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1 Introduction

Chistyakov [6-9] rectified in absorbing manner the structure of a metric modular space
and introduced a first countable and Hausdorff topology on it which is very popular in
contemporary research these days.

Now, we study the concept of the Hausdorff distance of a given generalized metric mod-
ular space on nonempty compact subsets. As an application, we use the concept of con-
traction and the iterated function system (IFS) on a generalized metric modular space to
define a new concept of modular fractal spaces and prove an interesting fixed point theo-

rem in these spaces [1, 2, 7, 8, 10, 11].

2 Basic notions and preliminaries

Now, we recall some notions and basic concepts. Here, we let I = [0,1], I° = (0,1), J =
[0,00], and J° = (0, 00). Let S be a nonempty set. A function 6 : S x S x J° — J is said to
be a metric modular (in short MM) on § if it satisfies the following three axioms:

(i) Given u,v € X, 65 (u,v) =0 for all > > 0 if and only if u = v;

(ii) 6 (1, v) = 05 (v,u) for all A > 0 and u,v € S;

(iii) 654, (u,v) <6, (u,w) + 6, (w,v) for all A, u > 0 and u,v,w € S. Also, the ordered pair
(S,0) is said to be an MM-space.

Consider a mapping Y : % x JO — J, given by Y, (s, t,u) = Y(s,£,u,0), in which o € J°
and s,t,u € S. In this paper, we consider a generalized metric space in the sense of
Chistyakov and introduce the concept of generalized modular metric space (in short,
GMM-space) as follows.
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Definition 2.1 ([3]) Let S be a nonempty set. A function Y :S x S x § x J® — J is said
to be a generalized modular metric on S (in short GMM) if it satisfies the following five
axioms:

(GMM-1) T,

(GMM-2) Y, (s,t,u) =0 foralls,t,uc Sando € J®if s=t = u.

(GMM-3) Y, (s,s,u) < Yo (s, t,u) for all s,t,u € Sand o € J° with ¢ # u.

(GMM-4) Y, (s, t,u) = Yo (s, t,t) = Yo (4,5,t) = - - - forall o € JO.

(GMM-5) Yo.,s5(s,t, 1) < Yo(s,v,v) + Ys(v,t,u) for all s,t,u € S and 0,8 € J°. Also the
ordered pair (S, Y) is said to be a GMM-space.

5 (s,s,u) € J° forall s,u € Sand o € J° with s # u.

Definition 2.2 ([3]) Letusfixanarbitrary elementsy € S and set Sy = {t € S;limy_.¢ Y5 (S0,
t,u) = 0 for some u € S}. The set Sy is called a modular set.

Proposition 2.3 ([3]) Let (S,Y) be a GMM-space, for any s,t,u,v € S it follows that
(1) If Y, (s,t,u) =0 forallo >0, thens=t=u.
(2) Yo(s, tu) < T%(s,s, )+ g (s,s,u) forall o > 0.
(3) Yy (s,t,8) < 2Tg (s,8,t) forall o > 0.
(4) Y, (s, t,u) < g (s,v,u) + T%(v, t,u) forall o > 0.
(5) Yy (s, t,u) < %(T% (s,t,v) + Tg (s,v,u) + g (v,t,u)) forall o > 0.
(6) Yy (s, t,u) < (T% (s,u,v) + R (t,v,v) + R (u,v,v)) forall o > 0.

If (S,6) is an MM-space, then (S,0) can define a GMM-space on S by

(Ex) Y2(s,t,u) = {0, (s,2) + O (£, 1) + 6, (s, 1)},

(Ewm) Y2(s, t,u) = max{6, (s, £) + 0, (¢, u) + 6, (s,u)} forall o > 0.

We showed that a modular metric (MM) can introduce a generalized modular metric
(GMM). Now, we study the converse, consider the GMM Y, on S, then (E;)6) (s, ) =
Yy (s, t,t) + Yy (s,s,t) defines a modular metric MM on S for all o € J°. Also, there are the
following relationships among Y,, Y%, and Y

Yo(s tu) < Yi(s,t,u) <2Yo(s,t,u)
and

1

5 To’ (S, t; L{) =< T(:n (Sr t1 M) = ZTO' (S, t; M)

forallo > 0.

By the following equalities we can find the relationships among modular metrics in-
duced by different GMMs. For s, ¢ € S, it is easy to show 6,1 (s,£) = 20, (s,t) and 6] " (s, 1) =
20, (s, t) for all o > 0.

Definition 2.4 ([3]) Let (S,Y) be a GMM-space. Then, for sy € Sy and ¢ > 0, the Y -ball
with center sy and radius ¢ is

By (so,€) = {t €Sy : Yy(so,t,t)<eforallo > O}.
Proposition 2.5 ([3]) Let (S, ) be a GMM-space. Then, for any sy € Sy and ¢ > 0, we have

(i) if Y5 (0,5, 8) < & for all o > 0, then s, t € By (so, &).
(ii) if t € By (so,¢€), then we can find § > 0 such that By (t,5) C By(so, €).
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From Proposition 2.5 we can conclude that the family of all Y-balls I" = {Bv(s,€)|s €
S, & > 0} is the base of a topology 7(Y,) on Sy.

Definition 2.6 ([3]) Let (S,Y) be a GMM-space. The sequence {s,},eny S Sy is Y-
convergent to s if it converges to s in the topology 7 ().

Proposition 2.7 ([3]) Let (S,Y) be a GMM-space and {s,},cn C St.
Then the following are equivalent:
(1) {sn}uen is Y-convergent to s;
(2) 6.X(sy,s) = 0 as n— o0, i.e., {s,} converges to s relative to the MM 6 ;
(3) Yo ($,81,8) = 0 as n — oo for all o > 0;
(4) Yy (sp,8,8) = 0 as n— oo forall o > 0;

(5) Yo (S, Sn>8) = 0 as m,n — o0 forall o > 0.

Definition 2.8 ([3]) Let (S, T) be a GMM-space. Then {s,},cn € Sy is called Y-Cauchy
sequence if, for every ¢ > 0, we can find N; € N such that Y, (s, $,,55) < & for all n,m,q >
N, and o > 0.

A GMM-space S is called Y-complete if every YT-Cauchy sequence in S is a Y-
convergent sequence in S.

Proposition 2.9 ([3]) Let (S,Y) be a GMM-space and {s,},en S Sy. Then the following
are equivalent:

(1) {su}nen is Y-Cauchy.

(2) For each € > 0, we can find N € N such that (S, Sy» Sm) < € for every n,m > N, and
o >0.

(3) {Sn}nen is a Cauchy sequence in the MM-space (S,0).

Consider the GMM-space (S, T). Let the set of nonempty subsets, the set of nonempty
finite subsets, and the set of nonempty compact of (S, 7v) be denoted respectively by I'o(S),
§o(S), and R, (S).

Proposition 2.10 ([3]) Let (S,Y) be a GMM-space. Then Y is a continuous function on
SxSx8x]°.

Let T and U be two (nonempty) subsets of a GMM-space (S, Y).

ForseSando >0, let Y,(s,T,U) :=inf{ Y, (s,t,u) : t € T,u € U}.

Lemma 2.11 Let (S,Y) be a GMM-space. Then, for each s € S, T, U € R,(S) and o € J°,
therearety € T, ug € U such that Y, (s, T, U) = Y4 (s, to, 4g).

Proof Letse S, T, U € R,(S) and o > 0. By Proposition 2.10, the functions ¢ > Y, (s, ¢, u),
u — Y, (s,t u) are continuous. Thus, by compactness of T" and U, there exists t, € T,
uy € U such that infier ey Yo (s, 1) = Yo (s, to, Uo), i-e., Yo (s, T, U) = Yy (s, Lo, to)- O

Lemma2.12 Let (S,Y) be a GMM-space. Then, foreach s € S and T, U € R,(S), the func-
tion o — Y, (s, T, U) is continuous on J°.

Proof The equality Y, (s, T, U) = infier e Yo (s, t, u) and the continuity property of the
function o > Y, (s, ¢,u) for each t € T and u € U on J° imply the upper semi-continuity
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o+ Y,(s,T,U) on J°. Consider o € J° and let the sequence (o,), in J° converge to
0. Using Lemma 2.11 implies that we can find ¢, € T and u, € U for every n € N such
that Y, (s, T, U) = Yy, (s, ty, ). From T, U € PR4(S), we can find (¢, )k of (t,)n (44 )x of
(#4)n and two points £, € T and uy € U such that ¢, — ) and u, — up in (S, 7).
Hence limy Tgnk (S, gty ) = Y (8, 2o, o) by Proposition 2.10, and thus limy Tgnk (s, T,U) =
Yo (s, b0, h0) > Yo (s, T,U). Consequently, o — Y, (s, T,U) is lower semi-continuous on
JO. O

Lemma 2.13 Counsider the GMM-space (S, Y). Then, for every T € R,(S), U,V € [',(S)
and o € J°, we can find ty € T such that

sup Yo (T, U, V) =Y, (to, U, V).

Proof Put § = sup,.; Y5 (¢, U, V). Then we can find a sequence (z,), in T such that § — % <
Yo (¢4, U, V) inwhich n € N. From T € R, (S), we can find a subsequence (¢, )« of (£,), and
to € T such that £, — £ in (S, ).

Select u € U, v € V. According to Proposition 2.10,

lilzn Yo (tny, V) = Yo (L0, 1, V).

Since, for each k e N, § — i < Yo (b, 1, v), we get 8 < Yy (to, u,v). We conclude that § =
TU (t07 U’ V) O

Now, Lemmas 2.12 and 2.13 imply the next result.

Corollary 2.14 Consider the GMM-space (S, ). Assume that T, U,V € R,(S) and o € J°.
Then we can find ty € T, ug € U, and vy € V such that

sup Yo (¢, U, V) = Y, (o, ug, vo)-
teT

Proposition 2.15 Consider the GMM-space (S, ). Then, for each T,U,V € R(S), the
Sfunction § — sup,.r Yo (£, U, V) is continuous on J°.

Proof 1t is easily proved by using Lemma 2.13, Lemma 2.12, and Proposition 2.10. O

Remark 2.16 ([3]) Note that for s,¢,u € S the function 0 < o + Y,(s,t,u) € J is nonin-
creasing on J°.

3 GMM-Hausdorff distance on R, (S)
Consider the GMM-space (S, T). We define a function Hy on 2R, (S) x R, (S) x Ro(S) x J°
by

Hy(T,U,V,0) = max{sup Y, (6, U, V),sup Yo (T,u,V),sup Yo (T, U, v)}
teT uel veV

forevery T, U,V € R,(S) and o € JO.
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Lemma 3.1 Consider the GMM-space (S,Y),s €S, T,U € Ro(S), V € 'o(S), and o, B €
J°. Then

Yorp(s, T, V) < Yo(s, U, U) + Yp(u, T, V),

where ug € U satisfies Yo (s, U, U) = Yo (s, us, Us).

Proof Using Lemma 2.11, for u, € U, we have Y, (s, U, U) = Y (s, us, us). Now, for each
teT,veV,wehave

Yoip(s T, V) < Yorp(s, t,v) < Yols, us, us) + Yp(ug, t,v).
Then Yy, 5(s, T, V) < Yo ls, U, U) + Yg(us, T, V). O
Theorem 3.2 Consider the GMM-space (S, Y). Then (R(S), Hy) is a GMM-space.
Proof Suppose that T, U, V, W € R,(S) and «, 8 € J°. By Lemma 2.13, there exist ¢, €
T, up € U, and vy € V such that sup,.; V(¢ U, V) = Y(t, U, V), sup,.,; Y(T,u,V) =

Y(T,uo, V), and sup,o, Y(T, U, v) = Y(T, U, vy).
Then Hy(T,U, V,a) > 0. Furthermore, it is obvious that

T=U=V & Hy(T,U,V,a)=0.
Now, according to Lemma 3.1, we have

sup Yo p(t, U, W) <sup Yo (t, V, V) + sup Yg(v, U, W).
teT teT teT

Since {v;:t € T} C V, sup,cr Y(ve, U, W) < sup,.., Ts(v, U, W), so

sup Yo p(t, U, W) <sup Yo (t, V, V) + sup Yp(v, U, W).

teT teT veV

In the same way, we obtain

sup Yo (T, u, W) < sup Yo (u, V, V) +sup Yg(v, T, W),

uell uel veV
sup Y. p(T, U, w) < sup Yo(w, V, V) +sup Yg(v, T, W).
weW weW veV

Then, it easily follows that
Hy(T,U,W,a +B) <Hy(T,V,V,a)+ Hy(V,U, W, B).

By Proposition 2.15, we conclude that & — Hy (T, U, V,a) is continuous on J°.
Then (R,(S), Hy) is a GMM-space. a
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4 Y-Cauchy sequences in a GMM-space

In this section we study Y -Cauchy sequences in a GMM-space.

Lemma 4.1 Consider the GMM-space (S, ). For each n € J°, define a function F,, (s, t,
u) =inf{o >0, Y, (s,t,u) < u} forany s,t,u € S. Then
(i) For any A € J°, we can find n € J° such that

m-1

FA,T(SOrSm»Sm) =< ZF;L,T(Sz’; Si+1» Si+1) (41)
i=0

forall sy,s1,...,84 €S.

(ii) Let {s,}n be a convergent sequence in a GMM-space (S, Y), then we have F; (s, sy,
$,) — 0 and vice versa.

Proof (i) For every A € J°, we can find i € J° such that mu < A. For any given m € Z*, we
put

Foux(Sir Sis1, Siv1) = 0 (4.2)

fori=0,1,2,...,m—1.
For every ¢ > 0, it is obvious that F, v (s;,8i11,8i+1) <07 + -, in which i =0,1,...,m - 1.
Then Tm%(si,sm,sm) <pfori=0,1,...,m— 1. Now, using (GMM-5), we get

Tao+61+---+am,1+g(5075m¢Sm)
= Tao+% (50751:51) L Tam,ﬁ—% (Sm=1>Sm>Sm)

<P+ U<, (4.3)
—_—

m

which implies that

Fy v (505 SmsSm) < 00+ 01+ -+ + Oy + €.

Using (4.2) we get
m—1
FA,T(SOr Sm» Sm) S ZF;L,T (Sz'; Si+1» Si+1) +& (44‘)
i=0

for all sg,5s1,...,54 € S. Tending ¢ to 0 in (4.4) implies that (4.1).
(ii) We have Y,(s,84,51) < A & Fy v (S,84,84) < 1 for every n > 0. O

Lemma 4.2 Counsider the GMM-space (S, ). If Yy (s, t,u) = C for every s,t,u € Sand o €
IO, then

C=0. (4.5)
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Proof Putting s =t = u in (4.5), we get C = 0. O

Here, we consider a class of mappings ¢ : J° — J° which are onto, strictly increasing,
and ¢(0) <o for all o € JO.

Lemma 4.3 Consider the GMM-space (S, ). Then
inf{¢”(o) >0:Y,(s,t,u)< A} < qb”(inf{o >0: Y, (s, t,u) < )»})
foreachs,t,ueS, re JO and n eN.

Proof Fix o € J° with Y,(s,t,u) < A. Then ¢"(c) € J°. Also ¢"(c) > inf{¢"(8) > 0
Y;s(s, t,u) < A}, and so we have

o > (¢") " (inf{¢"(8) > 0: Ys(s, £, u) < 1}).
Then
inf{o >0, Y, (s,t,u) <2} = (¢") " (inf{¢"(8) > 0: Ts(s, £, u) < 1)),
and we conclude that
inf{¢"(0) >0: Yo(s,t,u) <A} < ¢"(inf{o > 0: Yy (s,t,u) < A}). O

Lemma 4.4 Counsider the GMM-space (S,Y). Suppose that {s,} C S such that Ygn()(Sy

Sns1,Sui1) < Yo (S0,81,81) for all o € J°. Then {s,,} is a Y-Cauchy sequence.

Proof Using Lemma 4.3, we get

FM,T(Sn:5n+17 Sn+1) = inf ¢n(0,) >0: T¢”(0)(Snr5n+1:5n+1) < //L}
{ (U)>O T (50,51’51)</'L}

{
”(1 {U>O Y, ( so,sl,s1)<,u})
¢"(F,

I A

" Wy T(SO:SI,Sl )

for every 11 € J°.
For every A € J°, there exists 8 € J such that

FA,T(Sn»5m>5m) =< FG,T(Sm—1r5m¢Sm) + FQ,T(Sm—Z»Sm—b Smo1)

+ Fo v (S, S5 Sne1)

m-1

< Z¢i(F9,T(50151731)) — 0.

i=n

By Lemma 4.1, {s,} is a T-Cauchy sequence. d

Page 7 of 10
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5 GMM-fractal spaces

Hutchinson considered the concept of fractal theory by studying the iterated function
system (IFS) [12]. This subject was generalized by Barnsley [4], Bisht [5], Imdad [13], and
Ri [14].

Definition 5.1 Consider the GMM-space (S, T). A mapping Q2 : S — S is said to be a
GMM-¢-contractive mapping if Yy ) (S2(s), Q(£), 2(u)) < Y, (s, t, u) foreverys, t,u € Sand
oell

Definition 5.2 A GMM iterated function system (shortly, GMMIES) is a finite set of
GMM-¢-contractions {1, 2o, ..., 2}, (m > 2) thatis defined on a complete GMM-space
(S, 7).

For a GMMIFS, we can find a unique nonempty compact set I' of the complete GMM-
space (S, Y) inwhich I' = | J”; €;(T") and I' is a fractal set called the attractor of the respec-
tive (GMMIES). In this case, the corresponding attractor GMMIES is said to be GMM-
fractal space.

Lemma 5.3 Consider the GMM-space (S, Y'). Assume that Q : S — S is a mapping such
that

T(j)(a) (Q(S)r Q(t)’ Q(u)) = T{r (Sx t, u)
foreverys,t,u €S and o € J°. Then the sequence {Q"(s)}22, is GMMCS.

Proof Assume that {s, : 2"(s)}:. {s,} is a sequence satisfying the conditions of Lemma
4.4. By using the induction, we have

Yo (5, Q(s), 2(s)) < Yo (5, 2(s), Qs))
if

Yo (R27(), (), Q7 (5)) < Yo (5, (s), (),
then

T g1y (Q7715), 2726, 277(5)) = Yoo (R(Q7(5), 2(Q771(5))),

Q(Q"1(s)) < Ygno) (R7(5), Q7 (5), Q"1 (5)) < Yo (s, Q(s), 2(5)).
Therefore,
Y1) (Sn» Sns15Sne1) < Yo (S0,51,51),
hence {s, = 2"(s)}52; is a GMMCS. O
Lemma 5.4 Consider the GMM-space (S, ) and a GMM-¢$-contractive map 2 such that
Yg(0) (R(5), (1), Q1)) < Yo (5,2, 1) (5.1)

forevery s,t,u € S and o € J°. Then Q has a unique fixed point « in S.
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Proof Using Lemma 5.3 and (5.1), we get the sequence {Q"(s)};% is GMMCS for each
s€ Sandlim,_ , Q"(s) =«a € S.

Letting sy = sand s, = Q"(s) for each n > 1, since lim,,_, .o 2"(s) = o, we have lim Y, (s, &,
a) =0 for each o € J°.

On the other hand, we recognize

T¢(a) (Q(a)’ Sn+ls Sn+l) < Yo (ct, Sy 8)

for each n € N and each o > 0. Then
T(b(a) (Q(O[), o, Ol) = nll>rrgo T(p((r) (Q(C{), Sn+lr5n+l)

< lim Y, (o,58,,8,) =0
n— o0

for each o > 0. Therefore, o = Q(«), and « is a fixed point of Q2.
Now, we have to prove that « is the unique fixed point of Q. If 8 is another fixed point
of Q, then for any o € J°

TD’ (a’a’ﬁ) = TJ (Q(O{), Q(O{), Q(ﬁ)) > Td)(a) (Q(O{), Q(O{); Q(,B))

On the other hand, since Y, (s, ¢, £) is nonincreasing and ¢(o) < o, we have

T(b(a)(Q(a): Q(Ol), Q(ﬂ)) = Ta (Q(a)! Q(a)! Q(,B)) = TU (Ol,Ol, ﬂ)

Hence Y, (o, o, B) = C for all ¢ € J°. From Lemma 4.2 we get C = 0. Therefore, « = 8, i.e.,
« is a unique fixed point of Q. 0

6 Concluding remarks
In this paper, we studied some topological properties of Hausdorff distance on generalized
modular metric and could define a generalized modular fractal space.
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