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Abstract
In this manuscript, we study a certain classical second-order fully nonlinear coupled
system with generalized nonlinear coupled boundary conditions satisfying the
monotone assumptions. Our new results unify the existence criteria of certain linear
and nonlinear boundary value problems (BVPs) that have been previously studied on
a case-by-case basis; for example, Dirichlet and Neumann are special cases. The
common feature is that the solution of each BVPs lies in a sector defined by
well-ordered coupled lower and upper solutions. The tools we use are the coupled
lower and upper solutions approach along with some results of fixed point theory. By
means of the coupled lower and upper solutions approach, the considered BVPs are
logically modified to new problems, known as modified BVPs. The solution of the
modified BVPs leads to the solution of the original BVPs. In our case, we only require
the Nagumo condition to get a priori bound on the derivatives of the solution
function. Further, we extend the results presented in (Franco et al. in Extr. Math.
18(2):153–160, 2003; Franco et al. in Appl. Math. Comput. 153:793–802, 2004; Franco
and O’Regan in Arch. Inequal. Appl. 1:423–430, 2003; Asif et al. in Bound. Value Probl.
2015:134, 2015). Finally, as an application, we consider the fully nonlinear coupled
mass-spring model.
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1 Introduction
We establish the existence criteria to investigate the existence of solution for the fully
nonlinear second-order coupled systems of the type

–v′′
1(s) = h1

(
s, v1(s), v2(s), v′

1(s), v′
2(s)

)
, s ∈ [0, 1],

–v′′
2(s) = h2

(
s, v1(s), v2(s), v′

1(s), v′
2(s)

)
, s ∈ [0, 1], (1)
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subject to the generalized nonlinear boundary conditions (NBCs) of the type

ϒ1
(
v1(0), v2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)
= (0, 0),

ϒ2
(
v1(0), v2(0), v1(1), v2(1), v′

1(1), v′
2(1)

)
= (0, 0), (2)

where h1, h2 : [0, 1] ×R
4 →R, and ϒ1,ϒ2 : R6 →R

2 are continuous functions.
The nonlinear boundary value problems (NBVPs), (1)–(2) include some special cases,

for instance, if ϒ1(a1, a2, a3, a4, a5, a6) = (α1 –a1,α2 –a2) and ϒ2(a1, a2, a3, a4, a5, a6) = (α3 –
a3,α4 – a4) with α1,α2,α3,α4 ∈ R, then (1)–(2) is the Dirichlet boundary value problem
(BVP) with

v1(0) = α1, v2(0) = α2, (3)

v1(1) = α3, v2(1) = α4.

If ϒ1(a1, a2, a3, a4, a5, a6) = (–α1 + a5, –α2 + a6) and ϒ2(a1, a2, a3, a4, a5, a6) = (–α3 +
a5, –α4 + a6) with α1,α2,α3,α4 ∈R, then (1)–(2) is the Neumann BVP with

v′
1(0) = α1, v′

2(0) = α2, (4)

v′
1(1) = α3, v′

2(1) = α4.

If ϒ1(a1, a2, a3, a4, a5, a6) = (α1a1 –α2a5 –b1,α1a2 –α2a6 –b2) and ϒ2(a1, a2, a3, a4, a5, a6) =
(α3a3 + α4a5 – b1,α3a4 + α4a6 + b2) with α1,α2,α3,α4, b1, b2 ∈R, then (1)–(2) is the mixed
BVP with

α1v1(0) – α2v′
1(0) = b1, α3v1(1) + α4v′

1(1) = b1, (5)

α1v2(0) – α2v′
2(0) = b2, α3v2(1) + α4v′

2(1) = b2.

Our motivation to study system (1) is that it had made a considerable impact on the
study of linear and nonlinear partial differential equations (PDEs), see e.g. [5–10] and the
references therein. For instance, if the nonlinear Laplace and heat equations (HEqs) have
the stationary solutions, then using appropriate substitutions, these both PDEs are trans-
formed into the second-order nonlinear ordinary differential equations of the type (1),
see e.g. [6] and the references therein. Particularly, (1)–(5) models the coupled thermostat
phenomena for choosing α3 arbitrary, α2 = 1 = α4, and α1 = b1 = b2 = 0. The solution of
ordinary differential systems (ODSs) (1) leads to the stationary solution of the system of
HEqs, corresponding to a heated bar of length 1, with a controller at s = 1, and sensors are
being used to provide the feedback to the endpoints where controllers add or remove heat
according to the feedback as received by the sensors, see e.g. [11–13] and the references
therein.

Another motivation to study (1) is the nonlinear coupled mass-spring phenomena mod-
eled by classical second-order nonlinear coupled systems. System (1) with appropriate
boundary conditions (BCs) is used in determining the motion of two springs with weights
attached, hung in series from the ceiling, see e.g. [14]. By considering the effects of non-
linearities, viscous damping, restoring forces, and sinusoidal forcing terms, we solve the
coupled mass-spring model with Dirichlet type BCs (3) in Sect. 4.
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Another important factor to study the NBVPs is their applicability in modeling various
chemical, physical, mechanical, and biological phenomena, see e.g. [15–18] and the ref-
erences therein. In particular, the nonlinear second-order coupled ODSs have been used
in explaining various applied phenomena, such as reaction-diffusion processes, Lotka–
Volterra models, Sturm–Liouville problems, interaction systems, and some chemical and
biological processes, see e.g. [19–24] and the references therein. For studying the appli-
cations of NBVPs in engineering and physics, we refer the reader to study Chap. 1 of [25]
and [26]. Some works related to nonlinear fractional BVPs for the reader’s interest are also
listed there (see [27–33] and the references therein).

The applications of NBVPs with generalized NBCs in various areas of physical sciences
motivated the researchers towards the development of existence and uniqueness results
by employing the lower and upper solutions approach or fixed point index theory in cone.
Among them some results are presented as follows.

In [1], the authors developed the new approach based on the idea of coupled lower and
upper solutions to study the existence of solutions for the following nonlinear BVPs (no-
tations here are changed from the original papers):

v′
1(s) = h1

(
s, v1(s)

)
, s ∈ [0, S], S > 0,

subject to the following generalized NBCs:

ϒ1
(
v1(0), v1(S)

)
.

In [2], the authors developed a generalized technique to unify the existence criteria for
certain BVPs which have been previously studied on a case-by-case basis. For instance, the
initial value problems, the BVPs, and anti-periodic BVPs were the special cases. In par-
ticular, the following BVPs were considered (notations here are changed from the original
papers):

v′
1(s) = H1

(
s, v1(s)

)
, s ∈ [0, S], S > 0,

subject to the following generalized NBCs:

ϒ1
(
v1(0), v1(S)

)
.

The approach used in [2] was topological in nature, demonstrated in the form of differen-
tial inequalities (lower and upper solutions, coupled lower and upper solutions).

The results of [2] and [1] were extended in [3] to the second-order ordinary NBVPs with
the generalized NBCs.

In [4], the authors investigated the existence results for the following first-order nonlin-
ear coupled ODSs (notations here are changed from the original papers):

v′
1(s) = h1

(
s, v2(s)

)
, s ∈ [0, 1],

v′
2(s) = h2

(
s, v1(s)

)
, s ∈ [0, 1],
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subject to the following generalized NBCs:

ϒ1
(
v1(0), v2(0), v1(1), v2(1)

)
.

The tools used in [4] were the coupled lower and upper solutions (LUSs) approach and
some results of classical fixed point theory.

The approach was further extended in [34] to second-order nonlinear coupled ODSs
with generalized NBCs. One of the interests in this paper was the unification of the ex-
istence criteria of certain NBVPs which have been previously treated on a case-by-case
basis.

In [35], the authors developed the existence and localization results to study the ex-
istence of solutions for the following fully nonlinear coupled ODSs (notations here are
changed from the original paper):

v′
i(s) = hi

(
s, v1(s), v2(s), . . . , vn(s)

)
, i = 1, 2, . . . , n, s ∈ [a, b],

subject to the following nonlinear functional BCs:

ϒi(a) = ϒi(b), i = 1, 2, . . . , n.

The approach used in [35] is topological in nature and demonstrated in the forms of dif-
ferential inequalities (upper and lower solutions).

In [7], the authors studied the existence of multiplicity of nonzero radial solutions for the
class of elliptic BVPs with the composition of nonlocal BCs by considering the following
coupled system corresponding to elliptic BVPs:

v′′
1(s) = g1(s)h1

(
s, v1(s), v2(s)

)
, a.e. on [0, 1],

v′′
2(s) = g2(s)h2

(
s, v1(s), v2(s)

)
, a.e. on [0, 1],

subject to the following nonlocal BCs:

v′
1(0) = 0, β1v1(α1) = v1(1), 0 < α1 < 1,

v′
2(0) = 0, β2v′

2(α2) = v1(1), 0 < α2 < 1.

The approach used in [7] was topological coupled with fixed point index theory. The
space involved in this paper did not allow the derivative dependence nonlinearities.

In [8], the authors studied the existence of positive solutions for the following nonlinear
second-order coupled ODSs:

–v′′
1(s) = h1

(
s, v1(s), v2(s), v′

1(s), v′
2(s)

)
, s ∈ (0, 1), (6)

–v′′
2(s) = h2

(
s, v1(s), v2(s), v′

1(s), v′
2(s)

)
, s ∈ (0, 1),

subject to the following BCs:

v1(0) = v1(1) = v2(0) = v2(1) = 0.
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The tools used in [8] were topological and integral equations. As a byproduct, considering
the suitable assumptions, the following elliptic system equivalent to system (6) was solved
in the same paper:

–�v1 = h1
(|s|, v1, v2, |∇v1|, |∇v2|

)
, in D, (7)

–�v2 = h2
(|s|, v1, v2, |∇v1|, |∇v2|

)
, in D,

subject to the following Dirichlet BCs:

v1 = v2 = 0 on ∂D,

where D = {s : r1 < |s| < r2} is an annular domain and h1, h2 are continuous functions.
Recently, the authors solved system (7) with Neumann BCs and found its radial solution.
In fact, the radial solution of (7) is the solution of the following second-order nonlinear
coupled ODSs, see e.g. [9] and the references therein:

–v′′
1(s) + ν2

1 v1(s) = h1
(
s, v1(s), v2(s),

∣∣v′
1(s)

∣∣,
∣∣v′

2(s)
∣∣), s ∈ [0, 1],

–v′′
2(s) + ν2

2 v2(s) = h2
(
s, v1(s), v2(s),

∣∣v′
1(s)

∣∣,
∣∣v′

2(s)
∣∣), s ∈ [0, 1],

subject to the following Neumann BCs:

v′
1(0) = v′

1(1) = v′
2(0) = v′

2(1) = 0.

Motivated by the aforementioned studies, we extend the results of [1–4] to a generalized
class of coupled NBCs and ensure the existence of at least one solution of coupled system
(1) subject to generalized BCs (2) by finding the fixed points of the appropriate operator
in the space C1[0, 1] × C1[0, 1].

The arguments we use in this work are the coupled LUSs approach, Nagumo conditions,
Schauder’s fixed point and Arzelà–Ascoli theorems.

The classical coupled LUSs approach guarantees the a priori bounds on the solutions
of NBVPs, but to get the a priori bounds on the derivatives of the solution functions, the
authors used a variety of conditions including guiding functions, barrier strips, Bernstein–
Nagumo quadratic growth conditions, and simply Nagumo conditions, see e.g. [36–44]
and the references therein. In this paper, we use the Nagumo conditions.

The rest of the article is structured as follows.
In Sect. 2, some preliminary results and definitions are recalled. In Sect. 3, a generalized

result is presented to ensure the existence of solutions of (1)–(2). One of the advantages of
this result is to unify the classical existence results of Neumann and Dirichlet BVPs which
have previously been studied separately. In Sect. 4, two examples are taken to demonstrate
how the results of Sect. 3 can be applied, and the new results clearly demonstrate the
advancement made over current literature. In particular, the coupled mass-spring model
with Dirichlet type BCs is solved in this section.
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2 Preliminaries
Definition 1 The couple of functions (γ1,γ2) ∈ C2[0, 1] × C2[0, 1] are said to be the lower
solutions of (1) if

–γ ′′
1 (s) ≤ h1

(
s,γ1(s),γ2(s),γ ′

1(s),γ ′
2(s)

)
, s ∈ [0, 1], (8)

–γ ′′
2 (s) ≤ h2

(
s,γ1(s),γ2(s),γ ′

1(s),γ ′
2(s)

)
, s ∈ [0, 1].

On the same fashion, the couple of functions (ξ1, ξ2) ∈ C2[0, 1] × C2[0, 1] are said to be
the upper solutions of (1) if (8) is satisfied in reverse order.

If u(s) ≤ v(s), ∀s ∈ [0, 1], then we may write u ≤ v, and define the following set:

[u, v] =
{

x ∈ C1[0, 1] : u(s) ≤ x(s) ≤ v(s), s ∈ [0, 1]
}

.

Throughout our paper, we use � as

(x, y) � (w, z) 	⇒ x ≤ w and y ≤ z.

Next, we define the Nagumo conditions.

Definition 2 Suppose that γ1(s), γ2(s), ξ1(s), and ξ2(s) are continuous functions such that

(
γ1(s),γ2(s)

) � (
ξ1(s), ξ2(s)

)
, ∀s ∈ [0, 1].

The continuous functions h1, h2 : [0, 1] × R
4 → R satisfy a Nagumo condition relative to

the intervals [γ1(s), ξ1(s)] and [γ2(s), ξ2(s)] if, for

P1 := max
{
ξ1(1) – γ1(0), ξ1(0) – γ1(1)

}
, (9)

P2 := max
{
ξ2(1) – γ2(0), ξ2(0) – γ2(1)

}
, (10)

there exist G1, G2 constants such that

G1 >
{

P1, sup
s∈[0,1]

∣∣γ ′
1(s)

∣∣, sup
s∈[0,1]

∣∣ξ ′
1(s)

∣∣
}

, (11)

G2 >
{

P2, sup
s∈[0,1]

∣∣γ ′
2(s)

∣∣, sup
s∈[0,1]

∣∣ξ ′
2(s)

∣∣
}

, (12)

and continuous functions g1, g2 : [0,∞) → [0,∞) such that

(∣∣h1(s, x, y, z, w)
∣
∣,

∣
∣h2(s, x, y, z, w)

∣
∣) � (

g1
(|z|), g2

(|w|)), (13)

and for

(
γ1(s),γ2(s)

) � (x, y) � (
ξ1(s), ξ2(s)

)
, ∀s ∈ [0, 1], (14)

verifying

(∫ G1

P1

dt
g1(t)

,
∫ G2

P2

dt
g2(t)

)
� (1, 1). (15)
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Now define the following important lemma which is very useful to justify Claim 1 of
Theorem 1.

Lemma 1 Let 
 : C1[0, 1] × C1[0, 1] → C0[0, 1] × C0[0, 1] ×R
2 ×R

2 be defined by


(v1, v2)(s) =
(

v′
1(s) – v′

1(0) – ψ

∫ s

0
v1(t) dt, v′

2(s) – v′
2(0) – ψ

∫ s

0
v2(t) dt,

(
�1v1(0) + �2v1(1),�3v2(0) + �4v2(1)

)
,

(
� ′

1v1(0) + � ′
2v1(1),� ′

3v2(0) + � ′
4v2(1)

))
,

(16)

where �1,�2,�3,�4,� ′
1,� ′

2,� ′
3,� ′

4 ∈R with ψ > 0, such that

(�1�4 – �2�3)
(
� ′

1�
′
4 – � ′

2�
′
3
)(

e–
√

ψ – e
√

ψ
) �= 0,

and here

C0[0, 1] =
{

x ∈ C[0, 1] : x(0) = 0
}

.

Then 
–1 exists, and it can be expressed as


–1(w, z, (ζ ,η), (ν,ρ)
)

=
(

χ1e
√

ψs + χ2e–
√

ψs +
1
2

∫ s

0
e
√

ψ(s–t)w(t) dt

+
1
2

∫ s

0
e
√

ψ(t–s)w(t) dt,χ3e
√

ψs + χ4e–
√

ψs

+
1
2

∫ s

0
e
√

ψ(s–t)z(t) dt +
1
2

∫ s

0
e
√

ψ(t–s)z(t) dt
)

,

(17)

with

χ1 =
1

(�1�4 – �2�3)(e
√

ψ – e–
√

ψ )

(
2η

(
�1 + �2e–

√
ψ
)

– �4
(
�1 + �2e–

√
ψ
)

∫ 1

0
e
√

ψ(1–t)w(t) dt + �4
(
�1 + �2e–

√
ψ
)∫ 1

0
e
√

ψ(t–1)w(t) dt

– 2ζ
(
�3 + �4e–

√
ψ
)

+ �2
(
�2 + �3e–

√
ψ
)∫ 1

0
e
√

ψ(1–t)w(t) dt (18)

– �2
(
�3 + �4e–

√
ψ
)∫ 1

0
e
√

ψ(t–1)w(t) dt
)

,

χ2 =
1

(�1�4 – �2�3)(e–
√

ψ – e
√

ψ )

(
2η

(
�1 + �2e

√
ψ
)

– �4
(
�1 + �2e

√
ψ
)

∫ 1

0
e
√

ψ(1–t)w(t) dt + �4
(
�1 + �2e

√
ψ
)∫ 1

0
e
√

ψ(t–1)w(t) dt

– 2ζ
(
�3 + �4e

√
ψ
)

+ �2
(
�2 + �3e

√
ψ
)∫ 1

0
e
√

ψ(1–t)w(t) dt

– �2
(
�3 + �4e

√
ψ
)∫ 1

0
e
√

ψ(t–1)w(t) dt
)

, (19)
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χ3 =
1

(� ′
1�

′
4 – � ′

2�
′
3)(e

√
ψ – e–

√
ψ )

(
2ρ

(
� ′

1 + � ′
2e–

√
ψ
)

– � ′
4
(
� ′

1 + � ′
2e–

√
ψ
)

∫ 1

0
e
√

ψ(1–t)z(t) dt + � ′
2
(
� ′

1 + � ′
2e–

√
ψ
)∫ 1

0
e
√

ψ(t–1)z(t) dt

– 2ν
(
� ′

3 + � ′
4e–

√
ψ
)

+ � ′
2
(
� ′

3 + � ′
4e–

√
ψ
)∫ 1

0
e
√

ψ(1–t)z(t) dt

– � ′
2
(
� ′

3 + � ′
4e–

√
ψ
)∫ 1

0
e
√

ψ(t–1)z(t) dt
)

, (20)

and

χ4 =
1

(� ′
1�

′
4 – � ′

2�
′
3)(e–

√
ψ – e

√
ψ )

(
2ρ

(
� ′

1 + � ′
2e

√
ψ
)

– � ′
4
(
� ′

1 + � ′
2e

√
ψ
)

∫ 1

0
e
√

ψ(1–t)z(t) dt + � ′
2
(
� ′

1 + � ′
2e

√
ψ
)∫ 1

0
e
√

ψ(t–1)z(t) dt

– 2ν
(
� ′

3 + � ′
4e

√
ψ
)

+ � ′
2
(
� ′

3 + � ′
4e

√
ψ
)∫ 1

0
e
√

ψ(1–t)z(t) dt

– � ′
2
(
� ′

3 + � ′
4e

√
ψ
)∫ 1

0
e
√

ψ(t–1)z(t) dt
)

. (21)

Proof Choose w, z ∈ C0[0, 1] and ζ ,η,ν,ρ ∈R as

w(s) = v′
1(s) – v′

1(0) – ψ

∫ s

0
v1(t) dt, (22)

z(s) = v′
2(s) – v′

2(0) – ψ

∫ s

0
v2(t) dt, (23)

ζ = �1v1(0) + �2v1(1), (24)

η = �3v2(0) + �4v2(1), (25)

ν = � ′
1v1(0) + � ′

2v1(1), (26)

ρ = � ′
3v2(0) + � ′

4v2(1). (27)

In the light of (22)–(27), (16) can also be written as


(v1, v2)(s) =
(
w(s), z(s), (ζ ,η), (ν,ρ)

)
. (28)

On differentiating (22), we have

w′(s) = v′′
1(s) – ψv1(s). (29)

Solving (29), we have

v1(s) = χ1e
√

ψs + χ2e–
√

ψs +
1
2

∫ s

0
e
√

ψ(s–t)w(t) dt +
1
2

∫ s

0
e
√

ψ(t–s)w(t) dt. (30)
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Using (24) and (25), we have the following system of equations:

ζ =
(
�1 + �2e

√
ψ
)
χ1 +

(
�1 + �2e–

√
ψ
)
χ2

+
�2

2

(∫ 1

0
e
√

ψ(1–t)w(t) dt + e
√

ψ(t–1)w(t) dt
)

,

η =
(
�3 + �4e

√
ψ
)
χ1 +

(
�3 + �4e–

√
ψ
)
χ2

+
�4

2

(∫ 1

0
e
√

ψ(1–t)w(t) dt + e
√

ψ(t–1)w(t) dt
)

. (31)

Solving (31), we have

χ1 =
1

(�1�4 – �2�3)(e
√

ψ – e–
√

ψ )

(
2η

(
�1 + �2e–

√
ψ
)

– �4
(
�1 + �2e–

√
ψ
)

∫ 1

0
e
√

ψ(1–t)w(t) dt + �4
(
�1 + �2e–

√
ψ
)∫ 1

0
e
√

ψ(t–1)w(t) dt

– 2ζ
(
�3 + �4e–

√
ψ
)

+ �2
(
�2 + �3e–

√
ψ
)∫ 1

0
e
√

ψ(1–t)w(t) dt

– �2
(
�3 + �4e–

√
ψ
)∫ 1

0
e
√

ψ(t–1)w(t) dt
)

,

χ2 =
1

(�1�4 – �2�3)(e–
√

ψ – e
√

ψ )

(
2η

(
�1 + �2e

√
ψ
)

– �4
(
�1 + �2e

√
ψ
)

∫ 1

0
e
√

ψ(1–t)w(t) dt + �4
(
�1 + �2e

√
ψ
)∫ 1

0
e
√

ψ(t–1)w(t) dt

– 2ζ
(
�3 + �4e

√
ψ
)

+ �2
(
�2 + �3e

√
ψ
)∫ 1

0
e
√

ψ(1–t)w(t) dt

– �2
(
�3 + �4e

√
ψ
)∫ 1

0
e
√

ψ(t–1)w(t) dt
)

. (32)

Similarly, we can show the following:

v2(s) = χ3e
√

ψs + χ4e–
√

ψs +
1
2

∫ s

0
e
√

ψ(s–t)z(t) dt +
1
2

∫ s

0
e
√

ψ(t–s)z(t) dt (33)

with

χ3 =
1

(� ′
1�

′
4 – � ′

2�
′
3)(e

√
ψ – e–

√
ψ )

(
2ρ

(
� ′

1 + � ′
2e–

√
ψ
)

– � ′
4
(
� ′

1 + � ′
2e–

√
ψ
)

∫ 1

0
e
√

ψ(1–t)z(t) dt + � ′
2
(
� ′

1 + � ′
2e–

√
ψ
)∫ 1

0
e
√

ψ(t–1)z(t) dt

– 2ν
(
� ′

3 + � ′
4e–

√
ψ
)

+ � ′
2
(
� ′

3 + � ′
4e–

√
ψ
)∫ 1

0
e
√

ψ(1–t)z(t) dt

– � ′
2
(
� ′

3 + � ′
4e–

√
ψ
)∫ 1

0
e
√

ψ(t–1)z(t) dt
)

,
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and

χ4 =
1

(� ′
1�

′
4 – � ′

2�
′
3)(e–

√
ψ – e

√
ψ )

(
2ρ

(
� ′

1 + � ′
2e

√
ψ
)

– � ′
4
(
� ′

1 + � ′
2e

√
ψ
)

∫ 1

0
e
√

ψ(1–t)z(t) dt + � ′
2
(
� ′

1 + � ′
2e

√
ψ
)∫ 1

0
e
√

ψ(t–1)z(t) dt

– 2ν
(
� ′

3 + � ′
4e

√
ψ
)

+ � ′
2
(
� ′

3 + � ′
4e

√
ψ
)∫ 1

0
e
√

ψ(1–t)z(t) dt

– � ′
2
(
� ′

3 + � ′
4e

√
ψ
)∫ 1

0
e
√

ψ(t–1)z(t) dt
)

.

Equation (28) can also be written as
(
v1(s), v2(s)

)
= 
–1(w(s), z(s), (ζ ,η), (ν,ρ)

)
. (34)

Hence, (30)–(34) prove (17). �

Next, we construct the definition of coupled LUSs which is useful in unifying the exis-
tence results of certain BVPs which were previously studied separately.

Definition 3 We say that (γ1,γ2), (ξ1, ξ2) ∈ C2[0, 1]×C2[0, 1] are coupled LUSs for (1)–(2)
if (γ1,γ2) is a lower solution and (ξ1, ξ2) is an upper solution for (1), such that

ϒ1
(
ξ1(0), ξ2(0), ξ1(1), ξ2(1), ξ ′

1(0), ξ ′
2(0)

)

� (0, 0) � ϒ1
(
γ1(0),γ2(0),γ1(1),γ2(1),γ ′

1(0),γ ′
2(0)

)
, (35)

ϒ2
(
ξ1(0), ξ2(0), ξ1(1), ξ2(1), ξ ′

1(1), ξ ′
2(1)

)

� (0, 0) � ϒ2
(
γ1(0),γ2(0),γ1(1),γ2(1),γ ′

1(1),γ ′
2(1)

)
, (36)

ϒ1
(
ξ1(0), ξ2(0),γ1(1),γ2(1), ξ ′

1(0), ξ ′
2(0)

)

� (0, 0) � ϒ1
(
γ1(0),γ2(0), ξ1(1), ξ2(1),γ ′

1(0),γ ′
2(0)

)
, (37)

ϒ2
(
ξ1(0), ξ2(0),γ1(1),γ2(1),γ ′

1(1),γ ′
2(1)

)

� (0, 0) � ϒ2
(
γ1(0),γ2(0), ξ1(1), ξ2(1), ξ ′

1(1), ξ ′
2(1)

)
. (38)

Inequalities (35)–(36) verify the following classical existence criteria for Dirichlet BVPs
((1) and (3)):

γ1(0) ≤ α1 ≤ ξ1(0), γ2(0) ≤ α2 ≤ ξ2(0),

γ1(1) ≤ α3 ≤ ξ1(1), γ2(1) ≤ α4 ≤ ξ2(1),

and inequalities (37)–(38) verify the following classical existence criteria for Neumann
BVPs ((1) and (4)):

ξ ′
1(0) ≤ α1 ≤ γ ′

1(0), ξ ′
2(0) ≤ α2 ≤ γ ′

2(0),

γ ′
1(1) ≤ α3 ≤ ξ ′

1(1), γ ′
2(1) ≤ α4 ≤ ξ ′

2(1),

where α1,α2,α3,α4 ∈R.
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3 Main result
The following is the main result of the paper, which unifies the existence criteria of certain
BVPs which have been previously treated separately. The arguments we use to prove the
main result are the Arzelà–Ascoli theorem and Schauder’s fixed point theorem.

Theorem 1 Let system (1)–(2) have (γ1,γ2), (ξ1, ξ2) coupled LUSs and the boundary func-
tions h1, h2 verify the Nagumo conditions relative to [γ1(s), ξ1(s)] and [γ2(s), ξ2(s)]. Assume
that ϒ2 and ϒ1 are nonincreasing and nondecreasing in the fifth and sixth arguments, re-
spectively, and

ϒ2(γ1,γ2)(x, y) := ϒ2
(
x, y,γ1(1),γ2(1),γ ′

1(1),γ ′
2(1)

)
,

ϒ2(ξ1,ξ2)(x, y) := ϒ2
(
x, y, ξ1(1), ξ2(1), ξ ′

1(1), ξ ′
2(1)

)

are monotone on [γ1(0), ξ1(0)] × [γ2(0), ξ2(0)] and

ϒ1(γ1,γ2)(x, y) := ϒ1
(
γ1(0),γ2(0), x, y,γ ′

1(0),γ ′
2(0)

)
,

ϒ1(ξ1,ξ2)(x, y) := ϒ1
(
ξ1(0), ξ2(0), x, y, ξ ′

1(0), ξ ′
2(0)

)

are monotone on [γ1(1), ξ1(1)] × [γ2(1), ξ2(1)].
Then system (1)–(2) has at least one solution (v1, v2) ∈ (C2[0, 1],R)2 such that

(
γ1(s),γ2(s)

) � (
v1(s), v2(s)

) � (
ξ1(s), ξ2(s)

)
, ∀s ∈ [0, 1],

and

(∥∥v′
1
∥
∥,

∥
∥v′

2
∥
∥) � (G1, G2),

with G1 and G2 given by the Nagumo conditions.

Proof Let the following modified problem be associated with problem (1)–(2), with ψ > 0:

–v′′
1(s) + ψv1(s) = Ĥ1

(
s, v1(s), v2(s), v′

1(s), v′
2(s)

)
, s ∈ [0, 1],

–v′′
2(s) + ψv2(s) = Ĥ2

(
s, v1(s), v2(s), v′

1(s), v′
2(s)

)
, s ∈ [0, 1],

ϒ̂1
(
v1(0), v2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)
=

(
v1(0), v2(0)

)
,

ϒ̂2
(
v1(0), v2(0), v1(1), v2(1), v′

1(1), v′
2(1)

)
=

(
v1(1), v2(1)

)
, (39)

with

Ĥ1
(
s, v1(s), v2(s), v′

1(s), v′
2(s)

)
= h1

(
s, τ1

(
s, v1(s)

)
, τ2

(
s, v2(s)

)
,

σ1(u),σ2(v)
)

+ ψτ1
(
s, v1(s)

)
,

Ĥ2
(
s, v1(s), v2(s), v′

1(s), v′
2(s)

)
= h2

(
s, τ1

(
s, v1(s)

)
, τ2

(
s, v2(s)

)
,

σ1(u),σ2(v)
)

+ ψτ2
(
s, v2(s)

)
,
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ϒ̂1(e, f , g, j, o, l) =
(
τ1(0, e), τ2(0, f )

)
+ ϒ1

(
v1(0), v2(0), v1(1),

v2(1), v′
1(0), v′

2(0)
)
,

ϒ̂2(e, f , g, j, o, l) =
(
τ1(1, g), τ2(1, j)

)
+ ϒ2

(
v1(0), v2(0), v1(1),

v2(1), v′
1(1), v′

2(1)
)
,

and for each i = 1, 2,

τi(s, x) =

⎧
⎪⎪⎨

⎪⎪⎩

ξi(s) if x � ξi(s),

x if γi(s) ≤ x ≤ ξi(s),

γi(s) if x � γi(s),

σi(x) = max
{

–Gi, min{x, Gi}
}

,

Note that if (v1, v2) ∈ [γ1, ξ1] × [γ2, ξ2] is a solution of (39), then (v1, v2) is a solution of
(1)–(2).

Claim 1 The fixed points of the operator 
–1Ê are the solutions of system (39).

Define the mappings


, Ê : C1[0, 1] × C1[0, 1] → C0[0, 1] × C0[0, 1] ×R
2 ×R

2

by


(v1, v2)(s) =
(

v′
1(s) – v′

1(0) – ψ

∫ s

0
v1(t) dt, v′

2(s) – v′
2(0) – ψ

∫ s

0
v2(t) dt,

(
v1(0), v2(0)

)
,
(
v1(1), v2(1)

))
,

and

Ê(v1, v2)(s) =
(∫ s

0
Ĥ1

(
t, v1(t), v2(t), v′

1(t), v′
2(t)

)
dt,

∫ s

0
Ĥ2

(
t, v1(t), v2(t), v′

1(t), v′
2(t)

)
dt,

ϒ̂1
(
v1(0), v2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)
,

ϒ̂2
(
v1(0), v2(0), v1(1), v2(1), v′

1(1), v′
2(1)

)
)

.

Now in view of the Arzelà–Ascoli theorem and the definitions of Ĥ1, Ĥ2, ϒ̂1, and ϒ̂2, Ê
is continuous and compact. Therefore, the class {Ê(v1, v2) : (v1, v2) ∈ C1[0, 1] × C1[0, 1]} is
uniformly bounded and equicontinuous. Consequently, Ê is a compact map. Moreover,

–1 exists and is continuous (see Lemma 1).

The fixed points of the following operator are the solutions of problem (39) which are
guaranteed by Schauder’s fixed point theorem because the operator is continuous and
compact.


–1Ê : C1[0, 1] × C1[0, 1] → C1[0, 1] × C1[0, 1].
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Claim 2 If (v1, v2) is a solution of (39), then (γ1(s),γ2(s)) � (v1(s), v2(s)) � (ξ1(s), ξ2(s)), ∀s ∈
[0, 1].

Suppose (v1, v2) � (ξ1, ξ2). If (v1, v2) � (ξ1, ξ2), then v1 ≤ ξ1 and v2 ≤ ξ2. If v1 � ξ1,
then v1 – ξ1 has positive maximum at some r0 ∈ (0, 1) such that (v1 – ξ1)′(r0) = 0 and
(v1 – ξ1)′′(r0) < 0. Also, by Definition 2, we have |v′

1(r0)| = |ξ ′
1(r0)| < G1. Similarly, on the

same fashion, if v2 � ξ2, then (v2 – ξ2)′(r0) = 0, and by Definition 2, we have |v′
2(r0)| =

|ξ ′
2(r0)| < G2. But

(v1 – ξ1)′′(r0) > –Ĥ1
(
r0, v1(r0), v2(r0), v′

1(r0), v′
2(r0)

)
+ ψv1(r0)

+ h1
(
r0, ξ1(r0), ξ2(r0), ξ ′

1(r0), ξ ′
2(r0)

)

= –h1
(
r0, ξ1(r0), ξ2(r0), v′

1(r0), v′
2(r0)

)
– ψξ1(r0) + ψv1(r0)

+ h1
(
r0, ξ1(r0), ξ2(r0), ξ ′

1(r0), ξ ′
2(r0)

)

= –h1
(
r0, ξ1(r0), ξ2(r0), ξ ′

1(r0), ξ ′
2(r0)

)
– ψξ1(r0) + ψv1(r0)

+ h1
(
r0, ξ1(r0), ξ2(r0), ξ ′

1(r0), ξ ′
2(r0)

)

= ψ
(
v1(r0) – ξ1(r0)

)
> 0,

a contradiction. Similarly, we can show that (γ1,γ2) � (v1, v2). Hence (γ1,γ2) � (v1, v2) �
(ξ1, ξ2).

Claim 3 If (v1, v2) is a solution of (39), then (v1, v2) must satisfy (2).

For this, we have to show that

(
γ1(0),γ2(0)

) � (
v1(0), v2(0)

)
+ ϒ1

(
v1(0), v2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)

� (
ξ1(0), ξ2(0)

)
. (40)

Using (39), we have

(
v1(0), v2(0)

)
= ϒ̂1

(
v1(0), v2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)

=
(
τ1

(
0, v1(0)

)
, τ2

(
0, v2(0)

))
+ ϒ1

(
v1(0), v2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)
)

=
(
ξ1(0), ξ2(0)

)
. (41)

From Claim 2, we know that (v1, v2) � (ξ1, ξ2), and this together with (v1 – ξ1, v2 – ξ2) ∈
C2[0, 1] × C2[0, 1] and (v1(0), v2(0)) = (ξ1(0), ξ2(0)) yields v′

1(0) ≤ ξ ′
1(0) and v′

2(0) ≤ ξ ′
2(0).

We will prove (40) by contradiction, so assume

(
v1(0), v2(0)

)
+ ϒ1

(
v1(0), v2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)
�

(
ξ1(0), ξ2(0)

)
. (42)

If ϒ1(ξ1,ξ2)(x, y) is monotone nonincreasing, then we have

(
v1(0), v2(0)

)
+ ϒ1

(
v1(0), v2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)

=
(
ξ1(0), ξ2(0)

)
+ ϒ1

(
ξ1(0), ξ2(0), v1(1), v2(1), v′

1(0), v′
2(0)

)
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� (
ξ1(0), ξ2(0)

)
+ ϒ1

(
ξ1(0), ξ2(0), v1(1), v2(1), ξ ′

1(0), ξ ′
2(0)

)

=
(
ξ1(0), ξ2(0)

)
+ ϒ1(ξ1,ξ2)

(
v1(1), v2(1)

)

� (
ξ1(0), ξ2(0)

)
+ ϒ1(ξ1,ξ2)

(
γ1(1),γ2(1)

)

=
(
ξ1(0), ξ2(0)

)
+ ϒ1

(
ξ1(0), ξ2(0),γ1(1),γ2(1), ξ ′

1(0), ξ ′
2(0)

)

� (
ξ1(0), ξ2(0)

)
, (43)

a contradiction. Similarly, if ϒ1(ξ1,ξ2)(x, y) is monotone nondecreasing, then we get the
same contradiction. Consequently, (40) holds. Similar reasoning shows the other bound-
ary condition. Consequently, (v1, v2) satisfies (2). Hence system (1)–(2) has a solution sat-
isfying (γ1,γ2) � (v1, v2) � (ξ1, ξ2).

Claim 4 Every solution of (39) satisfies

∥∥v′
1
∥∥ ≤ G1 and

∥∥v′
2
∥∥ ≤ G2. (44)

To prove (44), assume that (v1(s), v2(s)) is a solution of (39) such that

(
γ1(s),γ2(s)

) � (
v1(s), v2(s)

) � (
ξ1(s), ξ2(s)

)
, ∀s ∈ [0, 1], (45)

then by the Lagrange theorem, there exists s0, s1 ∈ [0, 1] such that

v′
1(s0) = v1(1) – v1(0) and v′

2(s1) = v2(1) – v2(0). (46)

Suppose on the contrary that v′
1(s) > p1, ∀s ∈ [0, 1], then using (45), the following contra-

diction is obtained:

v′
1(s0) = v1(1) – v1(0) ≤ ξ1(1) – γ1(0) ≤ p1. (47)

The similar contradiction is obtained for v′
1(s) < –p1, ∀s ∈ [0, 1]. In the case where |v′

1(s)| ≤
p1, Claim 4 is finished. So, assume that there are s2, s3 ∈ [0, 1] with s2 < s3 such that

v′
1(s2) < p1 and v′

1(s3) > p1. (48)

By continuing in the same way, there is s4 ∈ [s2, s3] such that

v′
1(s4) = p1 and v′

1(s3) > p1, ∀s ∈ ]s4, s3[. (49)

So, by a convenient change of variable, by (13) and (15), we have

∫ v′
1(s3)

v′
1(s4)

dt
g1(|t|) =

∫ s3

s4

v′′
1(s)

g1(|v′
1(s)|) ds

=
∫ s3

s4

–Ĥ1(s, v1(s), v2(s), v′
1(s), v′

2(s)) + ψv1(s)
g1(|v′

1(s)|) ds

=
∫ s3

s4

–h1(s, v1(s), v2(s), v′
1(s), v′

2(s))
g1(|v′

1(s)|) ds
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≤
∫ s3

s4

|h1(s, v1(s), v2(s), v′
1(s), v′

2(s))|
g1(|v′

1(s)|) ds

≤
∫ s3

s4

g1(|v′
1(s)|)

g1(|v′
1(s)|) ds

=
∫ s3

s4

ds

= s3 – s4 ≤ 1 <
∫ G1

p1

dt
g1(|t|) .

Hence v′
1(s3) < G1 and, as s3 is taken arbitrarily, v′

1(s3) < G1 for values of s, where v′
1(s) > p1.

If s2 > s3, the technique is analogous for s4 ∈ [s3, s2]. The same conclusion can be achieved
if there are s2, s3 ∈ [0, 1] such that

v′
1(s2) > –p1 and v′

1(s3) < –p1.

Consequently, ‖v′
1‖ ≤ G1, and on the same arguments, it can be easily proved that ‖v′

2‖ ≤
G2. �

4 Examples
In this section, the applicability of the results developed in Sect. 3 is illustrated by taking
examples. The first example is considered with nonlinear coupled BCs, and the assump-
tions of Theorem 1 are verified. In the second example, we consider the fully nonlinear
coupled mass-spring model with coupled Dirichlet BCs, and the assumptions of Theo-
rem 1 are verified.

Example 1 Consider the fully nonlinear coupled system

–v′′
1(s) = –v′

1(s)v2(s) + arctan
(
v1(s)v′

2(s)
)

– v′
1(s)

– 8v1(s) – 4 + s, s ∈ [0, 1],

–v′′
2(s) = –s2 exp

(
–
∣∣v′

1(s)
∣∣)v2(s) + s2v1(s)

(
v′

2(s) – 2
)

– v′
2(s) – 4v1(s) – 8, s ∈ [0, 1], (50)

subject to nonlinear coupled BCs

(
v2

1(0) sin
(
v2(0)

)
– sin

(
v2(1)

)
, v1(1) cos

(
v2(1)

)
– 2 cos

(
v1(0)

))

= (0, 0),
(
v1(0) tan

(
v2(0)

)
– sin

(
v′

1(1)
)
v′

2(1), –v′
1(1) tan

(
v′

2(1)
)

+ v2(0)v1(1)
)

= (0, 0). (51)

This problem is a particular case of system (1), (2) with

h1(s, x0, x1, x2, x3) = –x2x1 + arctan(x0x3) – x2 – 8x1 – 4 + s

h2(s, x0, x1, x2, x3) = –s2 exp
(
–|x2|

)
x1 + s2x0(x3 – 2) – x3 – 4x1 – 8, (52)

continuous functions s ∈ [0, 1].
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The functions given by

(
γ1(s),γ2(s)

)
= (–2, –4) and

(
ξ1(s), ξ2(s)

)
=

(
s2, s4) (53)

are the lower and upper solutions of problem (50)–(51) satisfying (1), as

γ ′′
1 (s) = 0 < h1(s, –2, –4, 0, 0) = 12 + s, s ∈ [0, 1],

γ ′′
2 (s) = 0 ≤ h2(s, –2, –4, 0, 0) = 8s2, s ∈ [0, 1],

and

ξ ′′
1 (s) = –2 > h1

(
s, s2, s4, 2s, 4s3) = –2s5 + arctan

(
4s5) – s – 8s2 – 4, s ∈ [0, 1],

ξ ′′
2 (s) = –12s2 > h2

(
s, s2, s4, 2s, 4s3) = s4(4s3 – 2

)
–

s6

exp(2s)
– 4s3 – 4s2 – 8, s ∈ [0, 1].

Also, the functions γ1(s) = –2, γ2(s) = –4, ξ1(s) = s2, and ξ2(s) = s4 are coupled lower and
upper solutions satisfying (35). Moreover, the continuous functions h1 and h2, as given in
(52), satisfy the Nagumo condition relative to the intervals [–2, s2] and [–4, s4] for s ∈ [0, 1].
For this, we first need to calculate P1 and P2 using (9) and (10) as

P1 := max
{
ξ1(1) – γ1(0), ξ1(0) – γ1(1)

}
= 3,

P2 := max
{
ξ2(1) – γ2(0), ξ2(0) – γ2(1)

}
= 5.

Also

∣∣h1(s, x0, x1, x2, x3)
∣∣ ≤ 13 +

π

2
+ 2|x2| := g1

(|x2|
)

and
∫ G1

P1=3

ds
g1(|s|) =

∫ G1

P1=3

1
13 + π

2 + 2|s| ds > 1

for G1 ≥ 70. Similarly,

∣∣h2(s, x0, x1, x2, x3)
∣∣ ≤ 13 + 2|x3 – 2| := g2

(|x3|
)

and
∫ G2

P2=5

ds
g2(|s|) =

∫ G2

P2=5

1
13 + 2|s – 2| ds > 1

for G2 ≥ 73.

Then, by Theorem 1, there exists at least one solution (v1(s), v2(s)) ∈ C2([0, 1],R) ×
C2([0, 1],R) of problem (50)–(51) with

–2 ≤ v1(s) ≤ s2, –4 ≤ v2(s) ≤ s4, ∀s ∈ [0, 1],
∥
∥v′

1
∥
∥ ≤ G1, and

∥
∥v′

2
∥
∥ ≤ G2.
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Figure 1 Plots of the lower and upper solutions of Example 1

Figure 2 Full nonlinear coupled mass-spring model

Example 2 Consider a coupled mass-spring model with two springs and two weights.
The one end of the first spring having spring constant k1 is attached to the ceiling, and
a weight of mass m1 is attached to its other end. To this weight, a second spring having
spring constant k2 is attached. A weight of mass m2 is attached to the bottom end of the
second spring. The entire coupled mass-spring model is described as illustrated in Fig. 2.

If the system is allowed to come to rest in equilibrium, then the displacement from the
equilibrium position of the center of mass of each weight can be determined by consider-
ing them as a function of time s. Let the functions v1(s) and v2(s) denote these measure-
ments. Consider s ∈ [0, 1], then v1(0) and v2(0) are the initial displacements of the mass
m1 and m2, respectively. Similarly, v1(1) and v2(1) are the final displacements.

By considering the effects of viscous damping, restoring forces, and external forces of
sinusoidal type, the coupled mass-spring model can be described by the second-order fully
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nonlinear ordinary coupled differential system [14]

v′′
1(s) =

1
m1

(
–δ1v′

1(s) – k1v1(s) + μ1
(
v1(s)

)3 – k2
(
v1(s) – v2(s)

)
+ μ2

(
v1(s)

– v2(s)
)3 + F1 cosω1s

)
,

v′′
2(s) =

1
m2

(
–δ2v′

2(s) – k2
(
v2(s) – v1(s)

)
+ μ2

(
v2(s) – v1(s)

)3

+ F2 cosω2s
)
, (54)

subject to nonlinear coupled boundary conditions of Dirichlet type

(
v2

1(1) – sin(s) – cos
(
v′

2(0)
)
, v1(0)

)
= (0, 0),

(
v2

2(1) – cos(s) – cos
(
v1(0)

)
, v2(0)

)
= (0, 0). (55)

The boundary conditions (55) can also be expressed as

v1(0) = 0,

v1(1) =
√

sin(s) + cos
(
v′

2(0)
)
,

v2(0) = 0,

v2(1) =
√

cos(s) + cos
(
v1(0)

)
. (56)

The boundary conditions (56) have physical meanings, at s = 0 the initial displacements
of the mass m1 and m2 are v1(0) and v2(0), respectively, and at s = 1 the final displacement
for the first mass is v1(1), which is the sum of sinusoidal sine function in this period of
time, with the initial velocity of the second mass as an argument of the cosine function.
Similarly, v2(1) is the final displacement for the second mass, which is the sum of sinusoidal
cosine function in this period of time, with the initial displacement of the first mass as an
argument of the cosine function.

Model (54)–(56) is a particular case of system (1), (2) with

h1(s, x0, x1, x2, x3) =
1

m1

(
–δ1x2 – k1x0 + μ1(x0)3 – k2(x0 – x1)

+ μ2(x0 – x1)3 + F1 cosω1s
)
,

h2(s, x0, x1, x2, x3) =
1

m2

(
–δ2x3 – k2(x1 – x0) + μ2(x1 – x0)3

+ F2 cosω2s
)
, (57)

continuous functions for s ∈ [0, 1]. Moreover, δ1, δ2 are the damping coefficients, μ1, μ2 are
the coefficients of each nonlinear term of the coupled system, k2(v1(s) – v2(s)) + μ2(v1(s) –
v2(s))3, k2(v2(s) – v1(s)) +μ2(v2(s) – v1(s))3 are the restoring forces, and F1 cosω1s, F2 cosω2s
are the external sinusoidal forces with forcing amplitudes F1, F2 and forcing frequencies
ω1, ω2.
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For each nonnegative m1, m2, F1, F2, ω1, ω2, δ1, δ2, and any real μ1, μ2, k1, k2, such that
for

F1 ≤ δ1,

F2 ≤ δ2,

μ1 ≤ 0,μ2 ≤ 0, (58)

the functions given by

(
γ1(s),γ2(s)

)
= (–s, –4s) and

(
ξ1(s), ξ2(s)

)
=

(
s4, s4) (59)

are the lower and upper solutions of problem (54)–(56) satisfying (1), as

γ ′′
1 (s) = 0 ≤ 1

m1
(δ1 – F1)

≤ 1
m1

(
δ1 + k1s – μ1s3 + 3k2s – 27μ2s3 + F1 cosω1s

)
, ∀s ∈ [0, 1]

= h1(s, –s, –4s, –1, –4),

γ ′′
2 (s) = 0 ≤ 1

m2
(δ2 – F2)

≤ 1
m2

(
4δ2 + 3k2s – 27μ2s3 + F2 cosω2s

)
, ∀s ∈ [0, 1]

= h2(s, –s, –4s, –1, –4)

and

ξ ′′
1 (s) = 12s2 ≥ 1

m1
(–δ1 + F1)

≥ 1
m1

(
–4δ1s3 – k1s4 + μ1s12 + F1 cosω1s

)
, ∀s ∈ [0, 1]

= h1
(
s, s4, s4, 4s3, 4s3),

ξ ′′
2 (s) = 12s2 ≥ 1

m2
(–δ2 + F2)

≥ 1
m2

(
–4δ2s3 + F2 cosω2s

)
, ∀s ∈ [0, 1]

= h2
(
s, s4, s4, 4s3, 4s3).

Also, the functions γ1(s) = –s, γ2(s) = –4s, ξ1(s) = s4, and ξ2(s) = s4 are coupled lower and
upper solutions satisfying (35). Moreover, the continuous functions h1 and h2, as given in
(57), satisfy the Nagumo condition relative to the intervals [–s, s4] and [–4s, s4] for s ∈ [0, 1].
For this, we first need to calculate P1 and P2 using (9) and (10) as follows:

P1 := max
{
ξ1(1) – γ1(0), ξ1(0) – γ1(1)

}
= 1,

P2 := max
{
ξ2(1) – γ2(0), ξ2(0) – γ2(1)

}
= 4.
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Figure 3 Plots of the lower and upper solutions of Example 2

Also

∣∣h1(s, x0, x1, x2, x3)
∣∣ ≤ δ1|x2| + F1 + 8|μ2| + |μ1| + 2k2 := g1

(|x2|
)
,

and for large G1, we have

∫ G1

P1=1

ds
g1(|s|) =

∫ G1

P1=1

m1

δ1|s| + F1 + 8|μ2| + |μ1| + 2k2
ds > 1.

Similarly,

∣∣h2(s, x0, x1, x2, x3)
∣∣ ≤ δ2|x3| + F2 + 8|μ2| + 2k2 := g2

(|x3|
)
,

and for large G2, we have

∫ G2

P2=4

ds
g2(|s|) =

∫ G2

P2=4

m2

δ2|s| + F2 + 8|μ2| + 2k2
ds > 1.

Then, by Theorem 1, there exists at least one solution (v1(s), v2(s)) ∈ C2([0, 1],R) ×
C2([0, 1],R) of the coupled mass-spring model (54)–(56) with

–s ≤ v1(s) ≤ s4, –4s ≤ v2(s) ≤ s4, ∀s ∈ [0, 1],
∥
∥v′

1
∥
∥ ≤ G1, and

∥
∥v′

2
∥
∥ ≤ G2.

5 Conclusion
In this article, we presented the generalized results based on the LUSs approach to study
the existence of solutions of second-order fully nonlinear coupled systems with general-
ized nonlinear coupled boundary conditions. Our presented results have ability to study
the existence of solutions of certain BVPs in a unified way which has been previously stud-
ied on a case-by-case basis. For instance, Dirichlet and Neumann are the special cases. We
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demonstrated the applicability of the developed theoretical results by considering some
examples. We also extended the results presented in [1–4].
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