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Abstract
In this paper, we prove that the self-improving property of the weighted Gehring
class Gp

λ with a weight λ holds in the non-homogeneous spaces. The results give
sharp bounds of exponents and will be used to obtain the self-improving property of
the Muckenhoupt class Aq. By using the rearrangement (nonincreasing
rearrangement) of the functions and applying the Jensen inequality, we show that
the results cover the cases of non-monotonic functions. For applications, we prove a
higher integrability theorem and report that the solutions of partial differential
equations can be solved in an extended space by using the self-improving property.
Our approach in this paper is different from the ones used before and is based on
proving some new inequalities of Hardy type designed for this purpose.
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1 Introduction
Let I0 be a fixed interval of R, and by |I| for any arbitrarily interval I ⊂ I0, we mean its
Lebesgue measure. We say that u is a weight if it is a locally integrable function on the
real line, positive almost everywhere (with respect to the Lebesgue measure). The weight
u belongs to the Muckenhoupt class As for 1 < s < ∞ if there exists a constant C >1 such
that

(
1
|I|

∫
I
u(t) dt

)(
1
|I|

∫
I
u– 1

s–1 (t) dt
)s–1

≤ C. (1)

The As-constant of u is

As(u) := sup
I

(
1
|I|

∫
I
u(t) dt

)(
1
|I|

∫
I
u– 1

s–1 (t) dt
)s–1

,

where the supremum is taken over all I ⊂ I0. For a given fixed constant C > 1, if the weight u
belongs to As(C), then As(u) ≤ C . The As class of weights was introduced by Muckenhoupt
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in [21] and was used to prove the boundedness of the Hardy–Littlewood maximal operator

Mf (x) := sup
x∈I

1
|I|

∫
I

∣∣f (y)
∣∣dy

in the class Ls
u(R+) with a weight u. In fact it was proved that if 1 < s < ∞, then Mf is

bounded in Ls
u(R+) if and only if u ∈ As. Hunt, Muckenhoupt, and Wheeden [12] also

gave a characterization for the weights in the Hilbert operator and proved that the precise
condition of the boundedness of Hilbert’s operator is the As-condition (1). Note that from
Hölder’s inequality As(u) ≥ 1 for all 1 < s < ∞ and the following inclusion is true:

if 1 < s < r < ∞, then As ⊂ Ar and Ar(u) ≤ As(u).

Muckenhoupt [21] and Coifman and Fefferman [20] proved that if u satisfies (1) then there
exist r < s and a positive constant C1 such that

(
1
|I|

∫
I
u(t) dt

)(
1
|I|

∫
I
u– 1

r–1 (t) dt
)r–1

≤ C1 for all I ⊂ I0, (2)

i.e., Muckenhoupt and Coifman and Fefferman’s result for self-improving property states
that: if u ∈ As(C) then there exist a constant ε > 0 and a positive constant C1 such that
u ∈ As–ε(C1), and then

As(C) ⊂ As–ε(C1). (3)

A weight u satisfies the A1-Muckenhoupt condition if there exists a constant C ≥1 such
that, for any arbitrary interval I ⊂ I0, one has

Mf (x) ≤ Cu(x) for all x ∈ I. (4)

In [21] it was proved that if (4) holds, then for every s ∈ [1,C/(C – 1)] (here C > 1), the
function u satisfies reverse Hölder’s inequality

1
|I|

∫
I
us(x) dx ≤ Cs

(
1
|I|

∫
I
u(x) dx

)s

, where Cs =
C

C – s(C – 1)
. (5)

The constant Cs in (5) was improved by Bojarski et al. in [3] and replaced with Cs =
C1–s/(C – s(C – 1)). Another important class of weights, the Gr-class for 1 < r < ∞, was
introduced by Gehring [10, 11] in connection with local integrability properties of the
gradient of quasiconformal mappings. A weight u satisfies the Gr condition (or is said to
belong to Gr(K)) if there exists K >1 such that

(
1
|I|

∫
I
ur(x) dx

)1/r

≤K
(

1
|I|

∫
I
u(x) dx

)
for all I ⊂ I0. (6)

The smallest constant K verifying (6) is called the Gr-norm of the weight u and is denoted
by Gr(u) and given by

Gr(u) = sup
I

( ( 1
|I|

∫
I ur(x) dx)1/r

1
|I|

∫
I u(x) dx

)r/(r–1)

,
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where the supremum is taken over all I ⊂ I0. For a given fixed constant K > 1, if the weight
u belongs to Gr(K), then Gr(u) ≤ K. Note that from Hölder’s inequality Gr(v) ≥ 1 for all
1 < r < ∞ and the following inclusion is true:

if 1 < s < r < ∞, then Gr ⊂ Gs and 1 ≤ Gs(v) ≤ Gr(v).

Gehring proved that if (6) holds, then there exist s > r and a positive constant K1 such that

1
|I|

∫
I
us(x) dx ≤K1

(
1
|I|

∫
I
u(x) dx

)s

. (7)

In other words, Gehring’s result for the self-improving property states that: if u ∈ Gr(K)
then there exist ε > 0 and a positive constant K1 such that u ∈ Gr+ε(K1), and then

Gr(K) ⊂ Gr+ε(K1). (8)

Researchers (for (3) see [1, 7–9, 15–17, 22, 24], for (8) see [2, 6, 15, 23, 27, 29–32]) were
interested in:

(h1) Finding the exact value of the limit exponent (the value of ε) for which the self-
improving properties hold;

(h2) Finding the best constants C1 and K1.
Korenovskii [15] found the sharp lower bound of the exponent (self-improving property)

for which (3) holds and proved that the optimal integrability exponent r∗ is the positive
root of the equation

1
x

(
r – 1
r – x

)r–1

= C, (9)

and the exact value of ε is given by r – r∗, and the author also found an explicit value of
the constant of the new class. D’Apuzzo and Sbordone [6] found the optimal integrability
exponent for monotonic Gr weights as a solution of an algebraic equation

(
x

x – 1

)–1( x
x – r

) 1
r

= K. (10)

The relations between Gehring and Muckenhoupt classes (inclusions properties) were
given by Coifman and Fefferman [4]. They proved that any Gehring class is contained
in some Muckenhoupt class, and vice versa. In other words, the inclusions

Gr(K) ⊂ As(K1) (11)

and

As1 (K1) ⊂ Gr1 (K) (12)

hold. The sharp bound of exponents for which inclusion (12) is valid was obtained by
Bojarski et al. [3] when s1 = 1. In fact their result (inclusion property) proves that if u ∈ A1



Saker et al. Advances in Difference Equations        (2021) 2021:397 Page 4 of 20

with A1(u) = C , then u ∈ Gs for every 1 ≤ s < C/(C – 1) with a constant

Gs(u) ≤
( C1–s

C – s(C – 1)

)1/(s–1)

. (13)

The constant on the right-hand side as well as the upper bounds of s cannot be improved.
In fact the weight u(t) = t

1
C–1 /C is an extremal, which gives equality in (13) and lies in Ls if

and only if s < C/(C – 1). The sharp bounds of exponents for which inclusion (11) is valid
were obtained in [18], and the sharp bounds of exponents for which inclusion (12) is valid
were obtained in [19]. In [26, 28] the authors employed Hardy and Hardy–Littlewood type
inequalities and proved that the constant of the new class satisfies

[
Gs(u)

]1/s′ ≤K1/r′
(

r
sK(s)

)1/r

, (14)

where

K(s) = 1 – Kr (s – r)
s

(
s

s – 1

)r

.

To illustrate the interest of the Gs class, Pérez [25] proved that the weighted operator

Muf (x) := sup
x∈I

1
u(I)

∫
I

∣∣f (y)
∣∣u(y) dy (15)

is bounded in Ls
u(R+) if and only if u ∈ Gs′ . Further, Vasyunin [33] and Dindos and Wall [7]

found the sharp constants respectively for Muckenhoupt and Gehring weights by using
the powerful technique of the Bellman functions. In [27], Popoli obtained these results
for a larger class of weights verifying a more general reverse Hölder inequality (hence for
Muckenhoupt and Gehring weights as particular cases). In [31, 32] Sbordone considered
a new class Gr

ω of Gehring type with weights and proved that the self-improving property
of this class also holds. We say that the nonnegative measurable function u satisfies the
weighted Gehring Gr

ω-condition if there exists a constant K ≥ 1 such that

(
1

W (I)

∫
I
ur(x)ω(x) dx

)1/r

≤K
(

1
W (I)

∫
I
ω(x)u(x) dx

)
(16)

for all I ⊂ I0, where W (I) =
∫

I ω(x) dx. The Gr
ω-constant of u is

Gr
ω(u) = sup

I

( ( 1
W (I)

∫
I ω(x)ur(x) dx)1/r

1
W (I)

∫
I ω(x)u(x) dx

)r/(r–1)

for all I ⊂ I0. One can see that if u ∈ As(C) then condition (1) holds and can be rewritten
in the form

(
1

W (I)

∫
I

(
1

u(t)

)s̄

u(t) dt
) 1

s̄ ≤K
(

1
W (I)

∫
I

(
1

u(t)

)
u(t) dt

)
, (17)

where W (I) =
∫

I u(t) dt and s̄ = s/(s – 1), which is a weighted Gs̄
u(K) condition for u–1 with

respect to the weight u. This shows that if u ∈ As(C) then u–1 ∈ Gs̄
u(K) with K = C s̄–1

s̄ . In
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[32, Theorem 4.1] Sbordone proved that if (16) holds and u(x) dx is a doubling measure,
i.e., there exists a constant d > 0 such that

W (2I) ≤ dW (I), (18)

then there exists s > r such that

(
1

W (I)

∫
I
us(x)ω(x) dx

)1/s

≤K1

(
1

W (I)

∫
I
ω(x)u(x) dx

)
. (19)

In [32] Sbordone used the self-improving property of the class Gr
ω and proved that the

backward propagation of the class As holds and proved As(C) ⊂ As–ε(C1) without the lower
bounds of the constant ε. The space of functions that satisfy condition (18) is called the
spaces of homogeneous type. Many results from real and harmonic analysis on Euclidean
spaces have their natural extensions on these spaces. Another key tool in studying the re-
verse Hölder inequalities are the equimeasurable properties of monotonic rearrangements
and their applications in extending such results to the n-dimensional case that has been
applied for the first time by Sbordone in [32] and refined in [8, 9, 15, 17, 30, 31]. Our aim
in this paper is to study the structure of the weighted Gehring classes and also prove that
the self- improving properties hold with exact values of the exponents and the constants
of transitions. Our results will be proved in the nonhomogeneous spaces, i.e., when (18)
does not hold.

The paper is organized as follows: In Sect. 2, first we prove some new weighted refine-
ment inequalities of Hardy type. Second, we study the structure of the weighted Gehring
classes and also prove that the self-improving properties hold with exact values of the ex-
ponents and the constants of transitions. The technique in this paper allows us to give an
improvement of the constants in the classes. We also prove that if u ∈ A1

ω(C) then there ex-
ists s > 1 such that u ∈ Gs

ω(C1) with a sharp constant C1 similar to the constant obtained by
Bojarski et al. [3]. We establish sharp bounds of exponents for which inclusion (3) is valid
from the self-improving property Gs

ω(K), and we also prove a higher integrability theorem
by applying the inclusion property between A1

ω(C) and Gs
ω(K). In Sect. 3, we recall some

applications which show the interest of our main results.

2 Main results
Throughout the paper, we assume (usually without mentioning) that the functions in the
statements of the theorems are nonnegative and integrable, and the integrals considered
are assumed to exist. We fix an interval I0 ⊂ R+ = [0,∞) and consider subintervals I of
I0 of the form [a, s] for a < s < ∞ (or [a,∞)) and assume that ω is a positive integrable
function defined on I0; here a ≥ 0. For simplicity, we set

W (t) =
∫ t

a
ω(x) dx,

A(t) =
∫ t

a
ω(x)u(x) dx for t ∈ I, where I = [a, ·] or [a,∞).

(20)
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For any weight u which is a nonnegative integrable function, we define the operator Hu :
I →R

+ by

Hu(t) =
1

W (t)

∫ t

a
ω(x)u(x) dx for all t ∈ I. (21)

From the definition of H, we see that if u is nondecreasing, then

Hu(t) =
1

W (t)

∫ t

a
ω(x)u(x) dx ≤ 1

W (t)

∫ t

a
ω(x)u(t) dx = u(t).

Also, using the above inequality, we have that

(
Hu(t)

)′ =
1

W (t)
[
u(t) – Hu(t)

] ≥ 0 for t ∈ I.

From these two facts, we have the following properties ofHu for nondecreasing functions.

Lemma 2.1
(i) If u is a nondecreasing function, then Hu(t) ≤ u(t).

(ii) If u is a nondecreasing function, then so is Hu.

Remark 2.1 As a consequence of Lemma 2.1, if r > 1 we deduce that Hur ≤ ur when u is a
nondecreasing function. We also notice from Lemma 2.1 that if u is nondecreasing, then
Hur is also nondecreasing.

Also, from the definition of H, we see that if u is nonincreasing, then

Hu(t) =
1

W (t)

∫ t

a
ω(x)u(x) dx ≥ 1

W (t)

∫ t

a
ω(x)u(t) dx = u(t).

Also, by using the above inequality, we have that

(
Hu(t)

)′ =
1

W (t)
[
u(t) – Hu(t)

] ≤ 0 for t ∈ I.

From these two facts, we have the following properties of Hu for nonincreasing functions.

Lemma 2.2
(i) If u is nonincreasing, then Hu(t) ≥ u(t).

(ii) If u is nonincreasing, then so is Hu.

Remark 2.2 As a consequence of Lemma 2.2, if r > 1 then Hur ≥ ur when u is a nonin-
creasing function. We also notice from Lemma 2.2 that if u is nonincreasing, then Hur is
also nonincreasing.

We need the following lemma in the proofs.
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Lemma 2.3 Let s ≥ r > 1, and define

�(ρ) = ρ –
(

s
s – 1

)r

ρ–r+1
(

s – 1
s

ρ +
1
s
ρs

)r

, where ρ and ρ > 0.

Then �(ρ) is an increasing function for ρ > 0 and �(ρ) ≤ –r
s–1ρs.

Proof From the definition of �, we see that

�′(ρ) = 1 + (r – 1)
(

1 +
ρs

(s – 1)ρ

)r

– r
(

1 +
ρs

(s – 1)ρ

)r–1

.

Now, consider the function

�(τ ) = 1 + (r – 1)τ r – rτ r–1 for τ ≥ 1.

It is clear that �′(τ ) > 0 for every τ > 1, and thus � is strictly increasing for τ ≥ 1 and
�(τ ) > �(1) = 0 for any τ > 1. Thus �′(ρ) > 0 for ρ > 0, so �(ρ) is strictly increasing for
ρ ∈ (0,∞). From the definition of �(ρ), we see from L’Hospital’s rule that

lim
ρ→∞�(ρ) = lim

ρ→∞ρ

[
1 –

(
1 +

ρs

(s – 1)ρ

)r]

= lim
y→0

1 – (1 + ρsy
(s–1) )r

y
= –

r
s – 1

ρs.

As a result, �(ρ) ≤ – r
s–1ρs for any ρ > 0. The proof is complete. �

Theorem 2.4 Let u be a nonnegative weight and A(t) and W (t) be defined as in (20). If
s > 1, then

∫ ∞

a
ω(t)

(
A(t)
W (t)

)s

dt ≤
(

s
s – 1

)s ∫ ∞

a
ω(t)us(t) dt. (22)

Proof Let x > a. From (20), we have (here t ∈ (a, x))

ω(t)u(t) =
[
W (t)α(t)

]′, where α(t) =
A(t)
W (t)

.

Then

ω(t)u(t) =
[
W (t)α′(t) + α(t)ω(t)

]
. (23)

Now, using (23), we have that

ω(t)αs(t) –
s

s – 1
ω(t)u(t)αs–1(t)

= ω(t)αs(t) –
s

s – 1
αs–1(t)

[
W (t)α′(t) + α(t)ω(t)

]

= ω(t)αs(t) –
s

s – 1
ω(t)αs(t) –

s
s – 1

W (t)αs–1(t)α′(t)
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= –
1

s – 1
ω(t)αs(t) –

s
s – 1

W (t)αs–1(t)α′(t)

= –
1

s – 1
[
ω(t)αs(t) + sW (t)αs–1(t)α′(t)

]
= –

1
s – 1

(
W (t)αs(t)

)′. (24)

This leads to

ω(t)αs(t) –
s

s – 1
ω(t)u(t)αs–1(t) = –

1
s – 1

(
W (t)αs(t)

)′.

Integrating both sides from a to x, we obtain

∫ x

a
ω(t)αs(t) dt –

s
s – 1

∫ x

a
ω(t)u(t)αs–1(t) dt = –

1
s – 1

W (x)
(
αs(x)

)
, (25)

which leads to
∫ x

a
ω(t)αs(t) dt ≤ s

s – 1

∫ x

a
ω(t)u(t)αs–1(t) dt =

s
s – 1

∫ x

a
ω

1
s (t)u(t)

× ω
s

s–1 (t)αs–1(t) dt.

Applying Hölder’s inequality on the right-hand side with indices s and s/(s – 1), we have

∫ x

a
ω(t)αs(t) dt ≤ s

s – 1

{∫ x

a
ω(t)

(
us(t)

)
dt

} 1
s
{∫ x

a
ω(t)αs(t) dt

} s–1
s

.

Thus

∫ x

a
ω(t)αs(t) dt ≤

(
s

s – 1

)s ∫ x

a
ω(t)

(
us(t)

)
dt,

which can be written as

∫ x

a
ω(t)

(
A(t)
W (t)

)s

dt ≤
(

s
s – 1

)s ∫ x

a
ω(t)

(
us(t)

)
dt. (26)

Let x → ∞ and we obtain

∫ ∞

a
ω(t)

(
A(t)
W (t)

)s

dt ≤
(

s
s – 1

)s ∫ ∞

a
ω(t)

(
us(t)

)
dt,

which is (22). This completes the proof. �

From Theorem 2.4 (see (25) for the second result), we get the following results in terms
of Hu.

Lemma 2.5 Let u be a nonnegative weight, and let H be defined as in (21). If s > 1, then
(here t ∈ I)

H(Hu)s(t) ≤
(

s
s – 1

)s(
Hus)(t). (27)
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Lemma 2.6 Let u be a nonnegative weight, and let H be defined as in (21). If s > 1, then
(here x ∈ I)

1
W (x)

∫ x

a
ω(t)

(
Hu(t)

)s dt =
s

s – 1
1

W (x)

∫ x

a
ω(t)u(t)

(
Hu(t)

)s–1 dt

–
1

s – 1
(
Hu(x)

)s.

As a consequence of Lemma 2.6, if we replace s with s/r > 1 and u with ur , we get the
following result.

Lemma 2.7 Let u be a nonnegative weight, and let H be defined as in (21). If s ≥ r > 1, then
(here x ∈ I)

1
W (x)

∫ x

a
ω(t)

(
Hur(t)

)s/r dt =
s

s – r
1

W (x)

∫ x

a
ω(t)ur(t)

(
Hur(t)

) s
r –1 dt

–
r

s – r
(
Hur(x)

)s/r .

The following theorem will be used in the proof of the main results.

Theorem 2.8 Let A(t) and W (t) be defined as in (20). If s ≥ r > 1, then (here x ∈ I)

1
W (x)

∫ x

a
ω(t)

(
A(t)
W (t)

)s

dt

≤
(

s
s – 1

)r 1
W (x)

∫ x

a
ω(t)

(
A(t)
W (t)

)s–r

ur(t) dt –
r

s – 1

(
A(x)
W (x)

)s

. (28)

Proof For any r ∈ [0, s], we define

ϒr =
1

W (x)

∫ x

a
ω(t)

[(
A(t)
W (t)

)s–r]
ur(t) dt and α(x) = A(x)/W (x).

Then

ϒ0 =
1

W (x)

∫ x

a
ω(t)

(
A(t)
W (t)

)s

dt, and ϒr =
1

W (x)

∫ x

a
ω(t)

(
A(t)
W (t)

)s–r

ur(t) dt.

To prove (28) we need to prove that

ϒ0 ≤
(

s
s – 1

)r

ϒr –
r

s – 1
αs.

Now, since ((s – r)/r) + (s(r – 1)/r) = s – 1, we can write ϒ1 as

ϒ1 =
1

W (x)

∫ x

a
ω(t)u(t)

[(
A(t)
W (t)

) s–r
r

](
A(t)
W (t)

) s(r–1)
r

dt.
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Applying Hölder’s inequality, with exponents r and r/(r – 1), we get that

ϒ1 ≤
[

1
W (x)

∫ x

a
ω(t)ur(t)

(
A(t)
W (t)

)s–r

dt
]1/r

×
[

1
W (x)

∫ x

a
ω(t)

(
A(t)
W (t)

)s

dt
] r–1

r
≤ ϒ1/r

r ϒ
(r–1)/r
0 . (29)

Also, from Lemma 2.6 and using the fact that W (t) ≥ ω(t) for t > a, we see that

1
W (x)

∫ x

a
ω(t)

(
A(t)
W (t)

)s

dt

=
s

s – 1
1

W (x)

∫ x

a
ω(s)u(s)

(
A(t)
W (t)

)s–1

dt –
1

s – 1

(
A(x)
W (x)

)s

≤ s
s – 1

1
W (x)

∫ x

a
ω(s)u(s)

(
A(t)
W (t)

)s–1

dt

–
1

s – 1

(
A(x)
W (x)

)s

=
s

s – 1
ϒ1 –

1
s – 1

αs.

This implies that

ϒ0 ≤ s
s – 1

ϒ1 –
1

s – 1
αs,

and so

ϒ1 ≥ s – 1
s

ϒ0 +
1
s
αs. (30)

Let


r := ϒ0 –
(

s
s – 1

)r

ϒr .

Now, using (29) and (30), we get that


r ≤ ϒ0 –
(

s
s – 1

)r
ϒ r

1
ϒ r–1

0
≤ ϒ0 –

(
s

s – 1

)r

ϒ–r+1
0

(
s – 1

s
ϒ0 +

1
s
αs

)r

. (31)

Applying Lemma 2.3 with ρ = ϒ0 and ρ = α, we have


r ≤ –
(

r
s – 1

)
αs,

which is (28). The proof is complete. �

Now, we are in a position to prove the main results. First, we will extend the results due
to Bojarski et al. [3] and prove that if u ∈ A1

ω(C), then u ∈ Gs
ω(K) and give exact values of

the new exponents with a sharp constant and exponent similar to the constants in Bojarski
et al. [3]. Our method is different from the one used in [3].
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Theorem 2.9 Assume that u is a nonincreasing weight. If u ∈ A1
ω(C), i.e.,

Hu(t) ≤ Cu(t) for t ∈ I, for some C > 1, (32)

then for s ∈ [1,C/(C – 1)) we have

Hus(x) ≤ K
[
Hu(x)

]s, where K =
C1–s

C – s(C – 1)
> 0, (33)

and

Gs
ω(u) ≤

( C1–s

C – s(C – 1)

)1/(s–1)

.

Proof Let x ∈ I . From the definition of Hu(t) and Lemma 2.6, we see that

1
W (x)

∫ x

a
ω(t)

(
Hu(t)

)s dt =
s

s – 1
1

W (x)

∫ x

a
ω(t)u(t)

(
Hu(t)

)s–1 dt

–
1

s – 1
(
Hu(x)

)s.

This implies that

1
W (x)

∫ x

a
ω(t)

[
u(t)

(
Hu(t)

)s–1 –
s – 1

s
(
Hu(t)

)s
]

dt =
1
s
(
Hu(x)

)s. (34)

Let �(η) = γ ηs–1 – s–1
s ηs for every γ > 0 and η ≥ γ , and we see that

�′(η) = (s – 1)ηs–2(γ – η) ≤ 0 for η ≥ γ ,

so �(η) is decreasing for η ≥ γ . Fix t ∈ (a, x). Taking γ = u, β = Hu(t), and δ = Cu(t), we
have from Lemma 2.2 and condition (32) that γ ≤ β ≤ δ, and then

�(γ ) ≥ �(β) ≥ �(δ) for γ ≤ β ≤ δ.

Then

u(t)
(
Hu(t)

)s–1 –
s – 1

s
(
Hu(t)

)s ≥ u(t)
(
Cu(t)

)s–1 –
s – 1

s
(
Cu(t)

)s

= Cs–1us(t) –
s – 1

s
Csus(t)

= Cs–1
[

1 –
s – 1

s
C
]

us(t).

From this inequality and (34) we get

Cs–1
[

1 –
s – 1

s
C
]

1
W (x)

∫ x

a
ω(t)us(t) dt ≤ 1

s
(
Hu(x)

)s.
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Thus

1
W (x)

∫ x

a
ω(t)us(t) dt ≤ C1–s

(C + s – Cs)
(
Hu(x)

)s,

which is (33). The proof is complete. �

In what follows, we prove the self-improving property of the weighted Gehring class
Gr

ω(K) with a new constant similar to the constant obtained in [24] for the unweighted
class.

Theorem 2.10 Assume that r > 1 and u is a nonincreasing nonnegative weight. If u ∈
Gr

ω(K), i.e.,

(
Hur(t)

)1/r ≤K
[
Hu(t)

]
for t ∈ I, for some K > 1, (35)

then u ∈ Gs
ω(K1) and

Hus(x) ≤
(

r
s

r – 1
s – 1

Kr
)

1
Ks

[
Hu(x)

]s for x ∈ I, (36)

for every s ∈ [r, r∗), where r∗ is the positive root of the equation

Kr
(

x – r
x

)(
x

x – 1

)r

= 1,

and Ks = 1 – Kr (s–r)
s ( s

s–1 )r > 0.

Proof Let x ∈ I . From the definition of Hu(t) and Lemma 2.7, we see that

1
W (x)

∫ x

a
ω(t)

(
Hur(t)

)s/r dt =
s

s – r
1

W (x)

∫ x

a
ω(t)ur(t)

(
Hur(t)

) s
r –1 dt

–
r

s – r
(
Hur(x)

)s/r .

This implies that

1
W (x)

∫ x

a
ω(t)

[
ur(t)

(
Hur(t)

) s
r –1 –

s – r
s

(
Hur(t)

)s/r
]

dt =
r
s
(
Hur(x)

)s/r . (37)

Let

�(z) = γ zs/r–1 –
s – r

s
zs/r for every γ > 0 and z ≥ γ ,

and we see (see Theorem 2.9) that � is decreasing. Fix t ∈ (a, x). Now let

β = Hur(t), γ = ur and δ =
(
KHu(t)

)r .

It is clear from (35) that γ ≤ β ≤ δ and

�(γ ) ≥ �(β) ≥ �(δ) for γ ≤ β ≤ δ,
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so

�
(
Hur(t)

)
= γ

(
Hur(t)

)s/r–1 –
s – r

s
(
Hur(t)

)s/r

≥ ur((KHu(t)
)r)s/r–1 –

s – r
s

((
KHu(t)

)r)s/r .

This and (37) imply that

1
W (x)

∫ x

a
ω(t)

[
ur(t)

((
KHu(t)

)r)s/r–1 –
s – r

s
((
KHu(t)

)r)s/r
]

dt

≤ r
s
(
Hur(x)

)s/r ,

and so

1
W (x)

∫ x

a
ω(t)

[
ur(t)Ks–r(Hu(t)

)s–r –
s – r

s
Ks(Hu(t)

)s
]

dt

≤ r
s
(
Hur(x)

)s/r .

Now, since Hur(t) ≤Kr[Hu(t)]r , we get that

1
W (x)

∫ x

a
ω(t)

[
urKs–r(Hu(t)

)s–r –
s – r

s
Ks(Hu(t)

)s
]

dt

≤ r
s
Ks[Hu(x)

]s.

Thus

1
W (x)

∫ x

a
ω(t)ur(t)

(
Hu(t)

)s–r dt

≤
(

s – r
s

) Kr

W (x)

∫ x

a
ω(t)

(
Hu(t)

)s dt +
r
s
Kr[Hu(x)

]s. (38)

Now, from Theorem 2.8, we see that

1
W (x)

∫ x

a
ω(t)

(
Hu(t)

)s dt

≤
(

s
s – 1

)r 1
W (x)

∫ x

a
ω(t)

(
Hu(t)

)s–r(u(t)
)r dt –

r
s – 1

(
Hu(x)

)s

≤
(

s
s – 1

)r 1
W (x)

∫ x

a
ω(t)

(
Hu(t)

)s–rur(t) dt –
r

s – 1
(
Hu(x)

)s.

This and (38) imply that

1
W (x)

∫ x

a
ω(t)ur(t)

(
Hu(t)

)s–r dt

≤
(

s – r
s

)(
s

s – 1

)r Kr

W (x)

∫ x

a
ω(t)

(
Hu(t)

)s–r(u(t)
)r dt

+
(

r
s

r – 1
s – 1

Kr
)[

Hu(x)
]s.
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Then
[

1 – Kr
(

s – r
s

)(
s

s – 1

)r] 1
W (x)

∫ x

a
ω(t)ur(t)

(
Hu(t)

)s–r dt

≤
(

r
s

r – 1
s – 1

Kr
)[

Hu(x)
]s.

Since Hur ≥ ur , where u is nonincreasing, we obtain

[
1 – Kr

(
s – r

s

)(
s

s – 1

)r] 1
W (x)

∫ x

a
ω(t)us(t) dt ≤

(
r
s

r – 1
s – 1

Kr
)[

Hu(x)
]s. (39)

Let

ψr(x) = 1 – Krφ(x, r),

where

φ(x, r) =
(

x – r
x

)(
x

x – 1

)r

.

Clearly ψr(r) = 1 > 0, and as –Krφ(x, r) is a strictly decreasing function for positive values
of x, the same holds for ψr(x) which will be zero for a certain value r∗ > r given by the
unique positive solution of the equation Krφ(x, r) = 1. Then ψr(r∗) = 0 and

ψr(x) > 0 ⇔ Krφ(x, r) < 1.

Thus we have that ψr(x) > 0 in [r, r∗), and from (39) we obtain

Hus(x) ≤
(

r
s

r – 1
s – 1

Kr
)

1
ψr(s)

[
Hu(x)

]s for s ∈ [
r, r∗),

which is (36). The proof is complete. �

Remark 2.3 We mention here that the result given in the literature for the self-improving
property of the Gehring class is

[
Gs(u)

]1/s′ ≤K1/r′
(

r
sK(s)

)1/r

,

whereas our result is

[
Gs

ω(u)
]1/s′ ≤

[
r
s

r – 1
s – 1

Kr

K(s)

]1/s

.

3 Applications
The properties of the nonincreasing rearrangement and the relations between ϑ and
ϑ∗ which are proved in [9, 15] play important roles in extending the results to the n-
dimensional case. As usual, we assume that r0 is any cube in R

n and by |r0| we mean
its Lebesgue measure. Let � be the class of positive convex functions, and let us denote
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with ϑ∗ and ϑ∗ respectively the nonincreasing and nondecreasing rearrangements for the
function ϑ . The functions ϑ∗ and ϑ∗ are equimeasurable with ϑ in a set r0 in the sense
that for any real exponent r the following holds:

∫
r0

ϑ r(x) dx =
∫ |r0|

0

(
ϑ∗(s)

)r ds =
∫ |r0|

0

(
ϑ∗(s)

)r ds for all r > 1.

It is well known that a convex function ϕ ∈ � verifies the so-called Jensen inequality

ϕ

(
1

|r0|
∫

r0

ϑ(x) dx
)

≤ 1
|r0|

∫
r0

ϕ
(
ϑ(x)

)
dx.

This makes natural to define that a weight ϑ is said to verify the reverse Jensen inequality
that will be denoted by ϑ ∈ Jϕ(K) if there exists a real constant K > 1 such that for every
bounded interval I the following holds:

1
|I|

∫
I
ϕ
(
ϑ(x)

)
dx ≤Kϕ

(
1
|I|

∫
I
ϑ(x) dx

)
. (40)

The following theorem, proved by Korenovskii in [15], provides the exact estimate for the
equimeasurable rearrangements of weights verifying the reverse Jensen inequality.

Theorem 3.1 Let ϕ ∈ � and ϑ ∈ Jϕ(K). Then

1
|r0|

∫
r0

ϕ
(
ϑ∗(x)

)
dx ≤Kϕ

(
1

|r0|
∫

r0

ϑ∗(x) dx
)

with the same constant K as in condition (40).

It is easy to observe that, for ϕ(u) = ur or ϕ(u) = u
1

1–s , the reverse Jensen inequality corre-
sponds respectively to the Gr and the As conditions. Similarly, for ϕ(u) = us/r , it becomes
the Gs,r condition. This means that Theorems 2.9, 2.10, 3.1 will allow us to extend our
proofs to obtain the same results in the general n-dimension. This will be obtained by
using the properties of the measure on the space and studying the reverse of Jensen’s in-
equality with a weight of the form

ϕ

(
1

H(t)

∫ t

a

∣∣h(s)
∣∣g(s) ds

)
≤ 1

H(t)

∫ t

a

∣∣h(s)
∣∣ϕ(

g(s)
)

ds, (41)

where H(t) =
∫ t

a |h(s)|ds. On the other hand, the self-improving property has applications
in different fields, for example, in higher integrability theory and in optimal regularity
of solutions to some elliptic sDEs, see Kenig [14]) and Martio and Sbordone [20]. In the
following, we apply our results to prove a higher integrability theorem. Note that, for all
nonnegative and nonincreasing functions u and r > 1, we have

Hur(t) =
1

W (t)

∫ t

0
ω(s)ur(s) ds =

1
W (t)

∫ t

0
ω(s)ur–1(s)u(s) ds

≥ ur–1(t)
W (t)

∫ t

0
ω(s)u(s) ds for all t ∈ I. (42)
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Consider the class of nonnegative and nonincreasing functions u that satisfy the reverse
of (42) in terms of H, namely

Hur(t) ≤Kur–1(t)Hu(t) for all t ∈ I and K >1. (43)

Theorem 3.2 Assume that u is a nonincreasing weight such that (43) holds for some K >1.
If r > 1 and Kr > r – 1, then for s ∈ [r, rKr/(Kr – 1)), where

Kr =
rK

r – 1
,

we have

Hus(t) ≤ K
[
Hur(t)

]s/r for t ∈ I, where K :=
K1–r+(s/r)

r

Kr – s
r (Kr – 1)

. (44)

Proof Let t ∈ I and F(t) = Hur(t). Using Hölder’s inequality with exponents r and r/(r – 1)
and (43), we obtain

1
W (t)

∫ t

0
ω(s)F(s) ds ≤ K

W (t)

∫ t

0
ur–1(s)

ω(s)
W (s)

∫ s

0
ω(τ )u(τ ) dτ ds

≤ K
[

1
W (t)

∫ t

0
ω(s)ur(s) ds

](r–1)/r

×
[

1
W (t)

∫ t

0
ω(s)

(
1

W (s)

∫ s

0
ω(τ )u(τ ) dτ

)r

ds
]1/r

. (45)

Using the definition of Hu, we get that

HF(t) =
1

W (t)

∫ t

0
ω(s)F(s) ds ≤K

[
Hur(t)

](r–1)/r[H[
Hu(t)

]r]1/r. (46)

From Lemma 2.5, we see that

[
H

[
Hu(t)

]r]1/r ≤ r
r – 1

[
Hur(t)

]1/r . (47)

Combining (46) and (47), we have that

HF(t) =
1

W (t)

∫ t

0
ω(s)F(s) ds ≤ rK

(r – 1)
[
Hur(t)

](r–1)/r[Hur(t)
]1/r

=
rK

(r – 1)
Hur(t) = KrHur(t) = KrF(t),

i.e.,

HF(t) ≤KrF(t); (48)

note Kr > 1 since rK > r – 1. Since F is nonnegative and nonincreasing (see Remark 2.2),
the assumptions of Theorem 2.9 are satisfied (with u replaced with F ; see (48)), so

HFr(t) ≤ A
[
HF(t)

]r , (49)



Saker et al. Advances in Difference Equations        (2021) 2021:397 Page 17 of 20

with A = K1–r
r /(Kr – r(Kr – 1)) for r = s/r ∈ [1,Kr/(Kr – 1)). Note

F(t) =
(
1/W (t)

)∫ t

0
ω(s)ur(s) ds ≥ ur(t),

so this together with (48) and (49) yields

Hus(t) =
1

W (t)

∫ t

0
ω(s)

(
ur(s)

)r ds ≤ 1
W (t)

∫ t

0
ω(s)

(
F(s)

)r ds

= HFr(t) ≤ A
[
HF(t)

]r ≤ AKr
r
[
F(t)

]r

= K
[
F(t)

]r = K
[
Hur(t)

]s/r ,

which proves (44). The proof is complete. �

Now, we show that the self-improving property of the weighted Gehring class can be
applied to prove the self-improving property of the Muckenhoupt class with a sharp value
of the exponents. Assume u ∈ As(C), i.e., the condition

(
1
|I|

∫
I
u(t) dt

)(
1
|I|

∫
I
u– 1

s–1 (t) dt
)s–1

≤ C (50)

holds. This condition can be rewritten in the form

(
1

�(I)

∫
I

(
1

u(s)

)s∗

u(s) ds
) 1

s∗ ≤ C( s∗–1
s∗ )

(
1

�(I)

∫
I

(
1

u(s)

)
u(s) ds

)
, (51)

where �(I) =
∫

I u(t) dt and s∗ = s/(s – 1). From this condition, we see that u ∈ As(C) if and

only if u–1 ∈ Gr
u(K) with K = C

s∗–1
s∗ and r = s∗. From Theorem 2.10 inequality (51) holds

for every s ∈ [r, s∗), where s∗ is the solution of the equation

1 –
(

x – r
x

)( Kx
x – 1

)r

= 0.

Using the value of r = s∗ and K = C
s∗–1

s∗ , we have

(
x – s∗

x

)(C
s∗–1

s∗ x
x – 1

)s∗

= 1.

Since s∗ = s/(s – 1), by rewriting the last equation in terms of s, we see that s∗ is given from
the solution of the equation

(
(s – 1)x – s

(s – 1)x

)(K1/sx
x – 1

) 1
s–1

= 1.

Using the transformation x → x/(x – 1), we then get r∗ (r∗ = s∗/(s∗ – 1)) is given from the
solution of the equation

(
s – x
s – 1

)
(Cx)

1
s–1 = 1,

which is the same condition as in Korenovskii [15].
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The self-improving property has applications in different fields especially in studying the
optimal regularity of solutions to some elliptic SDEs (see for example Kenig [14]) where
the Ls solvability of the Dirichlet problem div A(x)∇u = 0 on the unit disc D, with u|D = ϕ,
can be expressed in terms of Gr conditions on the boundary ∂D for the harmonic measures
associated with A(x), with 1/s + 1/r = 1.

Another application of the sharp results for the reverse Hölder inequalities can be found
in Martio and Sbordone [20] in the study of K-quasiminimizers and their inverse. For other
applications of inequalities including extrapolation theory, vector-valued inequalities, and
estimate for certain classes of nonlinear partial differential equations, we refer the reader
to the book [14]. In the following, we report an application of the self-improving property
in the solvability of the Neumann problem for divergence form elliptic operators and Ls

data in the half plane by using the relation between Gs and As that has been proved by
Johnson and Neugebauer [13]. We begin reporting a result contained in [13] that shows
the As-regularity of the derivative of a homeomorphism of the real line and the derivative
of its inverse.

Theorem 3.3 Let h : R+→R+ be an increasing homeomorphism onto such that h, h–1 are
locally absolutely continuous. Then

h′ ∈ As ⇔ (
h–1)′ ∈ Gr ,

1
s

+
1
r

= 1,

and the constants As(h′) and Gr((h–1)′) are equal.

Now we show that Theorem 3.3 for regularity and the self-improving Theorem 2.10 can
be applied to the solvability of Neumann problems for divergence elliptic operators with
Ls data (see [5]). Let us consider the following Neumann problem:

�ϑ = 0 in R
2
+ and

∂ϑ

∂t

∣∣∣∣
R+

= f . (52)

Let us consider a quasiconformal mapping � : R2
+ → R

2
+ with �(x, 0) = h(x), where h :

R+→ R+ is a homeomorphism, and let us consider the pull-back Laplacian matrix

A(x, t) =
(
D�t)–1|D�|(D�t)–1.

If the solution of (52) is composed with �, we have that u = ϑ ◦ � is a solution of the
following Neumann problem:

div A∇u = 0 in R
2
+ and A∇u · →

N |R = (f ◦ h)h′. (53)

By using the variational formulation of the Neumann problem and assuming that dh =
h′ dx, we can see that the Neumann data for u = ϑ ◦� are (f ◦ h)h′. For this to belong to Ls,
we need that

∫ |(f ◦ h)|s|h′|s < ∞, which is equivalent, if y = h(x), dy = h′(x) dx, to the fact
that f ∈ Ls

u, where u(y) = |h′(h–1(y))|s–1. Now, if (53) was solvable for L, then all derivatives
of u restricted to R would be in Ls. This implies, in particular, that if in (53) f ∈ Ls(u dx),
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∂ϑ
∂y = H(y) ∈ Ls

u, where H(f ) is the classical Hilbert transform

Hf (y) = lim
ε→0

1
π

∫
|x–y|>ε

f (x)
x – y

dy, (54)

and the bound

‖Hf ‖Ls
u ≤ C‖f ‖Ls

u

holds. But it is well known that (54) holds if and only if u ∈ As(C) (see [12]). But u ∈ As(C)
is equivalent to (h–1)′ ∈ Ar(Cr) with r = s/(s – 1). Now, by Theorem 3.3, this is equivalent
to h′ ∈ Gs(K) for any bounded interval I of R+ with a constant K = Gs(h′). Applying The-
orem 2.10, we see that if s∗ is the unique positive root of the equation ω(x, s) = K, then we
have h′ ∈ Gs(Ks) for every s ∈ [s, s∗) and

M
(
h′(t)

)s ≤Ks
[
M

(
h′(t)

)]s, Ks =
s

sK ,

is a positive root of ω(s, s) = K.
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Funding
None.

Availability of data and materials
None.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have taken equal part in this research and they read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt. 2Department of
Mathematics, Faculty of Science, New Mansoura University, New Mansoura City, Egypt. 3Department of Mathematics and
General Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia. 4Department of Industrial Engineering, OSTİM
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