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Abstract
In this manuscript, the existence, uniqueness, and stability of solutions to the
multiterm boundary value problem of Caputo fractional differential equations of
variable order are established. All results in this study are established with the help of
the generalized intervals and piece-wise constant functions, we convert the Caputo
fractional variable order to an equivalent standard Caputo of the fractional constant
order. Further, two fixed point theorems due to Schauder and Banach are used, the
Ulam–Hyers stability of the given Caputo variable order is examined, and finally, we
construct an example to illustrate the validity of the observed results. In literature, the
existence of solutions to the variable-order problems is rarely discussed. Therefore,
investigating this interesting special research topic makes all our results novel and
worthy.
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1 Introduction
The main idea of fractional calculus is to constitute the natural numbers in the order of
derivation operators with rational ones. Although this idea is preliminary and simple, it
involves remarkable effects and outcomes which describe some physical, dynamics, mod-
eling, control theory, bioengineering, and biomedical applications phenomena. For this
reason, recently, a significant number of papers have appeared on this topic (see for ex-
ample [8, 9] and the references therein); on the contrary, few papers deal with the existence
of solutions to problems via variable order, see, e.g., [4, 15, 16, 18, 19].

In general, it is usually difficult to solve boundary value problems of fractional variable
order (FBVPs) and obtain their analytical solution. Therefore, some methods are intro-
duced for the approximation of solutions to different FBVPs of variable order. In relation to
the study of the existence theory to FBVPs of variable order, we point out some of them. In
[20], Zhang studied solutions of a two-point boundary value problem of fractional variable
order involving singular fractional differential equations (FDEs). After some years, Zhang
and Hu [22] established the existence results for approximate solutions of variable order
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fractional initial value problems on the half line. Recently, Bouazza et al. [3] considered a
multiterm FBVP variable order and derived their results by terms of fixed point methods.
In 2021, Hristova et al. [5] turned to investigation of the Hadamard FBVP of variable or-
der by means of Kuratowski MNC method. For more details on other instances, refer to
[10, 14] and the references therein.

In [1] Bai et al. investigate the existence for nonlinear fractional differential equations of
constant order

⎧
⎨

⎩

cDu
0+ x(t) = f (t, x(t), Iu

0+ x(t)), t ∈ [a, b], u ∈ ]0, 1],

x(a) = xa,

where cDu
0+ and Iu

0+ stand for the Caputo–Hadamard derivative and Hadamard integral
operators of order u, respectively, f is a given function, xa ∈R, and 0 < a < b < ∞.

Some existence and Ulam stability properties for FDEs have been studied by many au-
thors (see [2, 13] and the references therein).

Inspired by [1] and [4, 15, 16, 18, 19], we deal with the boundary value problem (BVP)

⎧
⎨

⎩

cDu(t)
0+ x(t) + f1(t, x(t), Iu(t)

0+ x(t)) = 0, t ∈ J := [0, T],

x(0) = 0, x(T) = 0,
(1)

where 1 < u(t) ≤ 2, f1 : J × R × R → R is a continuous function and cDu(t)
0+ , Iu(t)

0+ are the
Caputo fractional derivative and integral Riemann–Liouville of variable order u(t).

In this paper, we look for a solution of (1). Further, we study the stability of the obtained
solution of (1) in the sense of Ulam–Hyers (UH)

2 Preliminaries
This section introduces some important fundamental definitions that will be needed for
obtaining our results in the next sections.

The symbol C(J ,R) represents the Banach space of continuous functions κ : J →R with
the norm

‖κ‖ = Sup
{∣
∣κ(t)

∣
∣ : t ∈ J

}
.

For –∞ < a1 < a2 < +∞, we consider the mappings u(t) : [a1, a2] → (0, +∞) and v(t) :
[a1, a2] → (n–1, n). Then, the left Riemann–Liouville fractional integral (RLFI) of variable
order u(t) for function f2(t) [11, 12, 17] is

Iu(t)
a+

1
f2(t) =

∫ t

a1

(t – s)u(t)–1

�(u(t))
f2(s) ds, t > a1, (2)

and the left Caputo fractional derivative (CFD) of variable order v(t) for function f2(t)
[11, 12, 17] is

cDv(t)
a+

1
f2(t) =

∫ t

a1

(t – s)n–v(t)–1

�(n – v(t))
f (n)
2 (s) ds, t > a1. (3)
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As anticipated, in case u(t) and v(t) are constant, CFD and RLFI coincide with the stan-
dard Caputo fractional derivative and Riemann–Liouville fractional integral, respectively,
see, e.g., [7, 11, 12].

Recall the following pivotal observation.

Lemma 2.1 ([7]) Let α1,α2 > 0, a1 > 0, f2 ∈ L(a1, a2), cDα1
a+

1
f2 ∈ L(a1, a2). Then the differen-

tial equation

cDα1
a+

1
f2 = 0

has the unique solution

f2(t) = ω0 + ω1(t – a1) + ω2(t – a1)2 + · · · + ωn–1(t – a1)n–1

and

Iα1
a+

1

cDα1
a+

1
f2(t) = f2(t) + ω0 + ω1(t – a1) + ω2(t – a1)2 + · · · + ωn–1(t – a1)n–1,

with n – 1 < α1 ≤ n, ω� ∈ R, � = 0, 1, . . . , n – 1.
Furthermore,

cDα1
a+

1
Iα1

a+
1

f2(t) = f2(t)

and

Iα1
a+

1
Iα2

a+
1

f2(t) = Iα2
a+

1
Iα1

a+
1

f2(t) = Iα1+α2
a+

1
f2(t).

Remark ([20, 22, 23]) Note that the semigroup property is not fulfilled for general func-
tions u(t), v(t), i.e.,

Iu(t)
a+

1
Iv(t)

a+
1

f2(t) �= Iu(t)+v(t)
a+

1
f2(t).

Example Let

u(t) = t, t ∈ [0, 4], v(t) =

⎧
⎨

⎩

2, t ∈ [0, 1]

3, t ∈ ]1, 4],
f2(t) = 2, t ∈ [0, 4],

Iu(t)
0+ Iv(t)

0+ f2(t) =
∫ t

0

(t – s)u(t)–1

�(u(t))

∫ s

0

(s – τ )v(s)–1

�(v(s))
f2(τ ) dτ ds

=
∫ t

0

(t – s)t–1

�(t)

[∫ 1

0

(s – τ )
�(2)

2 dτ +
∫ s

1

(s – τ )2

�(3)
2 dτ

]

ds

=
∫ t

0

(t – s)t–1

�(t)

[

2s – 1 +
(s – 1)3

3

]

ds

and

Iu(t)+v(t)
0+ f2(t) =

∫ t

0

(t – s)u(t)+v(t)–1

�(u(t) + v(t))
f2(s) ds.
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So, we get

Iu(t)
0+ Iv(t)

0+ f2(t)|t=3 =
∫ 3

0

(3 – s)2

�(3)

[

2s – 1 +
(s – 1)3

3

]

ds

=
21
10

,

Iu(t)+v(t)
0+ f2(t)|t=3 =

∫ 3

0

(3 – s)u(t)+v(t)–1

�(u(t) + v(t))
f2(s) ds

=
∫ 1

0

(3 – s)4

�(5)
2 ds +

∫ 3

1

(3 – s)5

�(6)
2 ds

=
1

12

∫ 1

0

(
s4 – 12s3 + 54s2 – 108s + 81

)
ds

+
1

60

∫ 3

1

(
–s5 + 15s4 – 90s3 + 270s2 – 405s + 243

)
ds

=
665
180

.

Therefore, we obtain

Iu(t)
0+ Iv(t)

0+ f2(t)|t=3 �= Iu(t)+v(t)
0+ f2(t)|t=3.

Lemma 2.2 ([25]) Let u : J → (1, 2] be a continuous function, then for

f2 ∈ Cδ(J ,R) =
{

f2(t) ∈ C(J ,R), tδf2(t) ∈ C(J ,R), 0 ≤ δ ≤ 1
}

,

the variable-order fractional integral Iu(t)
0+ f2(t) exists for any points on J .

Lemma 2.3 ([25]) Let u : J → (1, 2] be a continuous function, then

Iu(t)
0+ f2(t) ∈ C(J ,R) for f2 ∈ C(J ,R).

Definition 2.1 ([6, 21, 24]) Let I ⊂ R, I is called a generalized interval if it is either an
interval or {a1}, or { }.

A finite set P is called a partition of I if each x in I lies in exactly one of the generalized
intervals E in P .

A function g : I → R is called piecewise constant with respect to partition P of I if, for
any E ∈P , g is constant on E.

Theorem 2.1 (Schauder fixed point theorem, [7]) Let E be a Banach space, Q be a convex
subset of E, and F : Q −→ Q be a compact and continuous map. Then F has at least one
fixed point in Q.

Definition 2.2 ([2]) The equation of (1) is (UH) stable if there exists cf1 > 0 such that, for
any ε > 0 and for every solution z ∈ C(J ,R) of the following inequality

∣
∣cDu(t)

0+ z(t) + f1
(
t, z(t), Iu(t)

0+ z(t)
)∣
∣ ≤ ε, t ∈ J , (4)
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there exists a solution x ∈ C(J ,R) of Eq. (1) with

∣
∣z(t) – x(t)

∣
∣ ≤ cf1ε, t ∈ J .

3 Existence of solutions
Let us introduce the following assumption.

(H1) Let n ∈N be an integer,
P = {J1 := [0, T1], J2 := (T1, T2], J3 := (T2, T3], . . . , Jn := (Tn–1, T]} be a partition of the
interval J , and let u(t) : J → (1, 2] be a piecewise constant function with respect to
P , i.e.,

u(t) =
n∑

�=1

u�I�(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1, if t ∈ J1,

u2, if t ∈ J2,
...

un, if t ∈ Jn,

where 1 < u� ≤ 2 are constants, and I� is the indicator of the interval
J� := (T�–1, T�], � = 1, 2, . . . , n (with T0 = 0, Tn = T ) such that

I�(t) =

⎧
⎨

⎩

1, for t ∈ J�,

0, for elsewhere.

For each � ∈ {1, 2, . . . , n}, the symbol E� = C(J�,R) indicates the Banach space of contin-
uous functions x : J� →R equipped with the norm

‖x‖E�
= sup

t∈J�

∣
∣x(t)

∣
∣.

Then, for any t ∈ J�, � = 1, 2, . . . , n, the left Caputo fractional derivative of variable order
u(t) for function x(t) ∈ C(J ,R), defined by (3), could be presented as a sum of left Caputo
fractional derivatives of constant orders u�,� = 1, 2, . . . , n,

cDu(t)
0+ x(t) =

∫ T1

0

(t – s)1–u1

�(2 – u1)
x(2)(s) ds + · · · +

∫ t

T�–1

(t – s)1–u�

�(2 – u�)
x(2)(s) ds. (5)

Thus, according to (5), BVP (1) can be written for any t ∈ J�, � = 1, 2, . . . , n, in the form

∫ T1

0

(t – s)1–u1

�(2 – u1)
x(2)(s) ds + · · · +

∫ t

T�–1

(t – s)1–u�

�(2 – u�)
x(2)(s) ds

+ f1
(
t, x(t), Iu�

0+ x(t)
)

= 0, t ∈ J�. (6)

In what follows we introduce the solution to BVP (1).

Definition 3.1 BVP (1) has a solution if there are functions x�, � = 1, 2, . . . , n, so that x� ∈
C([0, T�],R) fulfilling Eq. (6) and x�(0) = 0 = x�(T�).
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Let the function x ∈ C(J ,R) be such that x(t) ≡ 0 on t ∈ [0, T�–1] and it solves integral
equation (6). Then (6) is reduced to

cDu�

T+
�–1

x(t) + f1
(
t, x(t), Iu�

T+
�–1

x(t)
)

= 0, t ∈ J�.

We shall deal with the following BVP:

⎧
⎨

⎩

cDu�

T+
�–1

x(t) + f1(t, x(t), Iu�

T+
�–1

x(t)) = 0, t ∈ J�

x(T�–1) = 0, x(T�) = 0.
(7)

For our purpose, the upcoming lemma will be a cornerstone of the solution of BVP (7).

Lemma 3.1 Let � ∈ {1, 2, . . . , n} be a natural number, f1 ∈ C(J� ×R×R,R), and there exists
a number δ ∈ (0, 1) such that tδ f1 ∈ C(J� ×R×R,R).

Then the function x ∈ E� is a solution of BVP (7) if and only if x solves the integral equation

x(t) =
∫ T�

T�–1

G�(t, s)f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds, (8)

where G�(t, s) is the Green’s function defined by

G�(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
�(u�) [(T� – T�–1)–1(t – T�–1)(T� – s)u�–1 – (t – s)u�–1],

T�–1 ≤ s ≤ t ≤ T�,
1

�(u�) (T� – T�–1)–1(t – T�–1)(T� – s)u�–1,

T�–1 ≤ t ≤ s ≤ T�,

where � = 1, 2, . . . , n.

Proof We presume that x ∈ E� is a solution of BVP (7). Employing the operator Iu�

T+
�–1

to
both sides of (7) and regarding Lemma 2.1, we find

x(t) = ω1 + ω2(t – T�–1) – Iu�

T+
�–1

f1
(
t, x(t), Iu�

T+
�–1

x(t)
)
, t ∈ J�.

By x(T�–1) = 0, we get ω1 = 0.
Let x(t) satisfy x(T�) = 0. So, we observe that

ω2 = (T� – T�–1)–1Iu�

T+
�–1

f1
(
T�, x(T�), Iu�

T+
�–1

x(T�)
)
.

Then we find

x(t) = (T� – T�–1)–1(t – T�–1)Iu�

T+
�–1

f1
(
T�, x(T�), Iu�

T+
�–1

x(T�)
)

– Iu�

T+
�–1

f1
(
t, x(t), Iu�

T+
�–1

x(t)
)
, t ∈ J�

by the continuity of Green’s function which implies that

x(t) =
∫ T�

T�–1

G�(t, s)f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds.
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Conversely, let x ∈ E� be a solution of integral equation (8). Regarding the continuity of
function tδf1 and Lemma 2.1, we deduce that x is the solution of BVP (7). �

The following proposition will be needed.

Proposition 3.1 Assume that tδf1 : J × R × R → R, (δ ∈ (0, 1)) is a continuous function,
u(t) : J → (1, 2] satisfies (H1), then Green’s functions of boundary value problem (6) satisfy
the following properties:

(1) G�(t, s) ≥ 0 for all T�–1 ≤ t, s ≤ T�,
(2) maxt∈J� G�(t, s) = G�(s, s), s ∈ J�,
(3) G�(s, s) has one unique maximum given by

max
s∈J�

G�(s, s) =
1

�(u� + 1)

[

(T� – T�–1)
(

1 –
1
u�

)]u�–1

,

where � = 1, 2, . . . , n.

Proof Let ϕ(t, s) = (T� – T�–1)–1(t – T�–1)(T� – s)u�–1 – (t – s)u�–1.
We see that

ϕt(t, s) = (T� – T�–1)–1(T� – s)u�–1 – (u� – 1)(t – s)u�–2

≤ (T� – T�–1)–1(T� – T�–1)u�–1 – (T� – T�–1)u�–2

= 0,

which means that ϕ(t, s) is nonincreasing with respect to t, so ϕ(t, s) ≥ ϕ(T�, s) = 0 for
T�–1 ≤ s ≤ t ≤ T�.

Thus, from this together with the expression of G�(t, s), we have G�(t, s) ≥ 0 for any
T�–1 ≤ t, s ≤ T�, � = ˙1, . . . , n.

Since ϕ(t, s) is nonincreasing with respect to t, then ϕ(t, s) ≤ ϕ(s, s) for T�–1 ≤ s ≤ t ≤ T�.
On the other hand, for T�–1 ≤ t ≤ s ≤ T�, we get

(T� – T�–1)–1(t – T�–1)(T� – s)u�–1 ≤ (T� – T�–1)–1(s – T�–1)(T� – s)u�–1.

These assure that maxt∈[T�–1,T�] G�(t, s) = G�(s, s), s ∈ [T�–1, T�], � = ˙1, . . . , n.
Further, we verify (3) of Proposition (3.1). Clearly, the maximum points of G�(s, s) are

not T�–1 and T�, � = ˙1, . . . , n. For s ∈ [T�–1, T�], � = ˙1, . . . , n, we have

dG�(s, s)
ds

=
1

�(u�)
(T� – T�–1)–1[(T� – s)u�–1 – (s – T�–1)(u� – 1)(T� – s)u�–2]

=
1

�(u�)
(T� – T�–1)–1(T� – s)u�–2[(T� – s) – (s – T�–1)(u� – 1)

]

=
1

�(u�)
(T� – T�–1)–1(T� – s)u�–2[T� + (u� – 1)T�–1 – u�s

]
,

which implies that the maximum points of G�(s, s) are s = T�+(u�–1)T�–1
u�

, � = ˙1, . . . , n.



Bouazza et al. Advances in Difference Equations        (2021) 2021:400 Page 8 of 17

Hence, for � = ˙1, . . . , n,

max
s∈[T�–1,T�]

G�(s, s) = G�

(
T� + (u� – 1)T�–1

u�

,
T� + (u� – 1)T�–1

u�

)

=
1

�(u� + 1)

[

(T� – T�–1)
(

1 –
1
u�

)]u�–1

. �

We will prove the existence results for BVP (7). The first result is based on Theorem 2.1.

Theorem 3.1 Let the conditions of Lemma 3.1 be satisfied and there exist constants K , L >
0 such that tδ|f1(t, y1, z1) – f1(t, y2, z2)| ≤ K |y1 – y2| + L|z1 – z2| for any yi, zi ∈ R, i = 1, 2,
t ∈ J�, and the inequality

(T1–δ
� – T1–δ

�–1 )((T� – T�–1)(1 – 1
u�

))u�–1

(1 – δ)�(u� + 1)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

< 1 (9)

holds.
Then BVP (7) possesses at least one solution in E�.

Proof We construct the operator

W : E� → E�

as follows:

Wx(t) =
∫ T�

T�–1

G�(t, s)f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds, t ∈ J�. (10)

It follows from the properties of fractional integrals and from the continuity of function
tδf1 that the operator W : E� → E� defined in (10) is well defined.

Let

R� ≥
f 


�(u�+1) (T� – T�–1)u� (1 – 1
u�

)u�–1

1 –
(T1–δ

�
–T1–δ

�–1 )((T�–T�–1)(1– 1
u�

))u�–1

(1–δ)�(u�+1) (K + L (T�–T�–1)u�

�(u�+1) )
,

with

f 
 = sup
t∈J�

∣
∣f1(t, 0, 0)

∣
∣.

We consider the set

BR�
=

{
x ∈ E�,‖x‖E�

≤ R�

}
.

Clearly BR�
is nonempty, closed, convex, and bounded.

Now, we demonstrate that W satisfies the assumption of Theorem 2.1. We shall prove
it in three phases.
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Step 1: Claim: W (BR�
) ⊆ (BR�

).
For x ∈ BR�

, by Proposition 3.1, we have

∣
∣Wx(t)

∣
∣ =

∣
∣
∣
∣

∫ T�

T�–1

G�(t, s)f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds
∣
∣
∣
∣

≤
∫ T�

T�–1

G�(t, s)
∣
∣f1

(
s, x(s), Iu�

T+
�–1

x(s)
)∣
∣ds

≤ 1
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1

×
∫ T�

T�–1

∣
∣f1

(
s, x(s), Iu�

T+
�–1

x(s)
)

– f1(s, 0, 0)
∣
∣ds

+
1

�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1 ∫ T�

T�–1

∣
∣f1(s, 0, 0)

∣
∣ds

≤ 1
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1 ∫ T�

T�–1

s–δ
(
K

∣
∣x(s)

∣
∣ + L

∣
∣Iu�

T+
�–1

x(s)
∣
∣
)

ds

+
f 


�(u� + 1)
(T� – T�–1)u�

(

1 –
1
u�

)u�–1

≤ (T1–δ
� – T1–δ

�–1 )((T� – T�–1)(1 – 1
u�

))u�–1

(1 – δ)�(u� + 1)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

R�

+
f 


�(u� + 1)
(T� – T�–1)u�

(

1 –
1
u�

)u�–1

≤ R�,

which means that W (BR�
) ⊆ BR�

.
Step 2: Claim: W is continuous.
We presume that the sequence (xn) converges to x in E� and t ∈ J�. Then

∣
∣(Wxn)(t) – (Wx)(t)

∣
∣

≤
∫ T�

T�–1

G�(t, s)
∣
∣f1

(
s, xn(s), Iu�

T+
�–1

xn(s)
)

– f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∣
∣ds

≤ 1
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1

×
∫ T�

T�–1

s–δ
(
K

∣
∣xn(s) – x(s)

∣
∣ + LIu�

T+
�–1

|xn(s) – x(s)
)|) ds

≤ K
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1

‖xn – x‖E�

∫ T�

T�–1

s–δ ds

+
L

�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1∥
∥Iu�

T+
�–1

(xn – x)
∥
∥

E�

∫ T�

T�–1

s–δ ds

≤ K(T�
1–δ – T�–1

1–δ)((T� – T�–1)(1 – 1
u�

))u�–1

(1 – δ)�(u� + 1)
‖xn – x‖E�
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+
L(T� – T�–1)2u�–1(1 – 1

u�
)u�–1(T�

1–δ – T�–1
1–δ)

(1 – δ)(�(u�+1))2 ‖xn – x‖E�

≤ (T�
1–δ – T�–1

1–δ)((T� – T�–1)(1 – 1
u�

))u�–1

(1 – δ)�(u� + 1)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

‖xn – x‖E�
,

i.e., we obtain

∥
∥(Wxn) – (Wx)

∥
∥

E�
→ 0 as n → ∞.

Ergo, the operator W is continuous on E�.
Step 3: W is compact.
Now, we will show that W (BR�

) is relatively compact, meaning that W is compact.
Clearly, W (BR�

) is uniformly bounded because, by Step 1, we have W (BR�
) = {W (x) : x ∈

BR�
} ⊂ W (BR�

), thus for each x ∈ BR�
we have ‖W (x)‖E�

≤ R�, which means that W (BR�
)

is bounded. It remains to indicate that W (BR�
) is equicontinuous.

For t1, t2 ∈ J�, t1 < t2, and x ∈ BR�
, we have

∣
∣(Wx)(t2) – (Wx)(t1)

∣
∣

=
∣
∣
∣
∣

∫ T�

T�–1

G�(t2, s)f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds –
∫ T�

T�–1

G�(t1, s)f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds
∣
∣
∣
∣

≤
∫ T�

T�–1

∣
∣G�(t2, s) – G�(t1, s)

∣
∣
∣
∣f1

(
s, x(s), Iu�

T+
�–1

x(s)
)∣
∣ds

≤
∫ T�

T�–1

∣
∣G�(t2, s) – G�(t1, s)

∣
∣
∣
∣f1

(
s, x(s), Iu�

T+
�–1

x(s)
)

– f1(s, 0, 0)
∣
∣ds

+
∫ T�

T�–1

∣
∣G�(t2, s) – G�(t1, s)

∣
∣
∣
∣f1(s, 0, 0)

∣
∣ds

≤
∫ T�

T�–1

∣
∣G�(t2, s) – G�(t1, s)

∣
∣
[
s–δ

(
K

∣
∣x(s)

∣
∣ + L

∣
∣Iu�

T+
�–1

x(s)
∣
∣
)]

ds

+ f 


∫ T�

T�–1

∣
∣G�(t2, s) – G�(t1, s)

∣
∣ds

≤ (
K‖x‖E�

+ L
∥
∥Iu�

T+
�–1

x
∥
∥

E�

)
∫ T�

T�–1

s–δ
∣
∣G�(t2, s) – G�(t1, s)

∣
∣ds

+ f 


∫ T�

T�–1

∣
∣G�(t2, s) – G�(t1, s)

∣
∣ds

≤ T–δ
�–1

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

‖x‖E�

∫ T�

T�–1

∣
∣G�(t2, s) – G�(t1, s)

∣
∣ds

+ f 


∫ T�

T�–1

∣
∣G�(t2, s) – G�(t1, s)

∣
∣ds,

by the continuity of Green’s function G�. Hence ‖(Wx)(t2) – (Wx)(t1)‖E�
→ 0 as |t2 –

t1| → 0. It implies that W (BR�
) is equicontinuous.

Therefore, all conditions of Theorem 2.1 are fulfilled, and thus there exists x̃� ∈ BR�
such

that W x̃� = x̃�, which is a solution of BVP (7). Since BR�
⊂ E�, the claim of Theorem 3.1 is

proved. �
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The second result is based on the Banach contraction principle.

Theorem 3.2 Let the conditions of Theorem 3.1 be satisfied. Then BVP (7) has a unique
solution in E�.

Proof We shall use the Banach contraction principle to prove that W defined in (10) has
a unique fixed point.

For x(t), y(t) ∈ E�, by Proposition(3.1), we obtain that

∣
∣(Wx)(t) – (Wy)(t)

∣
∣

=
∣
∣
∣
∣

∫ T�

T�–1

G�(t, s)f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

–
∫ T�

T�–1

G�(t, s)f1
(
s, y(s), Iu�

T+
�–1

y(s)
)

ds
∣
∣
∣
∣

≤
∫ T�

T�–1

G�(t, s)
∣
∣f1

(
s, x(s), Iu�

T+
�–1

x(s)
)

– f1
(
s, y(s), Iu�

T+
�–1

y(s)
)∣
∣ds

≤ 1
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1

×
∫ T�

T�–1

s–δ
(
K

∣
∣x(s) – y(s)

∣
∣ + LIu�

T+
�–1

∣
∣x(s) – y(s)

∣
∣
)

ds

≤ K
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1

‖x – y‖E�

∫ T�

T�–1

s–δ ds

+
L(T� – T�–1)2u�–1(1 – 1

u�
)u�–1

(�(u� + 1))2 ‖x – y‖E�

∫ T�

T�–1

s–δ ds

≤ 1
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1(

K +
L(T� – T�–1)u�

�(u� + 1)

)

‖x – y‖E�

∫ T�

T�–1

s–δ ds

≤ (T1–δ
� – T1–δ

�–1 )((T� – T�–1)(1 – 1
u�

))u�–1

(1 – δ)�(u� + 1)

(

K +
L(T� – T�–1)u�

�(u� + 1)

)

‖x – y‖E�
.

Consequently, by (9), the operator W is a contraction. Hence, by Banach’s contraction
principle, W has a unique fixed point x̃� ∈ E�, which is the unique solution of problem (7),
the claim of Theorem 3.1 is proved. �

Now, we will prove the existence result for BVP (1).
We introduce the following assumption:
(H2) Let f1 ∈ C(J ×R×R,R), and there exists a number δ ∈ (0, 1) such that

tδf1 ∈ C(J ×R×R,R) and there exist constants K , L > 0 such that
tδ|f1(t, y1, z1) – f1(t, y2, z2)| ≤ K |y1 – y2| + L|z1 – z2| for any y1, y2, z1, z2 ∈ R and
t ∈ J .

Theorem 3.3 Let conditions (H1), (H2) and inequality (9) be satisfied for all � ∈ {1, 2, . . . ,
n}.

Then problem (1) possesses at least one solution in C(J ,R).

Proof For any � ∈ {1, 2, . . . , n}, according to Theorem 3.1, BVP (7) possesses at least one
solution x̃� ∈ E�.
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For any � ∈ {1, 2, . . . , n}, we define the function

x� =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

x̃�, t ∈ J�.

Thus, the function x� ∈ C([0, T�],R) solves integral equation (6) for t ∈ J� with x�(0) = 0,
x�(T�) = x̃�(T�) = 0.

Then the function

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t), t ∈ J1,

x2(t) =

⎧
⎨

⎩

0, t ∈ J1,

x̃2, t ∈ J2,
...

xn(t) =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

x̃�, t ∈ J�

(11)

is a solution of BVP (1) in C(J ,R). �

4 Ulam–Hyers stability
Theorem 4.1 Let conditions (H1), (H2) and inequality (9) be satisfied. Then BVP (1) is
(UH) stable.

Proof Let ε > 0 be an arbitrary number and the function z(t) from z ∈ C(J�,R) satisfy in-
equality (4).

For any � ∈ {1, 2, . . . , n}, we define the functions z1(t) ≡ z(t), t ∈ [0, T1], and for � =
2, 3, . . . , n:

z�(t) =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

z(t), t ∈ J�.

For any � ∈ {1, 2, . . . , n}, according to Eq. (5) for t ∈ J , we get

cDu(t)
T�–1+ z�(t) =

∫ t

T�–1

(t – s)1–u�

�(2 – u�)
z(2)(s) ds.

Taking the (CFI) Iu�

T+
�–1

of both sides of inequality (4), we obtain

∣
∣
∣
∣z�(t) +

∫ T�

T�–1

G�(t, s)f1
(
s, z�(s), Iu�

T+
�–1

z�(s)
)

ds
∣
∣
∣
∣

≤ ε

∫ t

T�–1

(t – s)u�–1

�(u�)
ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
.
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According to Theorem 3.3, BVP (1) has a solution x ∈ C(J ,R) defined by x(t) = x�(t) for
t ∈ J�, � = 1, 2, . . . , n, where

x� =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

x̃�, t ∈ J�,
(12)

and x̃� ∈ E� is a solution of (7). According to Lemma (3.1), the integral equation

x̃�(t) =
∫ T�

T�–1

G�(t, s)f1
(
s, x̃�(s), Iu�

T+
�–1

x̃�(s)
)

ds (13)

holds.
Let t ∈ J�, � = 1, 2, . . . , n. Then, by Eqs. (12) and (13), we get

∣
∣z(t) – x(t)

∣
∣ =

∣
∣z(t) – x�(t)

∣
∣ =

∣
∣z�(t) – x̃�(t)

∣
∣

=
∣
∣
∣
∣z�(t) –

∫ T�

T�–1

G�(t, s)f1
(
s, x̃�(s), Iu�

T+
�–1

x̃�(s)
)

ds
∣
∣
∣
∣

≤
∣
∣
∣
∣z�(t) –

∫ T�

T�–1

G�(t, s)f1
(
s, z�(s), Iu�

T+
�–1

z�(s)
)

ds
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T�

T�–1

G�(t, s)f1
(
s, z�(s), Iu�

T+
�–1

z�(s)
)

ds

–
∫ t

T�–1

G�(t, s)f1
(
s, x̃�(s), Iu�

T+
�–1

x̃�

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣z�(t) +

∫ T�

T�–1

G�(t, s)f1
(
s, z�(s), Iu�

T+
�–1

z�(s)
)

ds
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T�

T�–1

G�(t, s)f1
(
s, z�(s), Iu�

T+
�–1

z�(s)
)

ds

–
∫ t

T�–1

G�(t, s)f1
(
s, x̃�(s), Iu�

T+
�–1

x̃�

)
ds

∣
∣
∣
∣ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

1
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1

×
∫ T�

T�–1

∣
∣f1

(
s, z�(s), Iu�

T+
�–1

z�(s)
)

ds – f1
(
s, x̃�(s), Iu�

T+
�–1

x̃�

)∣
∣ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

1
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1

×
∫ T�

T�–1

s–δ
(
K

∣
∣z�(s) – x̃�(s)

∣
∣ + LIu�

T+
�–1

∣
∣z�(s) – x̃�(s)

∣
∣
)

ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

1
�(u� + 1)

(

(T� – T�–1)
(

1 –
1
u�

))u�–1

× (
K‖z� – x̃�‖E�

+ L
∥
∥Iu�

T+
�–1

(z� – x̃�)
∥
∥

E�

)
∫ T�

T�–1

s–δ ds

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

(T�
1–δ – T�–1

1–δ)((T� – T�–1)(1 – 1
u�

))u�–1

(1 – δ)�(u� + 1)
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×
(

K‖z� – x̃�‖E�
+ L

(T� – T�–1)u�

�(u� + 1)
‖z� – x̃�‖E�

)

≤ ε
(T� – T�–1)u�

�(u� + 1)
+

(T�
1–δ – T�–1

1–δ)((T� – T�–1)(1 – 1
u�

))u�–1

(1 – δ)�(u� + 1)

×
(

K + L
(T� – T�–1)u�

�(u� + 1)

)

‖z� – x̃�‖E�

≤ ε
(T� – T�–1)u�

�(u� + 1)
+ μ‖z – x‖,

where

μ = max
�=1,2,...,n

(T�
1–δ – T�–1

1–δ)((T� – T�–1)(1 – 1
u�

))u�–1

(1 – δ)�(u� + 1)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

.

Then

‖z – x‖(1 – μ) ≤ (T� – T�–1)u�

�(u� + 1)
ε.

We obtain, for each t ∈ J�,

∣
∣z(t) – x(t)

∣
∣ ≤ ‖z – x‖ ≤ (T� – T�–1)u�

(1 – μ)�(u� + 1)
ε := cf1ε.

Therefore, BVP (1) is (UH) stable. �

5 Example
Let us consider the following fractional boundary value problem:

⎧
⎪⎨

⎪⎩

cDu(t)
0+ x(t) + t– 1

2

4et (1+|x(t)|+|Iu(t)
0+ x(t)|) = 0, t ∈ J := [0, 2],

x(0) = 0, x(2) = 0.
(14)

Let

f1(t, y, z) =
t– 1

2

4et(1 + y + z)
, (t, y, z) ∈ [0, 2] × [0, +∞) × [0, +∞).

u(t) =

⎧
⎨

⎩

7
5 , t ∈ J1 := [0, 1],
3
2 , t ∈ J2 :=]1, 2].

(15)

Then we have

t
1
2
∣
∣f1(t, y1, z1) – f1(t, y2, z2)

∣
∣ =

∣
∣
∣
∣

1
4et

(
1

1 + y1 + z1
–

1
1 + y2 + z2

)∣
∣
∣
∣

≤ (|y1 – y2| + |z1 – z2|)
4et(1 + y1 + z1)(1 + y2 + z2)

≤ 1
4et

(|y1 – y2| + |z1 – z2|
)

≤ 1
4
|y1 – y2| +

1
4
|z1 – z2|.
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Hence condition (H2) holds with δ = 1
2 and K = L = 1

4 .
By (15), according to (7), we consider two auxiliary BVPs for Caputo fractional differen-

tial equations of constant order

⎧
⎪⎨

⎪⎩

cD
7
5
0+ x(t) + t– 1

2

4et (1+|x(t)|+|I
7
5

0+ x(t)|)
= 0, t ∈ J1,

x(0) = 0, x(1) = 0,
(16)

and
⎧
⎪⎨

⎪⎩

cD
3
2
1+ x(t) + t– 1

2

4et (1+|x(t)|+|I
3
2

1+ x(t)|)
= 0, t ∈ J2,

x(1) = 0, x(2) = 0.
(17)

Next, we prove that condition (9) is fulfilled for � = 1. Indeed,

(T1–δ
1 – T1–δ

0 )((T1 – T0)(1 – 1
u1

))u1–1

(1 – δ)�(u1 + 1)

(

K + L
(T1 – T0)u1

�(u1 + 1)

)

=
(1 – 5

7 )
2
5

1
2�( 12

5 )

(
1
4

+
1

4�( 12
5 )

)

� 0.4402 < 1.

Accordingly, condition (9) is achieved. By Theorem 3.1, problem (16) has a solution x̃1 ∈
E1.

We prove that condition (9) is fulfilled for � = 2. Indeed,

(T1–δ
2 – T1–δ

1 )((T2 – T1)(1 – 1
u2

))u2–1

(1 – δ)�(u2 + 1)

(

K + L
(T2 – T1)u2

�(u2 + 1)

)

=
(2 1

2 – 1)(1 – 2
3 ) 1

2

1
2�( 5

2 )

(
1
4

+
1

4�( 5
2 )

)

� 0.1576 < 1.

Thus, condition (9) is satisfied.
According to Theorem 3.1, BVP (17) possesses a solution x̃2 ∈ E2.
Then, by Theorem 3.3, BVP (14) has a solution

x(t) =

⎧
⎨

⎩

x̃1(t), t ∈ J1,

x2(t), t ∈ J2,

where

x2(t) =

⎧
⎨

⎩

0, t ∈ J1,

x̃2(t), t ∈ J2.

According to Theorem 4.1, BVP (14) is (UH) stable.

6 Conclusion
In this work we presented two results on the existence, uniqueness of solutions to the mul-
titerm BVP boundary value problem of Caputo fractional differential equations of variable
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order, which is a piecewise constant function based on the essential difference about the
variable order. The first one is based on Schauder’s fixed point theorem (Theorem 3.1)
and the second one on the Banach contraction principle (Theorem 3.2). By a numerical
example, we illustrated the theoretical findings. Finally, we study Ulam–Hyers stability
(Theorem 4.1) of solutions to our problem. Therefore, all results in this work show a great
potential to be applied in various applications of multidisciplinary sciences.

The variable order BVPs are important and interesting to all researchers. In other words,
in the near future we want to study these BVPs with different boundary problem (im-
plicit, resonance, thermostat model, etc.) value conditions involving integral conditions
or integro-derivative conditions.
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