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Abstract
This research article is mainly concerned with the existence of solutions for a coupled
Caputo–Hadamard of nonconvex fractional differential inclusions equipped with
boundary conditions. We derive our main result by applying Mizoguchi–Takahashi’s
fixed point theorem with the help of P-function characterizations.
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1 Introduction
In the previous two decades, fractional calculus has earned sizeable importance owing
to diverse applications in scientific and engineering problems. Fractional-order boundary
value problems, in particular, have became a rapidly growing area due to features of frac-
tional derivatives which make the systems of fractional-order practical and realistic than
the corresponding classical systems. For some current work, we suggest [1–10]. There
are numerous definitions of fractional differentiation operators in the literature, the most
common is the classical Riemann–Liouville type fractional derivative after which a bene-
ficial alternative has been introduced to cope with disadvantages caused by the Riemann–
Liouville expression, the so-called Caputo derivative. Fractional derivatives within the
frame of Hadamard type differ from the Riemann–Liouville type and the Caputo type due
to the appearance of a logarithmic function in the definition of the Hadamard derivatives.
One can find manifold monographs and articles devoted exclusively to the theory of frac-
tional derivatives, not merely on mathematical subjects but also physics, applied sciences,
engineering, etc.; see [11–14].

This article involves the so-called Caputo–Hadamard fractional derivatives which mod-
ifies the Hadamard derivative into a more beneficial type using Caputo approach [15, 16]

Differential inclusions are found to be of great advantage as the field of study for these
inclusions covers theoretical treatment, inequalities, and applications in a variety of dis-
ciplines in physical and industrial sciences. Examples cover optimal control systems [17],
isothermal dynamics with stochastic velocities [18], control problems [19] and sweeping
processes [20]. The study of fractional-order differential inclusions was first launched by
Sayed and Ibrahim [21]. Since then the literature on fractional-order differential inclusions
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has found various qualitative results. We refer the reader to Ref. [22–25] for the recent ad-
vancement on the topic.

The study of coupled systems of fractional-order differential equations has also received
great attention as such systems emerge in a diversity of problems of biological phenomena
and environmental issues. For details and examples, the reader is referred to [26–28] and
the references mentioned therein.

Recently, a class of coupled fractional-order differential inclusion was discussed in [29],
of the form

cDγ w(y) ∈ W
(
y, w(y), z(y)

)
, y ∈ J = [0, T],

cDζ z(y) ∈ Z
(
y, w(y), z(y)

)
y ∈ J = [0, T],

(1.1)

subject to the coupled boundary condition

w(0) = ν1z(T), w′(0) = ν2z′(T),

z(1) = μ1w(T), z′(0) = μ2w′(T),
(1.2)

where cDz is the Caputo–Liouville fractional derivative of order 1 < z ≤ 2, z ∈ (γ , ζ ), W
and Z are given multivalued maps. The authors investigated the existence criteria for so-
lutions by applying standard fixed-point theorems for multivalued maps.

Motivated by the above and inspired by the work in [26–28], in this paper, we study the
following coupled fractional differential inclusions:

HcDγ w(y) ∈ W
(
y, w(y), z(y)

)
, y ∈ J = [1, T],

HcDζ z(y) ∈ Z
(
y, w(y), z(y)

)
, y ∈ J = [1, T],

(1.3)

with uncoupled boundary conditions of the form

w(1) = 0, δw(T) = δw(1) = 0,

z(1) = 0, δz(T) = δz(1) = 0,
(1.4)

where HcDr is the Caputo–Hadamard fractional derivative of order 1 < r ≤ 2, r ∈ (γ , ζ ),
δ = y d

dy , and W , Z : [1, T] ×R×R →L(R) are multivalued maps, L(R) is the family of all
nonempty subsets.

The objective of the present paper is to establish new existence criteria of solutions for
the problem (1.3)–(1.4) by applying Mizoguchi–Takahashi’s fixed point theorem for mul-
tivalued maps. To the best of our knowledge, the application of fixed-point theorem due
to Mizoguchi and Takahashi to the framework of the current problem is new and has not
been investigated elsewhere.

The article is designed as follows. Some introductory materials that we need in the se-
quel are presented in the next section. The main results are derived in Sect. 3. An example
is provided to illustrate the theory in Sect. 4.

2 Axillary results
Let J be a finite interval on R. We denote by � = C([1, T],R) the set of continuous
functions on [1, T] supplied with the norm ‖w‖ = maxθ∈[1,T] |w(θ )|. The product set
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(� × �,‖(w, z)‖) is a Banach space endowed with the norm

∥∥(w, z)
∥∥ = ‖w‖ + ‖z‖.

We define ACn
δ ([1, T],R) as

ACn
δ

(
[1, T],R

)
=

{
w : [1, T] → R and δn–1w(y) ∈ AC

(
[1, T],R

)
, δ = y

d
dy

}
,

where AC([1, T],R) is the set of absolute continuous functions from J into R. L1([1, T],R)
is the set of those Lebesgue measurable functions w : [1, T] →R with the norm

‖w‖1 =
∫ T

1

∣
∣w(y)

∣
∣dy.

Now we recall some essential outlines on multivalued maps [30]. For a normed space
(�,‖ · ‖), let

CL(�) =
{

Q ∈L(�) : Q is closed
}

,

K(�) =
{

Q ∈L(�) : Q is compact
}

,

CB(�) =
{

Q ∈L(�) : Q is closed and bounded
}

.

A multivalued operator G → CL(R) is said to be measurable if for every ς ∈ R, the func-
tion

y → inf
{|ς – z|, z ∈G(y)

}
,

is measurable.
Next, we shall recall some known results concerning fractional operators.

Definition 2.1 ([31]) The fractional-order integral operator of Hadamard type of a func-
tion f ∈ L1([1, T],R) is given as

HIrf (y) =
1

	(r)

∫ y

1

(
log

y
θ

)r–1

f (θ )
dθ

θ
, (2.1)

provided the integral exists.

Definition 2.2 ([15]) For a given function f ∈ ACn
δ ([1, T],R), the Caputo–Hadamard frac-

tional derivative of order r > 0 is defined as follows:

(HcDrf
)
(y) =

1
	(n – r)

∫ y

1

(
log

y
θ

)n–r–1

δnf (θ )
dθ

θ
, (2.2)

where n = [r] + 1, [r] is the integer part of r and 	(·) is the Gamma function defined by
	(w) =

∫ ∞
0 yw–1e–y dy.

If r = n ∈N we have

HcDrf (y) =
(
δnf

)
(y).
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Lemma 2.3 ([15]) For a given function f ∈ ACn
δ ([1, T],R) or f ∈ Cn

δ ([1, T],R), and r ∈ C

we have

HIrHcDrf (y) = f (y) –
n–1∑

j=0

(δjf )(1)
j!

(
log(y)

)j, (2.3)

particularly, for 0 < r < 1, we obtain

HIrHcDrf (y) = f (y) – f (1).

The following lemma is useful in the forthcoming analysis related to the problem (1.3)–
(1.4).

Lemma 2.4 Let ρ1,ρ2 : [1, T] →R be continuous functions, and r ∈ ]1, 2], r ∈ (γ , ζ ). Then
the fractional problem

HcDγ w(y) = ρ1(y), 1 ≤ y ≤ T ,
HcDζ z(y) = ρ2(y), 1 ≤ y ≤ T ,

(2.4)

w(1) = 0, δw(T) = δw(1) = 0,

z(1) = 0, δz(T) = δz(1) = 0,
(2.5)

is equivalent to the system of integral equations

w(y) =
1

	(γ )

∫ y

1

(
log

y
θ

)γ –1

ρ1(θ )
dθ

θ
, (2.6)

z(y) =
1

	(ζ )

∫ y

1

(
log

y
θ

)ζ–1

ρ2(θ )
dθ

θ
. (2.7)

Proof Performing the Hadamard operator of order γ on the first equation in (2.4) and
using Lemma 2.3, we get

w(t) = c1 + c2 log(y) + HIγ ρ1(y), (2.8)

where c1, c2 are arbitrary constants. Taking the δ-derivative in (2.8) we get

(δw)(y) = c2 + H Iγ –1ρ1(y). (2.9)

Using the boundary conditions (δw)(T) = (δw)(1) = 0 in (2.9), we get c2 = 0, then using the
condition w(1) = 0 to (2.8), gives us c1 = 0, therefor we get the solution described in (2.6).
In the same manner we solve the second equation of (2.4) for z we get (2.7). This ends the
proof. �

3 Existence results
Let (�,ρ) be a metric space and Hρ(·, ·) denote the Hausdorff metric on CB(�) defined as

H(Q, D) := max
{

sup
q∈Q

ρ(q, D), sup
d∈D

ρ(d, Q)
}

,
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where ρ(Q, d) = infq∈Q ρ(q, d) and ρ(q, D) = infd∈D ρ(q, d). Then (CB(�), Hρ) is a metric
space [32]. For each (w, z) ∈ (� × �), define the sets of selections of W , Z by

SW ,(w,z) =
{
σ ∈ L1([1, T],R

)
,σ (y) ∈ W

(
y, w(y), z(y)

)
, a.e. y ∈ [1, T]

}

and

SZ,(w,z) =
{
ϑ ∈ L1([1, T],R

)
,ϑ(y) ∈ G

(
y, w(y), z(y)

)
, a.e. y ∈ [1, T]

}
.

Definition 3.1 ([33]) We call a function φ : R+
0 → [0, 1

2 ) a P-function if it satisfies the
conditions

lim sup
θ→y+

φ(θ ) <
1
2

, for every y ∈ R
+
0 . (3.1)

Definition 3.2 ([34, 35]) We call a function α : R+
0 → [0, 1) an MT -function or (R-

function) if it fulfills the Mizoguchi–Takahashi’s condition i.e.

lim sup
θ→y+

α(θ ) < 1, for every y ∈R
+
0 .

Remark 3.3
• φ : R+

0 → [0, 1
2 ) is a P-function if and only if

– for any nonincreasing sequence (zn)n≥1 ∈R
+
0 we obtain 0 ≤ supn≥1 φ(zn) < 1

2 ;
– if φ is a function of semi-contractive factor, that is, for any strictly decreasing

sequence (zn)n≥1 ⊂R
+
0 we have 0 ≤ supn≥1 φ(zn) < 1

2 [33];
– any function defined as κ(y) = φ(y)

2 + 1
4 is also considered as a P-function.

• α : R+
0 → [0, 1) is an MT -function if and only if φ is a function of contractive factor,

that is, for any strictly decreasing sequence (zn)n≥1 ⊂ R
+
0 we have 0 ≤ supn≥1 α(zn) < 1.

• If we define α(y) = 2φ(y) for all y ∈ R
+
0 then α is truly an MT -function. For more

details about MT -functions see [35, 36].

Theorem 3.4 ([34]) Let α : R+
0 → [0, 1) be an MT -function, and � : � → CB(�) be a

multivalued map, where (�,ρ) is a complete metric space. Assume that

Hρ(�w,�z) ≤ α
(
ρ(w, z)

)
ρ(w, z), for all w, z ∈ �.

Then � has a fixed point.

Mizoguchi–Takahashi’s fixed point theorem [34] is a positive answer to the conjecture
of Reich [37].

Definition 3.5 A function (w, z) ∈ AC2
δ ([1, T],R) × AC2

δ ([1, T],R) is called a solution of
the coupled system (1.3) if there exist functions (σ ,ϑ) ∈ L1([1, T],R) × L1([1, T],R) such
that σ (y) ∈ W (y, w(y), z(y)), and ϑ(y) ∈ Z(y, w(y), z(y)), a.e. y ∈ [1, T], and w, z satisfy con-
ditions (1.4) with

w(y) =
1

	(γ )

∫ y

1

(
log

y
θ

)γ –1

σ (θ )
dθ

θ
, y ∈ [1, T], (3.2)
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and

z(y) =
1

	(ζ )

∫ y

1

(
log

y
θ

)ζ–1

ϑ(θ )
dθ

θ
, y ∈ [1, T]. (3.3)

We define the operatorsN1,N2 : �×� →L(�×�) associated with the problem (1.3)–
(1.4) by

N1(w, z) :
{

f1 ∈ � × � : f1(y) =
1

	(γ )

∫ y

1

(
log

y
θ

)γ –1

σ (θ )
dθ

θ
,σ ∈ SW ,(w,z)

}
(3.4)

and

N2(w, z) :
{

f2 ∈ � × � : f2(y) =
1

	(β)

∫ y

1

(
log

y
θ

)ζ–1

ϑ(θ )
dθ

θ
,ϑ ∈ SZ,(w,z)

}
. (3.5)

Then we define an operator N : � × � →L(� × �)

N (w, z)(y) =

[
N1(w, z)(y)
N2(w, z)(y)

]

, (3.6)

where N1 and N2 are, respectively, defined by (3.4) and (3.5).

Theorem 3.6 Let φ1,φ2 : R+
0 → [0, 1

2 ) be two P-functions, and define α on R
+
0 by α(y) =

φ1(y) + φ2(y). Assume that the following hypotheses hold:
(H1) W , Z : [1, T] ×R

2 →K(R) are measurable multi-functions for all w, z ∈R.
(H2) For w, w̄, z, and z̄ ∈R, we have

Hρ

(
W

(
y, w(y), z(y)

)
, W

(
y, w̄(y), z̄(y)

))

≤ 	(γ + 1)
(log(T))γ

φ1
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)

and

Hρ

(
Z
(
y, w(y), z(y)

)
, Z

(
y, w̄(y), z̄(y)

))

≤ 	(ζ + 1)
(log(T))ζ

φ2
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|),

for all y ∈ [1, T].
If α verifies the Mizoguchi–Takahashi’s condition, the problem (1.3)–(1.4) has at least one
solution on [1, T].

Proof We shall show that N : � ×� →L(� ×�) given in (3.6) has a fixed point. First we
show that N is a closed subset of L(� × �) for each (w, z) ∈ � × �.

Let (fn, f̄n) ∈ N (wn, zn) be a sequence such that (fn, f̄n) → (f , f̄ ) in � × � whenever n →
+∞. Then there exist a σn ∈ SW ,(wn ,zn), and ϑn ∈ SZ,(wn ,zn) such that, for each y ∈ [1, T], we



Belmor et al. Advances in Difference Equations        (2021) 2021:377 Page 7 of 12

get

fn(y) =
1

	(γ )

∫ y

1

(
log

y
θ

)γ –1

σn(θ )
dθ

θ
,

f̄n(y) =
1

	(ζ )

∫ y

1

(
log

y
θ

)ζ–1

ϑn(θ )
dθ

θ
.

By compactness of W and Z, the sequences (σn)n≥1 and (ϑn)n≥1 have sub-sequences,
still denoted by (σn)n≥1 and (ϑn)n≥1 which converge strongly to σ ∈ L1([1, T],R) and
ϑ ∈ L1([1, T],R), respectively. Indeed for every � ∈ W (y, w(y), z(y)), we get

∣
∣σn(y) – σ (y)

∣
∣ ≤ ∣

∣σn(y) – �
∣
∣ + |� – σ |,

which implies

∣∣σn(y) – σ (y)
∣∣ ≤ Hρ

(
W (y, wn, zn), W (y, w, z)

)

≤ 	(γ + 1)
(log(T))γ

φ1
(|wn – w| + |zn – z|)(|wn – w| + |zn – z|).

Since ‖(wn – w, zn – z)‖ → 0, we have φ1(‖wn – w, zn – z‖)(‖wn – w, zn – z‖) → 0 and hence
σ ∈ SW ,(w,z). By the same process we show ϑ ∈ SZ,(w,z). Thus, for each y ∈ J

fn(y) → f (y) =
1

	(γ )

∫ y

1

(
log

y
θ

)γ –1

σ (θ )
dθ

θ

and

f̄n(y) → f̄ (y) =
1

	(ζ )

∫ y

1

(
log

y
θ

)ζ–1

ϑ(θ )
dθ

θ
.

So (f , f̄ ) ∈N (w, z) and N is a closed map.
Next for w, w̄, z, z̄ ∈ �, we show

Hρ

(
N (w, z),N (w̄, w̄)

) ≤ α
(‖w – w̄‖ + ‖z – z̄‖)(‖w – w̄‖ + ‖z – z̄‖).

Let ((w, w̄), (z, z̄)) ∈ � × �, and (f1, f̄2) ∈ N (w, z). Then there exist σ1(y) ∈ SW ,(w,z) and
ϑ1(y) ∈ SZ,(w,z) such that, for each y ∈ [1, T],

f1(y) =
1

	(γ )

∫ y

1

(
log

y
θ

)γ –1

σ1(θ )
dθ

θ

and

f̄1(y) =
1

	(ζ )

∫ y

1

(
log

y
θ

)ζ–1

ϑ1(θ )
dθ

θ
.

From (H2) it follows that

Hρ

(
W (y, w, z), W (y, w̄, z̄)

) ≤ 	(γ + 1)
(log(T))γ

φ1
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)



Belmor et al. Advances in Difference Equations        (2021) 2021:377 Page 8 of 12

and

Hρ

(
Z(y, w, z), Z(y, w̄, z̄)

) ≤ 	(ζ + 1)
(log(T))ζ

φ2
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|),

Thus, there exist � ∈ W (y, w̄, z̄) and � ∈ Z(y, w̄, z̄) provided that

∣∣σ1(y) – �
∣∣ ≤ 	(γ + 1)

(log(T))γ
φ1

(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|), y ∈ [1, T],

and

∣
∣ϑ1(y) – �

∣
∣ ≤ 	(ζ + 1)

(log(T))ζ
φ2

(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|), y ∈ [1, T].

Define U1, U2 : [1, T] →L(R) given by

U1(y) =
{
� ∈R :

∣
∣σ1(y) – �

∣
∣ ≤ 	(γ + 1)

(log(T))γ
φ1

(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)
}

and

U2(y) =
{
� ∈ R :

∣
∣ϑ1(y) – �

∣
∣ ≤ 	(ζ + 1)

(log(T))ζ
φ2

(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)
}

.

Since U1(y) ∩ W (y, w̄, z̄) and U2(y) ∩ Z(y, w̄, z̄) are two measurable operators [38], we can
find a measurable selection σ2(y) for U1(y) ∩ W (y, w̄, z̄) and a measurable selection ϑ2(y)
for U2(y) ∩ Z(y, w̄, z̄). Thus σ2(y) ∈ W (y, w̄(y), z̄(y)), ϑ2(y) ∈ Z(y, w̄(y), z̄(y)), and for each
y ∈ [1, T], we have

∣∣σ1(y) – σ2(y)
∣∣ ≤ 	(γ + 1)

(log(T))γ
φ1

(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)

and

∣∣ϑ1(y) – ϑ2(y)
∣∣ ≤ 	(ζ + 1)

(log(T))ζ
φ2

(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|).

We define f2(y) for each y ∈ [1, T], as follows:

f2(y) =
1

	(γ )

∫ y

1

(
log

y
θ

)γ –1

σ2(θ )
dθ

θ

and

f̄2(y) =
1

	(ζ )

∫ y

1

(
log

y
θ

)ζ–1

ϑ2(θ )
dθ

θ
.

Then for y ∈ [1, T]

∣∣f1(y) – f2(y)
∣∣

≤ 1
	(γ )

∫ y

1

(
log

y
θ

)γ –1∣
∣σ1(θ ) – σ2(θ )

∣
∣dθ

θ
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≤ 1
	(γ )

∫ y

1

(
log

y
θ

)γ –1 dθ

θ

	(γ + 1)
(log(T))γ

φ1
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)

≤ (log(T))γ

	(γ + 1)
	(γ + 1)
(log(T))γ

φ1
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)

≤ φ1
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)

and

∣∣f̄1(y) – f̄2(y)
∣∣

≤ 1
	(β)

∫ y

1

(
log

y
θ

)ζ–1∣∣ϑ1(θ ) – ϑ2(θ )
∣∣dθ

θ

≤ 1
	(ζ )

∫ y

1

(
log

y
θ

)ζ–1 dθ

θ

	(ζ + 1)
(log(T))ζ

φ2
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)

≤ (log(T))ζ

	(ζ + 1)
	(β + 1)
(log(T))ζ

φ2
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|)

≤ φ2
(|w – w̄| + |z – z̄|)(|w – w̄| + |z – z̄|).

Therefore,

‖f1 – f2‖ ≤ φ1
(‖w – w̄‖ + ‖z – z̄‖)(‖w – w̄‖ + ‖z – z̄‖),

‖f̄1 – f̄2‖ ≤ φ2
(‖w – w̄‖ + ‖z – z̄‖)(‖w – w̄‖ + ‖z – z̄‖).

It follows that

Hρ

(
N (w, z),N (w̄, z̄)

)

≤ (
φ1

(‖w – w̄‖ + ‖z – z̄‖) + φ2
(‖w – w̄‖ + ‖z – z̄‖))(‖w – w̄‖ + ‖z – z̄‖)

≤ α
(‖w – w̄‖ + ‖z – z̄‖)(‖w – w̄‖ + ‖z – z̄‖),

for all w, w̄, z, z̄ ∈ �. By hypothesis, since the function α fulfilled the Mizoguchi–
Takahashi’s condition it is an MT -function, and by Lemma 3.4 N has a fixed point
(w∗, z∗) ∈ � ×� that is a solution to the system (1.3)–(1.4). The proof is now complete. �

4 Example
Consider the following coupled Caputo–Hadamard fractional differential inclusions with
separated boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HcDγ w(y) ∈ W (y, w(y), z(y)), y ∈ J = [1, 2], 1 < γ ≤ 2,
HcDζ z(y) ∈ Z(y, w(y), z(y)), y ∈ J = [1, 2], 1 < ζ ≤ 2,

w(1) = 0 δw(2) = δw(1) = 0,

z(1) = 0 δz(2) = δz(1) = 0.

(4.1)

Here W , Z : [1, 2] ×R
2 →L(R) are multivalued maps given by

W
(
y, w(y), z(y)

)
=

[
0,

1
3

log
∣
∣z(y)

∣
∣ +

1
(y + 2)

|w(y)|
1 + |w(y)|

]
. (4.2)
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Z
(
y, w(y), z(y)

)
=

[
0,

1
6

arctan2(∣∣w(y)
∣
∣) +

arctan(|z(y)|)
(2y + 4)(1 + |z(y)|)

]
. (4.3)

Choose P-functions by

φ1(u) =

⎧
⎨

⎩

u
3 0 ≤ u < 3

2 ,

0 u ≥ 3
2 ,

and φ2(u) = φ1(u)
2 + 1

4 for all u ∈ [0,∞). It is obvious that φi(u), i = 1, 2, are P-functions.
Consider a sequence {εn} ⊂ [1, 2] ⊂ [0,∞) given by

εn =

⎧
⎨

⎩

3n
2 n < 1,

0 n ≥ 1.

We obtain

Hρ

(
W (y, w, z), W (y, w̄, z̄)

) ≤
∣∣
∣∣
1
3
(
log(z) – log(z̄)

)
∣∣
∣∣ +

∣∣
∣∣

1
(y + 2)

w – w̄
(1 + w)(1 + w̄)

∣∣
∣∣

≤ 1
3
(|z – z̄| + |w – w̄|)

<
	(γ + 1)

log(2)
φ1

(‖w – w̄‖ + ‖z – z̄‖)(‖w – w̄‖ + ‖z – z̄‖)

and

Hρ

(
Z(y, w, z), Z(y, w̄, z̄)

) ≤
∣
∣∣
∣
1
6
(
arctan2(w) – arctan2(w̄)

)
∣
∣∣
∣ +

∣
∣∣
∣

1
2y + 4

arctan(z) – arctan(z̄)
(1 + z)(1 + z̄)

∣
∣∣
∣

≤ 1
6
(|w – w̄| + |z – z̄|)

<
	(ζ + 1)
log(2)

φ2
(‖w – w̄‖ + ‖z – z̄‖)(‖w – w̄‖ + ‖z – z̄‖).

Hence the condition (H2) holds for w, z, z̄ and w̄ ∈ R a.e. 1 < γ , ζ ≤ 2. We see that (εn)n∈N
is a strictly decreasing sequence; then

0 ≤ sup
n∈N

(
φ1(εn)

)
<

1
2

and 0 ≤ sup
n∈N

(
φ2(εn)

)
=

1
2

sup
n∈N

(
φ1(εn)

)
+

1
4

<
1
2

,

sup
n∈N

α(εn) = sup
n∈N

(
φ1(εn) + φ2(εn)

)
<

1
2

+
1
2

< 1.

It ensures that α is a function of a contractive factor, and thus verifies the Mizoguchi–
Takahashi’s condition. We showed that all the hypotheses of Theorem 3.6 are fulfilled,
then the system (4.1) with W and Z provided by (4.2) and (4.3) has at least one solution
on [1, 2].

5 Conclusions
This paper was focused on the existence theory of solutions for coupled fractional differ-
ential inclusions involving Caputo–Hadamard type fractional derivative equipped with
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uncoupled boundary conditions. We make use of Mizoguchi–Takahashi’s fixed point the-
orem for multivalued maps to reach the desired results, which are well illustrated with
the aid of an example. The technique developed in the present work can also be used to
give results for boundary value problems of coupled fractional differential inclusions con-
sisting of different types of fractional derivatives along with a variety of boundary value
conditions.
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