theorem 3, the bifurcated period-2 orbit is stable when τ is in the right neigh-
borhood of τ1. We plot the corresponding bifurcation diagram with τ ∈ [0.4, 0.7], please
see Fig. 1(a). The initial value of flip bifurcation simulation is (P2 + 0.0001, W2 + 0.0015).
From Fig. 1(a) we can clearly see the period-doubling cascade of the wrack biomass W . In
order to get some detailed information from the period window, we plot a local amplifi-
cation diagram in Fig. 1(b) with τ ∈ [0.656, 0.66]. In this period window, we see a period-6
orbit.

Corresponding to the flip bifurcation diagram, we draw the maximum Lyapunov expo-
nents in Fig. 2, which can help us determine the chaotic and non-chaotic behavior quan-
titatively. From Fig. 2(b), we can see that the maximum Lyapunov exponent is above zero
when τ is around 0.659. This means that the chaotic behavior may occur.

According to the flip bifurcation diagram and the maximum Lyapunov exponents, we
show the dynamic evolution of map (10). We first illustrate the dynamics of the plant and
wrack biomass changing over time for different given τ values. Then we plot the phase
portraits to illustrate the dynamic transition of map (10).

Set τ = 0.45 < τ1, then the eigenvalues are –0.793523 and 0.435469. We choose an ini-
tial state (P2 + 0.0001, W2 – 0.0015) and demonstrate the biomass of plant P and wrack W



Li et al. Advances in Difference Equations        (2021) 2021:399 Page 15 of 28

Figure 1 (a) Diagram of flip bifurcation of map (10) with τ ∈ [0.4, 0.7]; (b) the local amplification of Fig. 1(a)
with τ ∈ [0.656, 0.66]

Figure 2 (a) Maximum Lyapunov exponents corresponding to Fig. 1(a); (b) the local amplification of Fig. 2(a)

changing over time in Fig. 3(a). We can see that the fixed point (P2, W2) = (0.7599, 0.7599)
is a stable node. Set τ = 0.502, then the eigenvalues are –1.00078 and 0.370234. The fixed
point (P2, W2) is an unstable node. The loss of the stability of the node results in the emer-
gence of stable period-2 points (0.7491, 0.7633) and (0.7704, 0.7562). Starting from the
same initial state (P2 + 0.0001, W2 – 0.0015), the biomass of the plant P and wrack W
converge to the period-2 points. The biomass of the plant P finally oscillates between
0.7491 and 0.7704. Please see the red dots in Fig. 3(b). The biomass of the plant W fi-
nally oscillates between 0.7633 and 0.7562, please see the blue dots in Fig. 3(b). This im-
plies that the bifurcated period-2 orbit is stable, and the biomass of the plant and wrack
finally oscillates between the period-2 points: (0.7491, 0.7633) and (0.7704, 0.7562). Con-
tinue increasing the value of τ , we observe the period doubling behaviors. For example,
let τ = 0.61, we can see period-4 points (0.4451, 0.8203), (0.9506, 0.5941), (0.5495, 0.7831),
and (0.9352, 0.6406) as shown in Fig. 3(c). Correspondingly, the dynamics changing over
time are shown in Fig. 3(d). We can see that the plant biomass P (denoted by red dots)
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Figure 3 Dynamics of the plant and wrack biomass changing over time for various values of parameter τ

starting from P2 + 0.0001 converges to the period-4 orbit and finally oscillates between
four alternate states 0.4451, 0.9506, 0.5495, 0.9352. The wrack biomass W (denoted by
blue dots) starting from W2 – 0.0015 converges to the period-4 orbit and finally oscillates
between four alternate states 0.8203, 0.5941, 0.7831, 0.6406. The dynamic process be-
tween the four states is as follows. For example, if starting from the state (0.5495, 0.7831),
then next the biomass of the plant P and wrack W arrive at the state (0.9352, 0.6406), then
to the state (0.4451, 0.8203), and then to the state (0.9056, 0.0.5914), and then go back to
(0.5495, 0.7831). Further suitably increasing the value of τ , the period will be further dou-
bled. For example, set τ = 0.6252, we see a stable period-8 orbit, please see Fig. 4(a). The
biomass of the plant and wrack (P, W ) will converge to the period-8 points, and finally
oscillate between eight alternate states. Since the dynamics are similar to those shown in
Fig. 3(b) and Fig. 3(d), we do not show the dynamics changing over time.

In the following, we concentrate on the dynamic transition of map (10) as the value of
τ increases. In Fig. 4(a), we see a period-8 orbit. For τ = 0.6302 and τ = 0.632, we get
another two different periodic orbits. Please see Fig. 4(b)–(c). Next, we set τ = 0.6575,
then we arrive at a period-6 orbit corresponding to the period window in Fig. 1(b), please
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Figure 4 Phase portraits for various values of parameter τ
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Figure 5 (a) Zm – τ diagram showing the Turing bifurcation; (b) τ – dW diagram showing pattern formation
region

see Fig. 4(d). At last, we exhibit a chaotic attractor with τ = 0.659 in Fig. 4(e). The local
amplification of Fig. 4(e) is shown in Fig. 4(f ) to present some detailed information about
the chaotic attractor.

From Figs. 3 and 4, we can clearly see the dynamic variation on the route from a stable
fixed point to chaos as shown in the flip bifurcation diagram with various τ values.

In the sequel, we first demonstrate the Turing bifurcation diagram to determine the cor-
responding critical value τ ′. And then we draw the pattern formation regions. According
to different regions, we exhibit the transition of patterns.

Set dP = 0.3, dW = 0.6, δ = 10, we plot the Zm –τ diagram, please see Fig. 5(a). With these
given parametric values, we get the critical value for Turing bifurcation τ ′ ≈ 0.5018062.
Combining the flip bifurcation curve τ = τ1 with Turing bifurcation curve τ = τ ′, we show
the pattern formation regions in Fig. 5(b) as dW varying from 0 to 8. Three regions are
obtained: homogeneous stationary state region, pure-Turing instability region, and flip-
Turing instability region.

In the following, we simulate the spatial patterns of the re-scaled wrack biomass W ,
which are induced by the pure-Turing, flip-Turing instability and chaos mechanisms in
Fig. 6 corresponding to the cases in Fig. 3 and Fig. 4. All the figures shown about the spatial
patterns are taken as the spatial distribution of the CMLs model at t = 100,000. The initial
state is a random perturbation to the homogeneous stationary state (P2, W2).

Set dW = 0.6, for τ = 0.45, then neither Turing bifurcation nor flip bifurcation will occur,
the stable homogeneous stationary state is locally uniformly stable. Therefore, no spatial
patterns will be formed. The biomass W is projected onto the 150 × 150 rectangular grid,
please see Fig. 6(a). For τ = 0.502, CMLs model (4)–(7) undergoes Turing bifurcation and
flip bifurcation simultaneously. At this time the CMLs model will form spatial heteroge-
neous patterns, which are induced by the flip-Turing instability mechanism, please see
Fig. 6(b). The spatial distribution of the wrack are mainly concentrated on two alternative
states (represented by two different colors: yellow (the wrack biomass W = 0.7633) and
blue (the wrack biomass W = 0.7562)), namely, the period-2 points. Let τ = 0.61, then we
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Figure 6 Spatial patterns of re-scaled wrack biomassW self-organized under pure-Turing instability,
flip-Turing instability, and chaos on 150× 150 lattices

find that four states of W interweave each other, as shown in Fig. 6(c). In fact, the patterns
are composed of four colors which represent the period-4 points.

For τ = 0.6252, we observe a spatial pattern inlaying with eight states of W (Fig. 6(d))
which is dominated by period-8 points. Similarly, we can imagine the patterns when
τ = 0.6032. Thus we do not present them here. For τ = 0.632, we see more fragmented
patterns, please see Fig. 6(e). For τ = 0.659, from Fig. 3(h), we know that the dynamics
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Figure 7 Diagram of Neimark–Sacker bifurcation and the corresponding maximum Lyapunov exponents

of the CMLs model are chaos. In the meantime, the related patterns also show the char-
acteristics of chaos. The pattern is mosaic type. We cannot tell how many colors are in
the pattern. From the above simulations, we can see that the patterns gradually transit to
fragment type, and finally chaos as τ varies from 0.45 to 0.659. In the transition process,
the patterns also exhibit period-doubling phenomenon in space.

4.2 Neimark–Sacker bifurcation and Turing patterns
In this subsection, we first mainly give numerical illustrations about the results of
Neimark–Sacker bifurcation obtained in Theorem 4. And then combined with the Turing
bifurcation, we show the related patterns. Throughout this subsection, the parameters ξ

and s are fixed as ξ = 5.58, s = 0.9. The computational grid is n × n = 200 × 200.
Since ξ = 5.58, s = 0.9, then s1 = 0.51769 < s < s2 = 2.68605. Direct computation shows

that the fixed point is (P2, W2) = (0.1368, 0.1368). According to Theorem 4, map (10) ex-
periences Neimark–Sacker bifurcation when τ = τ∗ = 1.959135. The Neimark–Sacker bi-
furcation diagram is shown in Fig. 7(a) with the initial state set as (P2 + 0.02, W2 + 0.002).
The discriminatory quantity σ is –4.95574. Therefore, for τ > τ∗, an attracting invariant
cycle will appear. The Neimark–Sacker bifurcation may lead to the emergence of chaos.
In order to quantitatively determine the chaotic and non-chaotic behaviors, we plot the
maximum Lyapunov exponents (shown in Fig. 7(b)) corresponding to Fig. 7(a).

From the local amplification graphs of Fig. 7(b), as shown in Fig. 8, we find that when
suitably choosing the τ value, such as τ = 2.151 and 2.21, the maximum Lyapunov expo-
nent can be above zero, this implies that chaotic behavior may occur.

In the following, we first simulate the dynamic behavior of map (10) for the stable focus.
Then we use the phase portraits to exhibit the dynamic transition from fixed point to
chaotic behaviors associated with Neimark–Sacker bifurcation diagram.

Let τ = 1.95, then τ < τ∗. We calculate the eigenvalues of the Jacobian matrix J(P2, W2)
and obtain λ1,2 = –0.7191 ± 0.6832i and |λ1,2| = 0.9919 < 1. Therefore, the homogeneous
stationary state (P2, W2) = (0.1368, 0.1368) of map (10) is a stable focus. Choosing an initial
state (P2 + 0.02, W2 + 0.002) (the green dot in Fig. 9), we obtain a trajectory with a discrete
sequence of points (the blue dots in Fig. 9). For the sake of explaining the dynamic evolve-
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Figure 8 Local amplification of the maximum Lyapunov exponents corresponding to Fig. 7(b)

Figure 9 A trajectory with a discrete sequence of
points of map (10) with τ = 1.95 converges to the
stable focus (P2,W2) = (0.1368, 0.1368)

ments from the initial state to the focus, we connect these points in order with line seg-
ments and use arrows to indicate the direction from one state to the next state. Please see
Fig. 9. Except for the initial state, we index the first 15 points with ST1 ∼ ST15 and assign
two arrows for the first 15 points. One arrow tells the previous state, the other indicates
the next state. The trajectory starting from the initial state proceeds to ST1, then to ST2,
to ST3, to ST4, and so on. From the evolution of the first 15 points, we can conclude that
the trajectory converges to the stable focus (P2, W2) anticlockwise.

In the sequel, associated with the Neimark–Sacker bifurcation diagram Fig. 7(a), we use
phase portraits to explicitly demonstrate the dynamic transition from the stable focus to
chaotic behavior as τ increases. Please see Fig. 10. In Fig. 10(a), we show the stable fo-
cus with τ = 1.95. Increasing the value of τ to 1.9592, then τ > τ∗, Theorem 4 and the
Neimark–Sacker bifurcation diagram Fig. 7(a) imply that (P2, W2) loses its stability to be
an unstable focus. An attracting invariant circle is bifurcated, please see Fig. 10(b). More-
over, let τ = 2.055, 2.1, 2.12, we obtain some other invariant cycles with larger amplitudes
as shown in Fig. 10(c), (e), and (f ). Continuing to increase the value of τ , such as τ = 2.07,
τ = 2.14, and τ = 2.19, we arrive at the periodic windows corresponding to Fig. 7(a) respec-
tively, where periodic-8, periodic-11, and period-6 orbits appear, please see Fig. 10(d) and
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Figure 10 Phase portraits for different values of parameter τ corresponding to Fig. 7 to indicate the dynamic
transition of map (10)

Fig. 11(a) and (c). According to the maximum Lyapunov exponents in Fig. 8, let τ = 2.151
and 2.21, we get two different chaotic attractors, please see Fig. 11(b) and (d). From Fig. 10
and Fig. 11, as τ increases, map (10) demonstrates a dynamic transition from the focus to
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Figure 11 Continuation of Fig. 10

invariant cycles, experiencing periodic window intermediately, and finally to chaotic at-
tractors.

In the following, we illustrate the formation of spatial patterns on n × n = 200 × 200 lat-
tices with space step δ = 10. The initial state is a random perturbation of the homogeneous
stationary state (P2, W2). All the figures shown about the spatial patterns are taken as the
spatial distribution of the CMLs model at t = 150,000 – 250,000.

In Fig. 12(a), we plot the Zm versus τ graph and get the critical value for Turing instabil-
ity, namely τ ′ = 1.95912137. In Fig. 12(b), we draw the Neimark–Sacker bifurcation curve
and Turing bifurcation curve respectively. Then we obtain two pattern formation regions:
pure-Turing instability region and Neimark–Sacker–Turing instability region. The right
two regions are both none pattern formation regions, one is a homogeneous stationary
state region, the other is a pure-Neimark–Sacker bifurcation region.

Set dP = 0.02, dW = 1.0, we demonstrate the spatial patterns self-organized under pure-
Turing and Neimark–Sacker–Turing bifurcation and chaos.

When τ = 1.95, corresponding to Fig. 10(a), then τ < τ∗ and τ < τ ′. At this moment, nei-
ther Neimark–Saker bifurcation nor Turing bifurcation will occur. From Fig. 13(a), we see
a uniform distribution at the homogeneous level of the wrack biomass. At τ = 1.959125,
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Figure 12 (a) Zm – τ graph showing the Turing bifurcation; (b) τ – dW graph showing the regions for spatial
patterns formation

then τ ′ < τ < τ∗, the CMLs model undergoes pure-Turing instability. From Fig. 13(b), we
can see spot patterns. Let τ = 1.9592, then τ > τ ′ and τ > τ∗, the CMLs model under-
goes Neimark–Sacker–Turing instability. From Fig. 13(c), we can see that the spot pat-
tern is deformed. The radius of the spot increases. Continue changing the value of τ , we
can see other types of patterns, such as circles and spirals, as shown in Fig. 13(d)–(f ) and
Fig. 14(a)–(b). Finally, when τ arrives at around 2.151, the patterns begin to be fragmented.
The mosaic type patterns are presented. As τ increases, the patterns finally present com-
plete disorder and chaos, please see Fig. 14(c)–(e). In the transition of spatial patterns, we
find that the spot patterns break into stripe, then into spiral, and finally into mosaic type.
The irregularity increases. Notice that at the periodic window the spatial patterns are dif-
ferent with τ = 2.14 (spiral) and τ = 2.19 (mosaic). For the two different chaotic attractors,
the spatial patterns are both of mosaic type, but with larger value of τ , the spatial patterns
are more fragmented. Moreover, during the simulation, we found that the patterns also
have a period. The period may have something to do with the period of the invariant cycle
bifurcated from the fixed point due to the Neimark–Sacker bifurcation.

5 Conclusions and discussions
In this article, we investigate the homogeneous and heterogeneous dynamics of a tus-
sock sedge model with discrete time and space variables. Firstly, we develop our system
by means of the coupled map lattice method. Secondly, by a series of theoretical analyses,
we respectively give some precise conditions for the parameters to support the emergence
of stable homogeneous stationary state, flip bifurcation, Neimark–Sacker bifurcation, and
Turing instability. At last, we show some numerical examples to illustrate the theoretical
results and present the abundant spatial patterns.

It is important to note that the dynamics of the CMLs model are more abundant. For
the homogeneous behavior, the CMLs tussock sedge model can experience flip bifurcation
and chaos, which cannot happen in the corresponding continuous system. Therefore, the
homogeneous dynamics of the discrete form of the tussock sedge model are more abun-
dant, especially for the chaotic behavior. It is worth noting that there are other bifurcation
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Figure 13 Spatial patterns ofW self-organized under pure-Turing and Neimark–Sacker–Turing instability on
200× 200 lattices

types for the fixed point, such as saddle-node bifurcation. This is our next research work.
For the heterogeneous behavior, the Turing patterns can be generated by four mecha-
nisms: pure Turing instability, flip-Turing instability, Neimark–Sacker–Turing instability,
and chaos. In general, the patterns induced by flip-Turing instability present fragment
doubling in space. When the fixed point is a focus, the patterns induced by pure-Turing
instability can be spot type. Furthermore, the spot patterns show periodic deformation
about time. If the CMLs model experiences Neimark–Sacker–Turing instability, the in-
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Figure 14 Continuation of Fig. 13

duced patterns have the characteristic of a spiral. In the transition of the spatial patterns,
we observe that the change of τ value influences the sizes of spots in the patterns, please
see Fig. 13(b)–(c). The patterns induced by chaos present disorder behavior both in time
and space. We choose two different values of τ to see whether the patterns are the same. In
fact, both patterns present irregular patterns. For larger τ , the patterns are more complex
and fragmental.
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The richness of the homogeneous dynamics of the discrete system, for example, the mul-
tiple period orbits, invariant cycles, and chaotic attractors, generated by flip bifurcation
and Neimark–Sacker bifurcation, enhances the complexity and diversity of the patterns
generated under the combination mechanisms. The various patterns imply that the dis-
crete system can present more abundant spatiotemporal self-organization structures.
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