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1 Introduction

The theory of convexity plays a significant role in the development of inequalities. In spite
of that the importance of inequalities containing convex functions is magnificent as it
tackles numerous problems in various fields of mathematics at a substantial rate. Conse-
quently, the study of these inequalities has gained tons of attention (see [3, 9, 24, 36, 43]
and the references cited therein).

The inequalities that include higher order convexity have been utilized by several physi-
cists in higher dimension problems since the founding of higher order convexity by
T. Popoviciu (see [43, p. 15]). Over the recent years, the inequalities for #-convex func-
tions have been generalized by numerous researchers. In [19], Butt et al. obtained useful
identities via Taylor polynomial and generalized Popoviciu inequality for n-convex func-
tions. In [42], Pecari¢ et al. introduced a new class of n-convex functions. They proposed
an interesting theory to evaluate linear operator inequalities utilizing #-convex functions.
This approach leads to various impressive and insightful results with a number of devel-
opments in statistics and operator theory. In [29], Khan et al. generalized new inequalities
of Rényi Shannon entropies and provided the refinement of Jensen’s inequality for higher
order convex functions by utilizing the Montgomery identity. In [20], Butt et al. general-
ized Popoviciu’s inequality for higher order convex functions by employing Fink’s identity
in combination with a new Green’s function. Using Taylor’s polynomial along with new
Green’s functions, Latif et al. in [32] obtained generalized results concerning majoriza-
tion inequality. In [37], Niaz et al. estimated various entropies by utilizing Jensen type
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functionals. In addition, the authors generalized new inequalities for higher order con-
vex functions employing Taylor’s formula. Levinson’s inequality has been generalized for
3-convex function utilizing Green’s functions by Adeel et al. [1]. Moreover, the obtained
results are used in information theory via f-divergence, Shannon entropy, and Rényi di-
vergence. Further, in [2], the authors used Taylor’s polynomial and generalized Levinson
type inequalities for the class of m-convex functions. The obtained results are applied
in information theory. In [45], Siddique et al. used Fink’s identity and Green’s functions
and obtained generalized results related to majorization type inequalities. They also gave a
generalized majorization theorem for higher order convex functions. The obtained results
are applied with regard to Kullback-Leibler divergence and Shannon entropy.

For the past quarter-century, mathematicians have been fascinated by the idea of time
scales. In mathematical analysis, time scales play a significant role. In 1988, Stefan Hilger
initiated the theory of calculus on time scales. Difference calculus, differential calculus,
and quantum calculus are the three most famous examples of calculus on time scales.
Many of the fundamental aspects of time scales were covered by the books of Bohner and
Peterson [15, 16]. During the past decade, several researchers have worked on this sub-
ject and established excellent results (see [4, 5, 10-12, 22, 40, 44, 47] and the references
cited therein). Dynamic equations and inequalities have a number of applications in other
disciplines besides mathematics. For example, population dynamics, physical problems,
quantum mechanics, wave equations, optical problems, heat transfer, and finance prob-
lems [18, 27, 50]. The modern name for a type of calculus that works without the concept
of limits is quantum calculus. It is also known as g-calculus and is originally based on the
idea of finite difference re-scaling. The concept of g-calculus was stated in 1740s, as Euler
introduced the theory of partitions, also known as analytic number theory. At the begin-
ning of the twentieth century, Jackson [26] presented the notion of g-definite integrals and
generalized the concept of g-calculus. Due to significant importance of mathematics, re-
ferred to as modeling of quantum computing, the g-calculus has established a connection
between mathematics and physics. Many of the fundamental aspects of quantum calculus
are covered by the book of Kac and Cheung [27]. The concept of g-derivatives over the
finite intervals was given by Tariboon et al. [48, 49] who discussed numerous quantum
analogues of classical mathematical inequalities. In the last few decades, there has been a
considerable development in g-calculus, see [17, 25, 35, 39, 51-54, 56] and the references
therein. Various Hermite—Hadamard type quantum integral inequalities for convex func-
tions have been established by Sudsutad et al. [46]. Chen and Yang in [21] and Liu and
Yang in [34] established various Chebyshev and Griiss type inequalities on finite intervals
via quantum integrals, respectively. In [8], Alomari proved g-analogue of Bernoulli in-
equality. In [33], Li et al. established a novel quantum integral identity and obtained some
new estimates of Hermite—Hadamard inequalities for quantum integrals. In [23], Erden et
al. used convex functions and established various quantum integral inequalities. A novel
generalized g-integral identity containing g-differentiable function has been established
by Awan et al. [13]. Further considering the class of preinvex functions the obtained re-
sult were used to determine several associated quantum bounds. In [30], Khan et al. es-
tablished quantum Hermite—Hadamard inequality via the Green’s function approach. In
[7], Ali et al. proved some new Ostrowski type integral inequalities for g-differentiable
bounded functions. In [31], Kunt et al. determined a new version of the celebrated Mont-
gomery identity via quantum integral operators. The obtained result is used to establish
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some quantum integral inequalities of Ostrowski type. In [14], Ben et al. established g-
fractional integral inequalities of Henry—Gronwall type.

Despite its resemblance to g-calculus, /-calculus is quite different. It is, in fact, the cal-
culus of finite differences, but a more precise similarity with classical calculus makes it
clear. For example, Newton’s interpolation formula is similar to s-Taylor formula, and Abel
transform is just like the /-integration by parts. The definite /-integral is similar to Rie-
mann sum; consequently, the fundamental theorem of /1-calculus permits one to estimate
finite sums.

Motivated by the above discussion, we generalize an inequality involving Csiszar diver-
gence on time scales for n-convex functions by using Green’s function along with Taylor’s
polynomial as a unification of both discrete and integral cases. In addition, we estimate
Kullback-Leibler divergence, differential entropy, Shannon entropy, Jeffreys distance, and
triangular discrimination on time scales, g-calculus, and /-discrete calculus.

2 Preliminaries
Let us take a quick look at time scales, as well as the essential definitions and notations.
The details can be followed from [15]:

For ¢ € T, the forward jump operator o : T — T is defined as

o(®):=infla e T:a >0}

Right-dense continuous (rd-continuous) function Assume that g: T — R is a function.
Then g is rd-continuous if it is continuous at right-dense points of T and its left-sided
limit is finite at left-dense points of T. The set of rd-continuous functions g : T — R will
be denoted in this paper by Cyq.

The derived set TX is defined as follows: Given T has a left-scattered maximum #z, then
Tk =T — m; else, TX = T.

Delta derivative Let g:T — R and ® € T*. Then g*(9) is defined to be the number (if
it exists) with the property that for any € > 0 there exists a neighborhood { of ¥ such that

lg(c(®)) —g(@) - g*®)(c(¥) —a)| <€|o(®@) -«

, VYa el

Then g is known as delta differentiable at ©#. If T = IR, then g reduces to the usual deriva-
tive g, and g becomes the forward difference operator Ag(®) = g( + 1) — g(?) for T = Z.
If T = g™ = {g" : n € Ny}, g-difference operator (g > 1) is given by

Argy _ g(a) —g(0)
g () = EN T ————.

Existence of antiderivatives Every rd-continuous function has an antiderivative. If % €
T, then F is given by

F(®):= /xf(ﬁ)Aﬁ for x € TX

is an antiderivative of f.
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If T = R, then [ f(9)A® = [*f(®)dv, and [*f()A® = Y51 £(9) for T = N, where
b_
a,b €T witha <b. If T = hZ, h >0 then [*f(9)AD = Z}.’iﬁlf(jh)h and [ f(9)A® =
Z]”;Wll g f(g) for T =g, g>1,a =q", and b = " with m < n, where Ny = N J{0}.

3 Improvement of the inequality involving Csiszar divergence
Let 91,1 € R with #; < % and consider the Green’s function G : [, 2] X [?1,%] — R
defined as follows:

=D)6=0) - for 9, <s <x,
Glx,s) = (3_322)_(2 " o 1
w for x <s=< 192,

where G is convex and continuous corresponding to both variables. It is notable that (see
for example [28, 38, 41, 55]) any function ® € C?([1, %,],R) can be written as

'192—.76 x—ﬁ‘l 02 ”
d(x) = O (v D (V- G(x,s)P ds, 2
()= 5 Bl + 5 (2)+/m (®5)0"(5)ds @

where G(x, s) is defined in (1).
Consider the following set:

b
Q= {q\q:ﬂ‘a[o,oo),q@)zo,/ q(é)Aéﬂ}.
a
The following result is given by Ansari et al. [11].

Theorem A Suppose that ® : [0,00) — R is a convex function on [91,9;] C [0,00) and
M <1< Ifq,q € Qwith ¥ < 31_(5) <, forall & €T, then

2(&)
’ @(6) 9, -1 1-
[ o2 )ae < 2 a0+ =0 ©

Motivated by inequality (3), we begin by the following theorem.

Theorem 1 Assume the hypothesis of Theorem A, then (3) is equivalent to the following
inequality:

b

q:(§) Uy -1 1-%

(é)G( ,S)A$ < G(¥1,8) + G(9,s), (4)
/a & () Dp—01 Dp—01

where G(-,s) is defined in (1) and s € [01, U2]. Moreover, if we reverse the inequality in both

(3) and (4), then again (3) and (4) are equivalent.

Proof Let (3) hold. As the function G(-, s) (s € [¥1, ¥2]) is convex and continuous, therefore
(4) is valid.
Let (4) hold and ® € C?([#%1,9%2], R). Then by using (2) one can get

By —1 1- b qi (&)
)+ 5 () / qz(sw(qZ(E))As

= 192_1 02 "
- [@(mn/ﬁl G(91,5)® (s)ds]
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1_191 02 4
+ PR [@(15‘2)+/ﬁl G(8,5)P (s)ds]
o5, 2R
_L qz(é)[ﬂé(ﬁl) + WQ(%)
P2
+/ G(ql(é),s)cp//(s)dS]Ag. (5)
L3} Q&)

Execute Fubini’s theorem with fab qi(E)AE = fab q2(£)A& =1 in (5) to obtain

By —1 1-% b Q&)
o)+ 5 () - f Q2($)q>(q2(€))A$

Uy —1

P2 1-— 191 o)
= f G(01,5)®"(s)ds + / G(,s)D"(s) ds
¥y =t Jy, Uy =t Jy,

7 " b qQ1 (E) ) ]
_ _—, ds.
v/ﬁl ? (S) |:v/b; qz(S)G<q2($) * AE $

If ® is convex, then ®”(s) > 0 for all s € [, U], and thus inequality (3) holds for every con-
vex function ® € C2([#;, ¥,],R). One can prove the last part of the theorem similarly. O

Remark 1 Assume the hypothesis of Theorem 1, the following two statements are equiv-
alent:

(i) If ® € C([91,92],R) is concave, the inequality in (3) holds in reverse direction.

({5) Foralls € [, ¥5], the reverse inequality in (4) holds.
In addition, if we reverse the inequality in both statements (/}) and (c}), then again (/;) and
(£;) are equivalent.

Theorem 2 Assume the hypothesis of Theorem 1 and define the functional involving
Csiszdr divergence:

Y- —1 b
T D(th) + 3 D) - [ a(6)P(LE) AL

31(®) if the inequality in (4) holds for all s € [V1, 2], ©)
1 =
J7 @E)P(LE)AE - 2oL o)) - =2 0 (0y)

for all s € [$1, ], if the reverse inequality in (4) holds.

Remark 2 Assume the hypothesis of Theorem 2 with & is convex and continuous, then
Ji1(®) = 0.

4 Generalization of an inequality containing Csiszar divergence by Taylor’s

formula

Let us begin by defining the real-valued function
(s=1), = 7)

In [6], Taylor’s formula is given as follows:

Page 5 of 24
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Assume n € Z* and h : [a,b] — R is such that 4"~ is absolutely continuous, then Tay-

lor’s formula at the point ¢ € [a, b] is
h(s)=Tu1(h¢,8) + R,_1(h;¢,s) for all s € [a, b], (8)

where the degree of Taylor polynomial 7,1 (% ¢,x) isn—1, ie.,

n-1
hk
Tn—l(h; [ S) = E #(S - C)kr
k=0 °

and R,,_1(/;¢,s) is defined as

1
(n—1)

Ry 1(h¢,8) = /S W(t)(s—t)" ' dt.

Use Taylor’s formula at the endpoints to obtain

k b
h(s)-gh Dmaf e ot [ os- ot ©)
h(s) = 21: b) (b-s)(-1)" - / b(—l)”’lh”(t)(t — ) dt (10)
il (n=1)!Ja o

We establish the following identities by using (9) and (10).

Theorem 3 Assume n € Z* and the function ® : [1?1,192] — R with @V is absolutely
continuous and v <1 < 0. If q1,qx € Q with ¥; < ‘“ <y forall & €T, then

(u)
aow) = [ a(609) (Z‘D s 191)‘:-2) ds

L ("o 75 s
ol ° O[3t ds)ae (1)

where

~ _ - —th ’ u(§)
J1(G(»9) = Fa—y G019+ - Ea— G(ﬁz,S)—fa qz(S)G<q2(§),S)A§ (12)

and

¥y 1
31(0) = [ 3:(66,9) (Z ;’j)( —02)‘:-2) ds

1 2

L (" won( [ 5 s
UEET /,9 ? m(/ﬁl‘“(G("s))(s‘tﬁ d8>df’ (13)

where J1(G(:,5)) is given in (12).
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Proof Use (2) in (6) and the linearity of J;(-) to obtain

2
3(0w) - [ (6@ 6 (14)

1

On the function ®, apply Taylor’s formula (8) at the point ©%; and replace n with n — 2
(n > 3) or take the second derivative of (8) with ¢ = ©%; to obtain

n-1

ey CD(M)(ﬂl) u-2 : (n) n-3
® (s)_; o T /mq) (t)(s -1 dt, (15)
and for ¢ = ¥, one gets
" — CD(M)(ﬂQ) u-2 2 (n) n-3
® (s):; T (s — )" +(n_3)!/s d () (s — £)" 3 dt. (16)

Use (15) in (14) to obtain

R o ()
B(ew) =) o=
=2

)
(G(9) (s = 1) 2 ds
9

¥y s
! / 31(G(9) / O (e)(s — 1) dt ds. (17)

+
(71 _3)' 91 91

Utilize Fubini’s theorem on the final term of (17) to obtain (11). Furthermore, use (16) in
(14) and execute Fubini’s theorem to get (13). a

Corollary 1 Choose T = R in Theorem 3 to get the following new identities:

Ly [t N ()
a(@0) = [ 2(669) (Z - _(Z;!’ (s— m)z-2> ds

1 u=2

—1 ” () " N n-3
+ (l’l _ 3), [91 o (t) (/t JI(G(VS))(S_ t)+ dS) dt,

where

. -1 1-9 b qé)
Ji(@() = 5, =5, YOV + -0 - f q2($)<1>[q2($)]d$ (18)

and

R - ~ @(6)
31(69) = 5 ﬁlewl,sn 5y G0 - / ©(6)G (2@) )ds. (19)

Also

1

)
a(@0) = [ 2(669) (Z “29)2,’ m”) ds

1 2

" ls)v f "’<f>( / (G(-,s»(s—t)z*ds) dt,

where J1(®(-)) and J1(G(:,s)) are given in (18) and (19) respectively.

Page 7 of 24
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Corollary 2 Put T = hZ (h > 0) in Theorem 3 to obtain the following new identities in

h-discrete calculus:

(o) - /ﬂ 31(6(.9) (ZT D s- ot 2) ds

! " () ” R n-3
+ (n—3)! /01 @ (ﬂ(ﬁ Jl(G(',S))(S—t)+ ds)dt,

where
by
~ U2 -1 9 (h)
31(00) = 200 + 5 o) - IZqzoh)hcb( o) (20)
/
3(669) = 725 - G(01,5) + - G9,9) - Zcu(;h)hG(‘“gh ) (21)
=h
and
D) 1
~ _ u-2
a(ew) - [ 31(609) (X; st )ds
Do) t
+ ﬁ /17 1 CD(”)(t)( /,, 1 31(GG,s)) (s —8)"3 a’s) dt,
where J1(®(-)) and J1(G(-,s)) are given in (20) and (21) respectively.
Remark 3 Choose & = 1 in Example 2. Suppose that @ = 0, b = n, q:(j) = (q:1); and q»(j) =
(q2); to get the following new identities in the discrete case:
9y 1
Ji(e() = /ﬁ 1 31(G(-9)) (ij ~o D5 gy 2)
1 2 0 . n-3
+ o3 /01 P (t)(/t (G, 9) (s - o)) ds) dt,

where

. _ -1 1-0, ~, (@)

(@) = P () + 95— 0, () - ]Zl:(%);q’(@) (22)
and

31(G(,9)) = S_‘;lc;(m,sn;z G(9,5) - Z(qz), (E‘“;’ ) (23)

Page 8 of 24
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Also
1

aow) - [ )(Z 0 —m)‘:*) ds

2

L (" ow( [ 5 s
o3 /ﬁl ® (t)(/ﬁl"l(G("s))(S—tL ds)alt,

where J1(®(-)) and J1(G(-,s)) are given in (22) and (23) respectively.

Corollary 3 Let T = 4", g > 1, a = ¢, and b = q" with m < n to get the following new
identities in q-calculus:

1

2 u)
a(@0) = [ 2(669) (Z s —m)ﬁ) ds

2

T 13)1 /ﬂ ")(f)( / (G(-,s))(s—t)'j‘3ds> dt,

where
3(00) = 5Bl + ;;_f;lwz)—iq’”m(iﬁ(iﬁji), 24)
31(Gl9) = 1;’; — Gwl,s)+ G(ﬂz,s)—gqﬁlqz(i)e‘(gﬁi,s) (25)
and

P2 1
a(ew) - [ u(e, )(Z (Zj) 192)'1_2) ds
1 2

2 t
" -1 3)! /171 ") ( /1,1 31(G(9)) s = 1) ds) dt,

where J1(®(-)) and J1(G(-, s)) are given in (24) and (25) respectively.

Theorem 4 Assume the hypothesis of Theorem 3. Also suppose that ® is an n-convex func-
tion with ®"Y is absolutely continuous. If

L)
/ 31(GG9)s— 0P ds >0, te[9, 0], (26)
then
Dy n-1 q) u)
J(Pk) = / (9)) ( s—ﬁl)” 2) ds (27)
91 U= (
holds, and if

/ 31 (G- ds <0, e [91,0)] (28)
b2

1
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then

R b2 o O (9,) .
Ji(ew) = /ﬁ (22; - 2)2,( — )" 2) ds (29)

1

holds.

Proof Since ®"-V is absolutely continuous on [}, ], " exists almost everywhere.
Given that ® is #-convex, for all x € [191,19,], we have @™ (x) > 0 (see [43, p. 16]). Use
Theorem 3 to get (27) and (29) respectively. O

The next result is an instant significance of Theorem 4 as J;($) > 0.
Corollary 4 Under the assumptions of Theorem 3 with q € C([a, b]t, R) positive such that

[ q(t)At = 1. Then
(i) If @ is an n-convex function (n > 3), then (27) holds for n € {3,...}. Further, if

then
31(‘19(96)) >0 (30)

holds.
(i) For even n, (29) is valid. In addition, if

then (30) is valid too.

Remark 4 1t is also possible to compute Griiss, CebySev, and Ostrowski type bounds cor-

responding to following functional:

0(®)= 2200 + 5 () - / w@e( 2 )ac.

5 Applications to information theory

Shannon entropy is the fundamental term in information theory, and it is often dealt with
measure of uncertainty. The random variable, entropy, is characterized regarding its prob-
ability distribution, and it can appear as a better measure of uncertainty or predictability.
Shannon entropy allows the estimation of the normal least number of bits essential to

encode a string of symbols based on alphabet size and frequency of symbols.

Page 10 of 24
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5.1 Differential entropy on time scales

On time scale, Ansari et al. [10] introduced the differential entropy which is given as

b
() o= / q(£) log %As, (31)

where b > 1 and X is a continuous random variable and q is a positive density function on
T to X such that fab q(£) A& =1, whenever the integral exists.

Q)

Theorem 5 Let X be a continuous random variable and q1,q € Q with ¥ < o = Ty
forall§ € T.Ifnisodd (n=3,5,...), then
n o (D= 1)(s = )
31(')2/ 31(G(-9)) (Z 50 ) ds (32)
3! u=2 1
and
Dp) n-1 -1 u—lu_l s— 1 u-2
1) 2/ 31(G(»9) <Z( L 19”)( 2); ds, (33)
U1 u=2 2
where
3100 = 2L tog gy + ~— L 1ogp /b (€)logq(€) A& — (%)
)= 0 + 0 - 0 — I
J1 E— gV1 e gV2 a¢l2 gq1 b
and

31(605) = 52

-1 1-9 b q(€)
2 — U1 GO1,8) + ¥ -t G025) - /a qz(é)G((h(é),s) A&

Proof Since the Green’s function G(:,s) given in (1) is convex, by using Remark 2,
J1G(-,5) > 0 and (s — £)"* > 0 for n = 3,5,.... The function ®(x) := logx is n-convex for
n=3,5,.... Use ®(x) = logx in Theorem 4, then (27) and (29) become (32) and (33), re-

spectively, where

5 b
(%) = / @ (E)log —— AE. -

1
q2(8)

Example1 Choose T =R, in Theorem 5, inequalities(32) and (33) take the following form,

respectively:

N 9y —1 1- b q(€)
‘“(')3/19 [192—271 G0n) s ﬁz—ﬁlG(ﬁz’S)_fa qﬂg)G(qﬂf)”) ds}

n-1 Uu— U=
5 <Z (_1) l(l,t_ﬁlft)(s—ﬁl)+ 2>ds (34)
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and

D2 9y —
31(-)2/ [ 2
o 192—191

n-1 u— u-2
X(Z (1) l(u—ﬁlg)(s—ﬁzh ) s

u=2

1},
(1S)+192_19

and

b
h5(X) ::/ q2(£)log dk.

1
Q&)

- b q (&) }
Gl92,5) - / q2<s>G< 9 )dé

(35)

_y b -
L togn - f 0(6) log a1 (€) d& — Ty (X)

Example2 Choose T = hZ, h > 0 in Theorem 5, inequalities (32) and (33) take the follow-

ing form in /-discrete calculus, respectively:

92| 9, -1 1-%
J1(:) > G(%,
\;10_/01 [ﬁz—z% (01,5)+ 5

n-1 u— u-2
5 <Z (1) 1(u—ﬁ1¥>(s—ﬁ1>+ ) i

u=2

and

92| 9, -1
J1(:) > G(,
\n()_/ﬁl [m—m 0,9+ 5

n-1 u— U—
§ (Z (=1)*“(u -ﬁ})(s—ﬁzx 2) s

u=2

G(ﬂZy

where

¥y —

and

G(ﬁz, S)

—
1911 (— log(z?z)) +

by
. , q:(jh)
i ZqZ(’h)h(;(qz(ih)’Sﬂ

a

(36)

Seme(2)

a

(37)

b
by

Z Q@ (h)hlog[qi(jh)h] + S

=i

Page 12 of 24
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Remark 5 Choose /1 = 1 in Example 2. Suppose that 2 = 0, b = n, q.(j) = (q1);, and qu () =
(q); to get the following new forms of inequalities (32) and (33), respectively:

N 21 9y —1 1 (qu);
1}1(')2/01 |:192_191G(l91’5)+192— (%9, 5) Z(‘h <( )] )j|

n-1 u— u-2
y <22: (-1) l(u}lf)(s_ﬁl)+ ) i 8
and
N U2 9y -1
J10) 2/191 |:192_191 (191,3)+ P G(ﬁzr Z(Ch <( )] ):|
n-1 u—1 u-2
y <22: (-1) (M—ﬁlg)(s—ﬁzh ) s 39)
where
19 n
WO =5 (1o (9)) + 1;1 (1og<192>)—;(qz)jlog<ql)j—
and

- 1
§:= ilog ——
le((h)} og (qZ)j

is discrete Shannon entropy.

Example 3 Let T = ¢"°, g > 1, a = ¢", and b = q" with m < n, inequalities (32) and (33)
take the following form in quantum calculus, respectively:

N 2| 9, -1 1-% — +1 q(q)
‘n(-)z/ﬂl [ﬁz_ﬁlel,snﬂ —5- G029 1qu/ @(7)G ( @) s)
n-1 u— u—
§ (Z; (-1 (u —ﬁl{{)(s—m 2) s @0)
and
R 2 9,1 < o)
J1() = /191 |:192_191 (191,8)+ G(7}27 ;:ql (q]) (qz(qj),s>
n-1 u-1 u-2
5 (Z (1) <u—§1u>(s—z>‘2>+ ) s @)
u=2 2
where
n-1
90 = 5 o) + 5 — - log(02) - ¢ e () ogla ()] - S,

] m
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and

n-1
S, = 1 N1 .
’ ;‘f L (@) o5

5.2 Kullback-Leibler divergence
Ansari et al. [11] defined the Kullback—Leibler divergence on time scale by

b
()
Dlane) - ql(snn[‘“ At @)
a q2 (E)
Theorem 6 Let X be a continuous random variable and q,,q € Q with ¥, < g;—g; <1

forallé eT.Ifnisodd (n=3,5,...), then

b2 n-1 -1 u-1(, _ ) u-2
no= [ (609) <22j %) ds (43)
and
» n-1 -1 -2
~ 2 (1" (s =)
30> /ﬂ 3(66) (Z ﬁ—z) ds, (44)
where
Ji() = 1;,;2__1911 (=1 1Indq) + 1912__13;1 (=92 In ) + D(q1,q2)

and

9 — 1-9 b
31(G(9)) = 022_ ;1 G(91,5) + 192—1911 G(zb,s)—/a qz(%‘)GGlg;»S)Ag’

where D(qy,qy) given in (42).

Proof The function ®(x) := —xInx is n-convex for n = 3,5,.... Use ®(x) = —xInx and ob-

serve the analogous method as in the proof of Theorem 5 to obtain (43) and (44). O

Example 4 Choose T = R in Theorem 6, inequalities(43) and (44) take the following form,

respectively:

N R, -1 1- b q(€)
J1() = /1?1 [192—271 G(v91,8) + 95— 0, G(ﬁz»S)—L. qZ(E)G<q2(‘§)’S) dé}

n-1 u— U—
5 (Z %) s (a5)

u=2
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and
J1() = /192|: 21 G(91,s) + 1-t G S)_/b (S)G(ql—(g) S)d§:|
n= 9 LT -1 v I a & @E)’
n-1 u-1 u-2
x (Z SO l;f,fl ek )ds, (46)
u=2 2
where

Uy —1 1-9%
Ji1() = -t In? — Inv D B
1) 192_191( 1In 1)+z92—01( 2In®) + Dxi(q1,92)

and

b
Dx1.(qu, q2) 1=/ q:1(§)In :Eg;dé

a

Example 5 Choose T = hZ (h > 1) in Theorem 6, inequalities (43) and (44) take the fol-

lowing form in /-discrete calculus, respectively:

P2 _ _ %_1 .
Ji0) z/ [% - G(ﬁl,s)+l; i G(ﬁz,s)—Z%(ih)hc;(il%,ﬁ}

9 | P2—th 2=t —
=4
n-1
-1 u-1 — 9 u-2
x < EDT =) )ds (47)
P
u=2

and

D) _ _ %_1 .
?n(-)z/ [% L G91,5) + ~— G(l?z,S)—ZCI2(ih)hG<:ng;,s>:|
U

L P2t h —th —
J=h
n-1
(D" (s —9y)42
(S ) g, (48)
u=2 02

where

Ty -1 1-9 -
()= —2—— (= Invy) + = (=92 In9,) + Dyr (qu, @2)

th —th ¥y —h
and
b
= , ih)
Dxi(q1,q2) := q:(Gh)h1n Ch({ .
qQ2(jh)

~.
1]
=
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Remark 6 Choose /1 =1 in Example 5. Suppose that a = 0, b = n, q.(j) = (q1);, and qu(j) =
(qy); to get the following new forms of inequalities (43) and (44), respectively:

. 2 9y -1 (@),
J1() = /191 |:1922_ . G(91,8) + 192 G(l72, Z(qz < Y >i|

2)]

n-1
(-1 H(s - vy)?
(o), -
and
N 2l 9y -1 1- (@),
J1() = /191 |:192 s G(91,8) + F- G(93,s) Z(qz <( )] )i|
n-1
(1) (s - 9p)42
X <u2=2: le> dS, (50)
where
00 = 5 o) + 5= L (-0 In0) + KLlan )
y— U -t
and
KL(q1,q2) : Z(ql), ql)’

is discrete Kullback—Leibler divergence.

Example6 Choose T =¢"°,q>1,a=q", and b = q" with m < n, inequalities (43) and (44)
take the following form in g-calculus, respectively:

5] _
OE / va-1
51 192 - 191

n-1

) J
o £ ()]

] m

G(l?l,S) +

n-1
-1 u-1 -9 u-2
X Z% ds (51)
u=2 191
and
U2l 9y -1 1-9 Q. (q)
J10) > G(91,s) + G(92,5) + ( )
. /m |:192—?91 1,9) -t @, Zq] Q7))
n-1
-1 u-1¢(c_ u-2
x Z—( ) (‘:_1792)+ ds, (52)
u=2 192
where
Uy — 1-v
N =5 ﬁ( Drindy) + S—-(=02 In92) + KLy (a1 q2)

Page 16 of 24



Ansari et al. Advances in Difference Equations (2021) 2021:374

and

n-1 /
. N q(q)
KL, (q1,q) := Zq’ 'q1(4) In ql(qi)'

jm

5.3 Jeffreys distance
Ansari et al. [11] defined the Jeffreys distance on time scale by

b
Dy(anqw) - f (01(6) - 0:(8)) ln[:;g;]ms. (53)

Theorem 7 Let X be a continuous random variable and q,,q € Q with ¥, < E;EE <
foralls e T.Ifnisodd (n=3,5,...), then

V9 n-1 _
ROE /ﬁ | 31(G(-,s))<u22:(—1)””(s—z%)ﬁ2[ ﬂ;-l +“ﬁ—{,1]>ds (54)
and
102 [ acen (S ey o[ -1 4214 (55)
where
P

41
1-%)Inv 1-19)Ind, +D ,q2),
02_19( 1)In 1+z9—z91( 2)In ¥y + Dy(q1,q2)

Dj(q1,qy) is defined in (53), and

:‘1 (G(,S)) =

Gl?, +
792—?91 (%1,9) 192—791

b
Gl02,5) / qz(S)G< g; )As.

Proof The function ®(x) := (1 — x)Inx is n-convex for n = 3,5,.... Use ®(x) = (1 —x)Inx
and observe the analogous method like in the proof of Theorem 5 to obtain (54) and (55). [J

Example 7 Choose T = R, in Theorem 7, inequalities (54) and (55) take the following
form, respectively:

~ 9, -1 1-% b q(é)
w0z [ 2609+ S5 G - [ a6 B e) ae]

n-1 1 -1
X (;(—I)M*I(s - 191)?‘2[19{“ + MI,T]) ds (56)

and

R by ﬁZ ﬁ (E)
dl(.)z/m |:192—l71 G(D1,8) + 192_191G(l92,8)—‘/; 2(§)G< (S) )dé]

n-1 1 1
x <MX_2:(—1)”+1(S - 192)f_2|:1954_1 + LZ’T]) ds, (57)

Page 17 of 24



Ansari et al. Advances in Difference Equations (2021) 2021:374

where

0% 1-v%
= (1 ) Inv; + (1 —99)In®y + Dy (q1, q2)

31() = 9y — D 9y — D

and

q(§)
q2(8)

b
Dialan @) = / [1(8) - qu(®)]1n L&) g

Example 8 Choose T = hZ (h > 1) in Theorem 7, inequalities (54) and (55) take the fol-

lowing form in /-discrete calculus, respectively:

9 | 22— th -t par @)’
“h
A 1 u-1
u+l u-2 -
x (;(-1) (s—01)" [ﬁf_l + T]) ds (58)

and

by
~ 2 1?2—1 1—191 ’ ql(]h)
ln(~)z/ﬂ1 |:192_01G(191,s)+ﬂZ_ﬁlG(ﬂz,S) Z @) hG( z(lh)’s)i|

n-1
X <Z(—1)”“(s - 02)1‘2[1;_1 + ”ﬁ—;l]) ds, (59)
u=2

where
310 = 271 (1) in() + ——21 (1= 95) In(9) + Dy, (@1 40,
J1 EY—y 1 1 EREY 2 2 7.\d1,q2
and
- ()
~ . q:
D , = - 1 .
. (41, q2) j_Zg(ql ‘h)(]h)hnqz(jh)
“h

Remark7 Put hh =1 in Example 8. Suppose that a = 0, b = n, q1(j) = (q1);, and qu(j) =

to get the following new forms of inequalities (54) and (55), respectively:

2| 9, -1
J1() = /01 |:1922_ ey G(91,8) + P G(ﬁZr Z(Ch <(q1 ):|

(Z( 1)“1(s - )”2[ — +”ﬁ—;1])ds (60)
l 1
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and

[ 9,1 - @)
a0z [ [%_ﬁlel,s) § G0, Z(‘h < )}

— u+1 u 2 1 u-1
X Z 1951_1 + 19‘_; dS, (61)

By — 41
192_19 (1—191)1H(l91)+ 292_191(1—192)111(15‘2)+]a((11,C12)

and

n

Ja(@1,@2) =) (a1 — q2);In

j=1

(qu);
(CI2);'

is discrete Jeffreys distance.

Example9 Choose T =¢"°,q>1,a =q", and b = ¢" with m < n, inequalities (54) and (55)

take the following form in g-calculus:

. 2l 9,1 1-9 g (e D@
‘“(')Z/m [ﬁz—mG(ﬂl’S) " 50, 00 IXm:QJ v (qZ(q/),s>
n-1
u+l ’4 2 1 u-1
x <; |:19{4_1 + T{{])dS (62)

and

N 2l 9y -1 1- 0 e D)
111(')2/0 |:192_191G(l91»3)“'19 G(02’ qu ( ) ( 2(qj)’s>:|

1 2= j=m

n-1 1 -1
x <Z(—1)”+1(S - ﬁz)f“z[ﬁg_l + ul’?]) ds, (63)

where
00 = 525 (=9I + 5= (1= 9 n(9) + Dy (1,02
and
= : N (@)
Dy(a1,9) = )¢ [a1(d) - @(7)]In =

Q)

j=m
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5.4 Triangular discrimination
Ansari et al. [11] defined the triangular discrimination on time scales by

b [q(&) - qi(6))? A

. e@ @) (64

Da(q1,q2) =

Theorem 8 Let X be a continuous random variable and qi,q € Q with ¥ < 3;8 <1
forallé eT.Ifnisodd (n=3,5,...), then

31(')>/§ \51 G( S) <Z4 u+1($—191)” 2%) ds (65)

n-1

12 —_
OE /ﬁ 31(GC9) (Z‘L(—l)””(s—ﬁz)fz%) ds, (66)

u=2

0 Or—1 (01 -1)?% 1-0; (9,-1)> Dal )
)= - + ) )
o Dty i+l Dty vl AR

Da(qi1,q2) is given in (64), and

_ _ b
31(669) = 27 L G919 + 2 G930 - / q2<s>G<$8s)As.

Proof The function ®(x) := — @ +11) is n-convex for n = 3,5,.... Use ®(x) = 1 2 and ob-

serve the same method like in the proof of Theorem 5 to obtam (65) and (66). a

Example 10 Choose T = R in Theorem 8, inequalities (65) and (66) take the following
form, respectively:

b)) _ _ b
30 = fﬂ [1’2 L G01,5) + 271 Gy s) - f ¢I2($)G<ql($):s>d§:|

By — 0 By — ()
X (ZX:: 4(-1)"“(s - ﬁl)z-z%> ds (67)
and
2002 [T 0+ oo [ ioo(3815)a]
<Z4 1"+ (s — 9,)"" 2%) ds, (68)
where

0 O-1 (0 -1)?% 1-9; (9,-1) Dy ( )
D)= — — + B
J1 Dr—D1 il Dty Dpal AP
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and

P @) - q ()
DA“(ql’qZ)'_/a q1 () + @ (&) @

is triangular discrimination.

Example 11 Choose T = hZ (h > 1) in Theorem 8, inequalities (65) and (66) take the fol-

lowing form in k-discrete calculus, respectively:

. [ 9,1 1- 9, S agh)
no= [ [ TG0+ 5 Gwz,s)—Zqz(/h)hG<q2(].h),s>

1 =4
T h

n-1
u+l u-2 M(Lt - 1)
X <u2=2: 4(—1) (S — 191)+ W) ds (69)

and

R 2l 9,1 S agh)
30 = /ﬁ [m— ﬁlcwl,sn G(ﬂz, Zqzvh)he<q2(],h),s>

! j=

n-1
u+l u-2 M(M 1)
x <22: 4(=1)"" (s — )" W) ds, (70)

where

Ur—1 (-1 1-9; (9,-1)2
31() = — - D ,
J10) B0 9ir1 D0, D71 +Dn,(q1,92)

and

g_l . :

) _ - hlae(y) - ()
Da,(@1,4:) = ]Z 01(5) + @)
“h

Remark 8 Take h = 1in Example 11 and consider a = 0, b = 1, q;(j) = (q1);, and qa(j) = (q2);
to get the following new forms of inequalities (65) and (66), respectively:

2| 9, -1
J1() = /01 |:1922_ ey G(91,8) + P G(ﬁZr Z(Ch <(q1 ):|

— u+ u- u(u_l)
X <Z4(—1) 1(5—191)+ ZW ds (71)

u=2
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and
3(>>/02 2 Gl01,5) + 5 G0 Z( ( )
N S ’
B A A T DG\ (),
L u(u—1)
u+l u-2
X <u2=2:4( ) + (5—192) m) dS, (72)
where
~ Pr—1 (-1 1-9 (9 -1)
) = — —_ A ,
R S S T S s S B UL S
and

_ v @) - (@)
Alq, q2) = 1:21 (@2); + (qu);

is discrete triangular discrimination.

Example 12 Choose T = ¢™°, g > 1, a = g™, and b = ¢" with m < n, inequalities (65) and
(66) take the following form in g-calculus, respectively:

P2 _ n-1 X J
0= /ﬂ [ l;’; 2 011 G(01,5)+ Gwz, -Y ¢ (4)G (q;g];s>:|
1 j=m
L u(u—-1)
u+l u-2
X (MZ; 4(-1)"* (s — 01)" W) ds (73)
and
~ 2 9y -1 1-9 - 1 q(7)
H0) 2/191 |:172—191 GOw.s) + th -t G(92:9) Zm:q’ ( ) (th(q/),S)
L u(u—1)
u+l u-2 -
X (22: 4(=1)" (s — 9)¥ W) ds, (74)
where
N U=l (-1 1= (9 -1)
\11(')——192_191 9rl D0, Dpr1 +Da,(q1,9>)
and

[ @) - q(@))?
Doy =34 )

/ m
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