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Abstract
We develop a fully discrete finite volume element scheme of the two-dimensional
space-fractional convection–diffusion equation using the finite volume element
method to discretize the space-fractional derivative and Crank–Nicholson scheme for
time discretization. We also analyze and prove the stability and convergence of the
given scheme. Finally, we validate our theoretical analysis by data from three
examples.
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1 Introduction
Fractional differential equations are generalizations of the integer-order differential equa-
tions; they contain noninteger-order derivatives and can effectively describe the mem-
ory and genetic properties of a variety of substances. Such equations play an increasingly
important role in mathematical physics, mechanical applications, biological engineering,
electronic science and technology, control theory, financial mathematics, and other fields
[1–5].

Abnormal diffusion in physics originally developed from the random walk model [6–8].
Fractional convective diffusion equations are a powerful tool to simulate various abnormal
diffusion phenomena. We consider the following one-dimensional random walk model.
First, we denote by n the random walk step size and assume that the waiting time obeys
an exponential distribution with mean τ

n and the probability density function λ(x) of the
jump step obeys a stable distribution. We define the probability density function W (x, t)
of the particle at time t at the position x. Then

W (x, t) =
∫ t

0
η
(
x, t′)�(t – t′)dt′,

where �(t) = 1 –
∫ t

0 w(t′) dt is the probability that the particle does not jump within the
time interval (0, t), η(x, t′) is the probability that the particle is at the position of x at time
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t′ multiplied by the probability that the particle jumps x – x′ step in time t – t′, namely, the
Markov supplement process in the random process η(x, t) =

∫∞
–∞
∫∞

0 η(x′, t′)ψ(x – x′, t –
t′) dt′ dx′ + δ(x)δ(t), where δ(x)δ(t) is the initial condition, and ψ(x, t) = w(t)λ(x). Then tak-
ing the Laplace transform of �(t) and the Fourier and Laplace transforms of x and t in
W (x, t) and η(x, t), respectively, we get

�̃(s) =
1 – w(s)

s
, ˜̂η(κ , s) =

1

1 – ˜̂ψ(κ , s)
, ˜̂W (κ , s) =

1 – W̃ (s)
s

1
1 – W̃ (s)̂λ(κ)

.

On the basis of the above, we discuss the random movement of particles in a fluid with
mean velocity V located in the porous medium. We assume that the particles are stuck
in place while waiting for the next jump. Since the fluid is located in the porous medium,
the particles may be confined to the pores, and so our hypothesis is reasonable. We de-
note by n the number of random walk steps, by α the ratio index, by σα

n the diffusion
coefficient, and by ϑ the tilt angle of the transition probability density function. Then we
introduce the similar variable ξ = x – Vt to obtain the corresponding probability density
function φ(x, t) = ψ(x – Vt, t). In this case, the special function λ̂(κ) = exp–|κ|α expi sign(κ)ϑπ/2 =
1 – |κ|α expi sign(κ)ϑπ/2

n + O( 1
n ). After transformation and derivation, ˜̂W (κ , s) can be rewritten

as

˜̂W n(κ , s) =
1

s + iVκ + Kα(c+(–iκ)α + c–(iκ)α) + O(1)
,

where Kα = σα

τ
, c+ = c+(α,ϑ) = sin((α–ϑ)π/2)

sin(απ ) , and c– = c–(α,ϑ) = sin((α+ϑ)π/2)
sin(απ ) . As n → ∞, we

get

s
˜̂W n(κ , s) = –Kα

(
c+(–iκ)α + c–(iκ)α

) ˜̂W n(κ , s) – iVκW̃n(κ , s).

Finally, we can obtain the following one-dimensional space fractional convection–
diffusion equation by the inverse Lapalce and Fourier transforms of the above equation:

∂W
∂t

= –Kα

(
c+(α,ϑ)

dαW
dxα

+ c–(α,ϑ)
dαW

d(–x)α

)
– V

∂W
∂x

+ δ(x)δ(t). (1)

When ϑ = 0 and α = 1 + α1 (0 < α1 < 1), equation (1) can be written in the form

∂W
∂t

= K1+α1
d1+α1 W
d|x|1+α1

– V
∂W
∂x

+ δ(x)δ(t). (2)

In this paper, we study the two-dimensional form of equation (2) with source terms. The
finite volume element (FVE) method [9–13], also known as the generalized difference
method, is important for solving differential equations. In recent years, more and more re-
searchers used the finite volume element method to discretize fractional differential equa-
tions. In 2014, Liu et al. [14] used a new FVE method to give a fully discrete scheme for a
class of one-dimensional space fractional diffusion equations with variable coefficients and
nonlinear source terms. In 2015, Feng et al. [15] designed an implicit fractional finite vol-
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ume element scheme to solve the space fractional diffusion equation and proved the sta-
bility and convergence of the scheme. In 2017, Karaa et al. [16] constructed a fully discrete
FVE scheme for the two-dimensional Riemann–Liouville fractional diffusion equation by
using the piecewise linear discontinuous Galerkin method and FVE method and carried
out error analysis and numerical calculation experiments. In 2019, Fu et al. [17, 18] used
the CN-FVE method to give fully discrete finite volume element schemes for Riemann–
Liouville space fractional diffusion equations in one and two dimensions and adopted a
new fast algorithm in numerical experiments. In 2020, Zhao et al. [19] proposed a fully dis-
crete CN-FVE scheme to solve the Caputo time fractional Sobolev equation and verified
the feasibility of this method. In the same year, Zhao et al. [20] used the WSGD formula
to approximate the Riemann–Liouville fractional derivative and interpolation operator,
established the second-order fully discrete FVE scheme for the nonlinear time fractional
movable/immovable transport equation, and carried out stability analysis and error esti-
mation of the scheme. In addition to the FVE method, researchers also used many other
numerical methods to study fractional differential equations, such as the finite difference
method [21–26], finite element method [27–31], spectral method [32–34], and so on [35–
40].

The main work we have done in this paper is obtaining a fully discrete finite volume el-
ement scheme of the two-dimensional Riesz space fractional convection-diffusion equa-
tion (3) by using the CN-FVE method. Also, we prove the uniqueness, stability, and con-
vergence of the scheme in the L2-norm. To save time, we consider the characteristics of
Toplitz matrices, and use the FAST-BICGSTAB algorithm to solve the numerical exam-
ples, so as to verify the accuracy of our theoretical analysis.

The remainder of this paper is organized as follows. In Sect. 2, we give the fractional
convection–diffusion equation (3) and its fully discrete finite volume element scheme. In
Sect. 3, we analyze and prove the stability and convergence of the scheme. In Sect. 4, we
give three numerical examples to verify the accuracy of the theoretical analysis. Finally in
Sect. 5, we provide conclusions of this paper.

2 Finite volume element scheme
In this section, we consider the following two-dimensional space-fractional convection–
diffusion equation:

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t – K1

∂1+β u
∂|x|1+β – K2

∂1+γ u
∂|y|1+γ + K3

∂u
∂x + K4

∂u
∂y = f , (x, y) ∈ �, 0 < t ≤ T ,

u = 0, (x, y) ∈ ∂�, 0 < t ≤ T ,

u = u0, (x, y) ∈ �, t = 0,

(3)

where � = (0, L1) × (0, L2), 0 < β , γ < 1, ∂1+β u
∂|x|1+β = K0,β

∂
∂x [ ∂β u

∂xβ – ∂β u
∂(–x)β

], ∂1+γ u
∂|y|1+γ = K0,γ

∂
∂y [ ∂γ u

∂yγ –
∂γ u

∂(–y)γ ], K0,β = – 1
2 cos ( (1+β)π

2 )
> 0, K0,γ = – 1

2 cos ( (1+γ )π
2 )

> 0, ∂β u
∂xβ = 1

�(1–β)
∂
∂x
∫ x

0 (x – ξ )–βu(ξ ) dξ ,
∂β u

∂(–x)β
= – 1

�(1–β)
∂
∂x
∫ L1

x (ξ – x)–βu(ξ ) dξ , Ki (i = 1, 2, 3, 4) are given constants, Ki ≥ 0 (i = 1, 2),
K1 +K2 > 0, and f ∈ L2(�). We assume that the solution of equation (3) has the smoothness
and boundedness required in our analysis.
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Based on the definition of the Riesz fractional derivative, we can write the following
equivalent form of equation (3):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u
∂t – K1K0,β

∂
∂x [ ∂β u

∂xβ – ∂β u
∂(–x)β

] – K2K0,γ
∂
∂y [ ∂γ u

∂yγ – ∂γ u
∂(–y)γ ]

+ K3
∂u
∂x + K4

∂u
∂y = f , (x, y) ∈ �, 0 < t ≤ T ,

u = 0, (x, y) ∈ ∂�, 0 < t ≤ T ,

u = u0, (x, y) ∈ �, t = 0.

Let M be a positive integer, let τ = T
M , and let tm = mτ (m = 0, 1, . . . , M). We use the

CN-scheme to discretize the time derivative in equation (3) and get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, tm) – K0,β K1τ

2
∂
∂x ( ∂β u(x,y,tm)

∂xβ – ∂β u(x,y,tm)
∂(–x)β )

– K0,γ K2τ

2
∂
∂y ( ∂γ u(x,y,tm)

∂yγ – ∂γ u(x,y,tm)
∂(–y)γ )

+ τK3
2

∂u(x,y,tm)
∂x + τK4

2
∂u(x,y,tm)

∂y

= u(x, y, tm–1) + K0,β K1τ

2
∂
∂x ( ∂β u(x,y,tm–1)

∂xβ – ∂β u(x,y,tm–1)
∂(–x)β )

+ K0,γ K2τ

2
∂
∂y ( ∂γ u(x,y,tm–1)

∂yγ – ∂γ u(x,y,tm–1)
∂(–y)γ ) – τK3

2
∂u(x,y,tm–1)

∂x

– τK4
2

∂u(x,y,tm–1)
∂y + τ f (x, y, tm– 1

2
) + O(τ 3), (x, y) ∈ �, 0 < t ≤ T ,

u = 0, (x, y) ∈ ∂�, 0 < t ≤ T ,

u = u0, (x, y) ∈ �, t = 0.

(4)

Next, let Nx and Ny be positive integers, and let hx = L1
Nx+1 and hy = L2

Ny+1 . We divide
the region � into a uniform grid with grid nodes xi = ihx (0 ≤ i ≤ Nx + 1) and yj = jhy

(0 ≤ j ≤ Ny + 1). Denote the element �i,j = [xi, xi+1] × [yj, yj+1] (0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny).
Besides, for i = 1, . . . , Nx, j = 1, . . . , Ny, m = 1, . . . , M, let um

i,j be the finite volume element
approximation of u(xi, yj, tm).

We take the trial function space Sh(�) ⊂ H1
0 (�) as the linear element space with respect

to the space subdivision mentioned above: for uh ∈ Sh ⊂ H1
0 (�), we have Sh = {uh ∈ C(�) :

uh|�i,j ∈ P1; uh|∂� = 0}, where P1 is the set of all linear polynomials on �i,j. Then the ap-
proximate solution uh(x, y, tm) of equation (3) can be expressed as follows:

uh(x, y, tm) =
Nx∑
k=1

Ny∑
l=1

um
k,lφ

x
k (x)φy

l (y), (5)

where φx
k (x) are linear basis functions in the direction of x, expressed as follows:

φx
0(x) =

⎧⎨
⎩

x1–x
h , x ∈ [0, x1],

0 elsewhere,

φx
i (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x–xi–1
h , x ∈ [xi–1, xi],

xi+1–x
h , x ∈ [xi, xi+1], 1 ≤ i ≤ Nx,

0 elsewhere,
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φx
Nx+1(x) =

⎧⎨
⎩

x–xNx
h , x ∈ [xNx , L1],

0 elsewhere,
(6)

and the definition of φ
y
l (y) in the y direction is similar.

The dual elements are �∗
0,0 = [x0, x 1

2
] × [y0, y 1

2
], �∗

i,j = [xi– 1
2

, xi+ 1
2

] × [yj– 1
2

, yj+ 1
2

] (1 ≤ i ≤
Nx, 1 ≤ j ≤ Ny), and �∗

Nx+1,Ny+1 = [xNx+ 1
2

, xNx+1] × [yNy+ 1
2

, yNy+1]. Accordingly, we choose
the test function space as the piecewise constant function space Vh = {vh ∈ L2(�) : vh|�∗

i,j
=

constant; vh|�∗
0,0

= 0}.
The basis functions of Vh are

ψi,j(x, y) =

⎧⎨
⎩

1, (x, y) ∈ �∗
i,j, 1 ≤ i ≤ Nx + 1, 1 ≤ j ≤ Ny + 1,

0 elsewhere.
(7)

On dual element �∗
i,j (1 ≤ i ≤ Nx + 1, 1 ≤ j ≤ Ny + 1), we use um

h = uh(x, y, tm) instead of
u(x, y, tm) in equation (4) and omit the time-truncated error term. Then we get the follow-
ing variational form:

(
um

h ,ψi,j
)

–
(

K0,βK1τ

2
∂

∂x

(
∂βum

h
∂xβ

–
∂βum

h
∂(–x)β

)
,ψi,j

)

–
(

K0,γ K2τ

2
∂

∂y

(
∂γ um

h
∂yγ

–
∂γ um

h
∂(–y)γ

)
,ψi,j

)

+
(

τK3

2
∂um

h
∂x

,ψi,j

)
+
(

τK4

2
∂um

h
∂y

,ψi,j

)

=
(
um–1

h ,ψi,j
)

+
(

K0,βK1τ

2
∂

∂x

(
∂βum–1

h
∂xβ

–
∂βum–1

h
∂(–x)β

)
,ψi,j

)

+
(

K0,γ K2τ

2
∂

∂y

(
∂γ um–1

h
∂yγ

–
∂γ um–1

h
∂(–y)γ

)
,ψi,j

)
–
(

τK3

2
∂um–1

h
∂x

,ψi,j

)

–
(

τK4

2
∂um–1

h
∂y

,ψi,j

)
+ τ
(
f m– 1

2 ,ψi,j
)
.

(8)

We expand formula (8) to obtain the following fully discrete finite volume element scheme:

Nx∑
k=1

Ny∑
l=1

um
k,l

∫ xi+ 1
2

xi– 1
2

∫ yj+ 1
2

yj– 1
2

φx
k (x)φy

l (y) dx dy

–
τK0,βK1

2

Nx∑
k=1

Ny∑
l=1

um
k,l

(
∂βφx

k (x)
∂xβ

–
∂βφx

k (x)
∂(–x)β

)∣∣∣∣
xi+ 1

2

xi– 1
2

∫ yj+ 1
2

yj– 1
2

φ
y
l (y) dy

–
τK0,γ K2

2

Nx∑
k=1

Ny∑
l=1

um
k,l

(
∂γ φ

y
l (y)

∂yγ
–

∂γ φ
y
l (y)

∂(–y)γ

)∣∣∣∣
yj+ 1

2

yj– 1
2

∫ xi+ 1
2

xi– 1
2

φx
k (x) dx

+
τK3

2

Nx∑
k=1

Ny∑
l=1

um
k,lφ

x
k (x)
∣∣∣∣
xi+ 1

2

xi– 1
2

∫ yj+ 1
2

yj– 1
2

φ
y
l (y) dy

+
τK4

2

Nx∑
k=1

Ny∑
l=1

um
k,lφ

y
l (y)
∣∣∣∣
yj+ 1

2

yj– 1
2

∫ xi+ 1
2

xi– 1
2

φx
k (x) dx
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=
Nx∑
k=1

Ny∑
l=1

um–1
k,l

∫ xi+ 1
2

xi– 1
2

∫ yj+ 1
2

yj– 1
2

φx
k (x)φy

l (y) dx dy (9)

+
τK0,βK1

2

Nx∑
k=1

Ny∑
l=1

um–1
k,l

(
∂βφx

k (x)
∂xβ

–
∂βφx

k (x)
∂(–x)β

)∣∣∣∣
xi+ 1

2

xi– 1
2

∫ yj+ 1
2

yj– 1
2

φ
y
l (y) dy

+
τK0,γ K2

2

Nx∑
k=1

Ny∑
l=1

um–1
k,l

(
∂γ φ

y
l (y)

∂yγ
–

∂γ φ
y
l (y)

∂(–y)γ

)∣∣∣∣
yj+ 1

2

yj– 1
2

∫ xi+ 1
2

xi– 1
2

φx
k (x) dx

–
τK3

2

Nx∑
k=1

Ny∑
l=1

um–1
k,l φx

k (x)
∣∣∣∣
xi+ 1

2

xi– 1
2

∫ yj+ 1
2

yj– 1
2

φ
y
l (y) dy

–
τK4

2

Nx∑
k=1

Ny∑
l=1

um–1
k,l φ

y
l (y)
∣∣∣∣
yj+ 1

2

yj– 1
2

∫ xi+ 1
2

xi– 1
2

φx
k (x) dx

+ τ

∫ xi+ 1
2

xi– 1
2

∫ yj+ 1
2

yj– 1
2

f (x, y, tm– 1
2

) dx dy.

To facilitate the calculation, we introduce the following lemma.

Lemma 1 ([17]) For k = 1, 2, . . . , Nx, we have

∫ xi+ 1
2

xi– 1
2

φx
k (x) dx =

hx

8

⎧⎪⎪⎨
⎪⎪⎩

1, |k – i| = 1,

6, k = i,

0 otherwise.

(10)

Lemma 2 ([17]) For k = 1, 2, . . . , Nx, we have

∂βφx
k (x)

∂xβ

∣∣∣∣
xi– 1

2

=
1

hβ
x �(2 – β)

⎧⎨
⎩

0, k > i,

s(1–β)
i–k , k ≤ i,

∂βφx
k (x)

∂xβ

∣∣∣∣
xi+ 1

2

=
1

hβ
x �(2 – β)

⎧⎨
⎩

0, k > i + 1,

s(1–β)
i–k+1, k ≤ i + 1,

∂βφx
k (x)

∂(–x)β

∣∣∣∣
xi– 1

2

=
1

hβ
x �(2 – β)

⎧⎨
⎩

s(1–β)
i–k+1, k ≥ i – 1,

0, k < i – 1,
(11)

∂βφx
k (x)

∂(–x)β

∣∣∣∣
xi+ 1

2

=
1

hβ
x �(2 – β)

⎧⎨
⎩

s(1–β)
i–k , k ≥ i,

0, k < i,

where

s(1–β)
i =

⎧⎪⎪⎨
⎪⎪⎩

( 1
2 )(1–β), i = 0,

( 3
2 )(1–β) – 2 · ( 1

2 )(1–β), i = 1,

(i + 1
2 )(1–β) – 2 · (i – 1

2 )(1–β) + (i – 3
2 )(1–β), 2 ≤ i ≤ Nx.

(12)
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Lemma 3 For k = 1, 2, . . . , Nx, we have

φx
k (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 , k = i + 1,

– 1
2 , k = i – 1,

0 otherwise.

(13)

Let um and Fm be N := NxNy-dimensional vectors, defined as follows:

um =
[
um

1,1, . . . , um
Nx ,1, um

1,2, . . . , um
Nx ,2, . . . , um

1,Ny , . . . , um
Nx ,Ny ,

]T ,

Fm =
[
f̄ m
1,1, . . . , f̄ m

Nx ,1, f̄ m
1,2, . . . , f̄ m

Nx ,2, . . . , f̄ m
1,Ny , . . . , f̄ m

Nx ,Ny ,
]T ,

(14)

where

f̄ m
i,j :=

1
hxhy

∫ xi+ 1
2

xi– 1
2

∫ yj+ 1
2

yj– 1
2

f (x, y, tm– 1
2

) dy dx. (15)

Then we define the following Nxth-order mass matrix Ax, Nxth-order stiffness matrix
Bx, and Nxth-order matrix Cx:

Ax =
1
8

tridiag(1, 6, 1),

Bx = K0,β
[
T1–β ,Nx +

(
T1–β ,Nx

)T],
Cx = tridiag

(
–

1
2

, 0,
1
2

)
,

(16)

where T1–β ,Nx is a Toeplitz matrix of the following form:

T1–β ,Nx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(1–β)
1 q(1–β)

0 0 · · · 0 0

q(1–β)
2 q(1–β)

1 q(1–β)
0

. . . . . . 0
... q(1–β)

2 q(1–β)
1

. . . . . .
...

...
. . . . . . . . . . . . 0

q(1–β)
Nx–1

. . . . . . . . . q(1–β)
1 q(1–β)

0

q(1–β)
Nx q(1–β)

Nx–1 · · · · · · q(1–β)
2 q(1–β)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

with

q(1–β)
i =

⎧⎨
⎩

–s(1–β)
0 , i = 0,

s(1–β)
i–1 – s(1–β)

i , 1 ≤ i ≤ Nx.
(18)

Similarly, we can get three matrices Ay, By, and Cy in the y direction defined as follows:

Ay =
1
8

tridiag(1, 6, 1),

By = K0,γ
[
T1–γ ,Ny +

(
T1–γ ,Ny

)T],
Cy = tridiag

(
–

1
2

, 0,
1
2

)
.

(19)



Bi and Jiang Advances in Difference Equations        (2021) 2021:379 Page 8 of 22

We introduce the following definition and lemmas to give the matrix form of the fully
discrete scheme (9).

Definition 1 ([41]) For A ∈ Rm×n and B ∈ Rr×s, their Kronecker product is the partitioned
mr × ns matrix

A ⊗ B =

⎡
⎢⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎥⎦ . (20)

Lemma 4 ([41]) The Kronecker product satisfies the following bilinear and associative
properties:

A ⊗ (B + C) = A ⊗ B + A ⊗ C (if B and C have the same size),

(A + C) ⊗ B = A ⊗ B + B ⊗ C (if A and Bhave the same size),

(kA) ⊗ B = A ⊗ (kB) = k(A ⊗ B),

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C),

where A, B, and C are matrices, and k is a constant.

Lemma 5 ([17, 41]) If A, B, C, and D are four matrices and if the matrix products AC and
BD exist, then

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

Lemma 6 ([17, 41]) The matrix A ⊗ B is invertible if and only if A and B are invertible,
and its inverse is (A ⊗ B)T = AT ⊗ BT .

Lemma 7 ([17, 41]) Let A and B be square matrices of sizes n and m, respectively. Let
λ1,λ2, . . . ,λn be the eigenvalues of A, and let μ1,μ2, . . . ,μm be the eigenvalues of B. Then
the eigenvalues of A ⊗ B are

λiμj (i = 1, 2, . . . , n, j = 1, 2, . . . , m). (21)

Thus the finite volume element scheme (9) can be expressed in the following matrix
form:

(Ay ⊗ Ax + ηβAy ⊗ Bx + ηγ By ⊗ Ax + ωβAy ⊗ Cx + ωγ Cy ⊗ Ax)um

= (Ay ⊗ Ax – ηβAy ⊗ Bx – ηγ By ⊗ Ax – ωβAy ⊗ Cx – ωγ Cy ⊗ Ax)um–1 + τFm,
(22)

where ηβ = K1τ

2�(2–β)h1+β
x

, ηγ = K2τ

2�(2–γ )h1+γ
y

, and ωβ = K3τ

2hx
, ωγ = K4τ

2hy
.

3 Stability and convergence analysis
In this section, to investigate the stability and convergence of scheme (22), we need the
following lemmas.
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Lemma 8 ([17, 42]) An nth-order real matrix C is positive definite if and only if its sym-
metric part H = C+CT

2 is positive definite if and only if all eigenvalues of H are positive.

Lemma 9 ([17]) For any 0 < β < 1, we have

s(1–β)
1 < s(1–β)

0 , 0 < s(1–β)
2 – s(1–β)

1 + s(1–β)
0 < 2,

and for i = 2, 3, . . . , we have

s(1–β)
i < s(1–β)

i+1 < 0.

Lemma 10 ([17]) Suppose that A, B ∈ Rn×n are symmetric and positive definite. Then the
matrix A ⊗ B is also symmetric and positive definite, that is,

vT (A ⊗ B)v > 0, 0 �= v ∈ Rn. (23)

Lemma 11 ([17]) Let Ax and Ay be defined by (16) and (19), respectively. Then Ay ⊗ Ax is
symmetric and positive definite, and for all v ∈ RN , we have

1
4

vT v ≤ vT (Ay ⊗ Ax)v ≤ vT v. (24)

Lemma 12 For 0 < β , γ < 1, the stiffness matrices Ay ⊗Bx and By ⊗Ax are positive definite,
that is,

vT (Ay ⊗ Bx)v > 0, vT (By ⊗ Ax)v > 0, 0 �= v ∈ RN . (25)

Proof According to Lemma 8, to prove that the matrices Ay ⊗ Bx and By ⊗ Ax are positive
definite, we just have to prove that their symmetric parts

G1 :=
Ay ⊗ Bx + (Ay ⊗ Bx)T

2
=

Ay ⊗ Bx + Ay ⊗ BT
x

2
= Ay ⊗ Gx

and

G2 :=
By ⊗ Ax + (By ⊗ Ax)T

2
=

By ⊗ Ax + By ⊗ AT
x

2
= Gy ⊗ Ax

are positive definite, where Gx := Bx+BT
x

2 , Gy := By+BT
y

2 . According to (16) and (17), we find
that the elements gi,j of Gx satisfy

gi,j = K0,β

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(1–β)
i–j – s(1–β)

i–j+1 , j < i – 1,

s(1–β)
1 – s(1–β)

2 – s(1–β)
0 , j = i – 1,

2(s(1–β)
0 – s(1–β)

1 ), j = i,

gj,i, j ≥ i + 1.

(26)

By Lemma 9 we can infer that

gi,i > 0, gi,j < 0, j �= i,
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and

N∑
j=1,j �=i

|gi,j| = –

[ i–2∑
j=1

gi,j + gi,i–1 + gi,i+1 +
N∑

j=i+2

gi,j

]

= 2K0,β
(
s(1–β)

2 – s(1–β)
1 + s(1–β)

0
)

+ K0,β

i–1∑
j=2

(
s(1–β)

j+1 – s(1–β)
j
)

+ K0,β

N–i∑
j=2

(
s(1–β)

j+1 – s(1–β)
j
)

< 2K0,β (s(1–β)
2 – s(1–β)

1 + s(1–β)
0 +

N–1∑
j=2

(
s(1–β)

j+1 – s(1–β)
j
)

= 2K0,β
(
s(1–β)

2 – s(1–β)
1 + s(1–β)

0 + s(1–β)
N – s(1–β)

2
)

< 2K0,β
(
s(1–β)

0 – s(1–β)
1
)

= gi,i.

Thus the matrix Gx is a symmetric strictly diagonally dominant matrix with positive
diagonal elements. It follows that the matrix Gx is positive definite. Similarly, we can prove
that the matrix Gy is symmetrically positive definite. The matrices Ax and Ay are also
symmetrically positive definite. Therefore by Lemma 10 we can infer that the matrices G1

and G2 are positive definite. This completes the proof. �

Lemma 13 Let Cx and Cy be defined by (16) and (19), respectively. Then the matrices
Cy ⊗ Ax and Ay ⊗ Cx satisfy

vT (Ay ⊗ Cx)v = 0, vT (Cy ⊗ Ax)v = 0, 0 �= v ∈ RN . (27)

Proof For any N-dimensional vector v = [v1, v2, . . . , vN ]T , we write it as the Ny-dimensional
block vector

v =
[
vT

1 , vT
2 , . . . , vT

Ny

]T , (28)

where each block vi = [v(i–1)Nx+1, v(i–1)Nx+2, . . . , viNx ]T is an Nx-dimensional column vector.
Because of the symmetry of Ax, we get

vT (Cy ⊗ Ax)v

=
[
vT

1 , vT
2 , . . . , vT

Ny

]
tridiag

(
–

1
2

Ax, 0,
1
2

Ax

)[
vT

1 , vT
2 , . . . , vT

Ny

]T

= –
1
2

Ny–1∑
i=1

vT
i+1Axvi +

1
2

Ny–1∑
i=1

vT
i Axvi+1

= 0,

(29)
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and since Cx is an antisymmetric matrix, we obtain

vT (Ay ⊗ Cx)v

=
1
8
[
vT

1 , vT
2 , . . . , vT

Ny

]
tridiag(Cx, 6Cx, Cx)

[
vT

1 , vT
2 , . . . , vT

Ny

]T

=
6
8

Ny–1∑
i=1

vT
i Cxvi +

1
8

Ny–1∑
i=1

vT
i+1Cxvi +

1
8

Ny–1∑
i=1

vT
i Cxvi+1

= 0.

(30)

This completes the proof. �

Next, according to Lemma 11, a two-dimensional weighted discrete norm is defined as

‖v‖A :=
(
hxhyvT (Ay ⊗ Ax)v

) 1
2 (31)

and

∥∥vm∥∥
l2 :=

(
hxhy

Nx∑
i=1

Ny∑
j=1

(
vm

i,j
)2
) 1

2

. (32)

We can easily verify that ‖ · ‖A and ‖ · ‖l2 are equivalent, and by Lemma 11 we have

1
2
‖v‖l2 ≤ ‖v‖A ≤ ‖v‖l2 . (33)

Theorem 1 For any 0 < β ,γ < 1, the finite volume element scheme (22) is uniquely solvable.

Proof It is obvious from equation (9) that the scheme is solvable. Next, to prove that
scheme (22) is uniquely solvable, we need to prove that the homogeneous system of equa-
tions (Ay ⊗ Ax + ηβAy ⊗ Bx + ηγ By ⊗ Ax + ωβAy ⊗ Cx + ωγ Cy ⊗ Ax)um = 0 has only zero
solution. Now left multiplying both sides of this system by hxhy(um)T , we organize it into
the following form:

∥∥um∥∥2
A = hxhy

(
um)T (Ay ⊗ Ax)um

= –ηβhxhy
(
um)T (Ay ⊗ Bx)um – ηγ hxhy

(
um)T (By ⊗ Ax)um

– ωβhxhy
(
um)T (Ay ⊗ Cx)um – ωγ hxhy

(
um)T (Cy ⊗ Ax)um.

(34)

By Lemmas 12 and 13 we know

–ηβhxhy
(
um)T (Ay ⊗ Bx)um – ηγ hxhy

(
um)T (By ⊗ Ax)um

– ωβhxhy
(
um)T (Ay ⊗ Cx)um – ωγ hxhy

(
um)T (Cy ⊗ Ax)um ≤ 0,

(35)

so ‖um‖2
A ≤ 0, that is, ‖um‖2

A = 0, and thus um = 0. This completes the proof. �
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Theorem 2 For any 0 < β , γ < 1, the finite volume element scheme (22) is unconditionally
stable in the sense of the discrete norm, that is,

∥∥um∥∥
l2 ≤ 2

∥∥u0∥∥
l2 + 4τ

m∑
d=1

∥∥Fd∥∥
l2 , 1 ≤ m ≤ M. (36)

Proof First, we organize (22) into the following form:

(Ay ⊗ Ax)
(
um – um–1) + ηβ (Ay ⊗ Bx)

(
um + um–1) + ηγ (By ⊗ Ax)

(
um + um–1)

+ ωβ (Ay ⊗ Cx)
(
um + um–1) + ωγ (Cy ⊗ Ax)

(
um + um–1) = τFm.

(37)

Then left multiplying both sides of equation (37) by hxhy(um + um–1)T , by Lemmas 11, 12,
and 13 we get

∥∥um∥∥2
A –
∥∥um–1∥∥2

A = hxhy
(
um + um–1)T (Ay ⊗ Ax)

(
um – um–1)

≤ τhxhy
(
um + um–1)T Fm

≤ τ
∥∥um + um–1∥∥

l2
∥∥Fm∥∥

l2

≤ 2τ
∥∥um + um–1∥∥

A

∥∥Fm∥∥
l2 ,

(38)

where in the last two steps we used the Cauchy–Schwarz inequality and formula (33),
respectively. Subtracting ‖um + um–1‖A from both sides of this equation, we have

∥∥um∥∥
A ≤ ∥∥um–1∥∥

A + 2τ
∥∥Fm∥∥

l2 . (39)

By iteration we get

∥∥um∥∥
A ≤ ∥∥u0∥∥

A + 2τ

m∑
d=1

∥∥Fd∥∥
l2 . (40)

Again by formula (33) we obtain

∥∥um∥∥
l2 ≤ 2

∥∥u0∥∥
l2 + 4τ

m∑
d=1

∥∥Fd∥∥
l2 . (41)

This completes the proof. �

Lemma 14 ([15]) For W (x) ∈ C2[0, L], we have

W (x) =
Nx∑
k=1

Wkφ
x
k (x) + O

(
h2) (42)

and

∫ xi+ 1
2

xi– 1
2

W (x) dx =
∫ xi+ 1

2

xi– 1
2

Nx∑
k=1

Wkφ
x
k (x) dx + O

(
h3). (43)
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Lemma 15 ([15]) Let W (x) ∈ Cβ+1[0, L] for some 0 < β < 1. Then

(
∂βW (x + h

2 )
∂xβ

–
∂βW (x – h

2 )
∂xβ

)∣∣∣∣
xi

=
∂βW (x)

∂xβ

∣∣∣∣
xi+ 1

2

xi– 1
2

= O(h),

(
∂βW (x + h

2 )
∂(–x)β

–
∂βW (x – h

2 )
∂(–x)β

)∣∣∣∣
xi

=
∂βW (x)
∂(–x)β

∣∣∣∣
xi+ 1

2

xi– 1
2

= O(h).

(44)

Corollary 1 ([15]) Combining Lemmas 14 and 15, we get

∂βu(x)
∂xβ

∣∣∣∣
xi+ 1

2

xi– 1
2

=
Nx∑
k=1

uk

(∂βφx
k (xi+ h

2
)

∂xβ
–

∂βφx
k (xi– h

2
)

∂xβ

)
+ O
(
h3),

∂βu(x)
∂(–x)β

∣∣∣∣
xi+ 1

2

xi– 1
2

=
Nx∑
k=1

uk

(∂βφx
k (xi+ h

2
)

∂(–x)β
–

∂βφx
k (xi– h

2
)

∂(–x)β

)
+ O
(
h3).

(45)

Lemma 16 For W (x) ∈ C1[0, L], we have
[

W
(

x +
h
2

)
– W
(

x –
h
2

)]∣∣∣∣
xi

= W (x)|xi+ 1
2

xi– 1
2

= O(h). (46)

Proof Applying the Lagrange mean value theorem, we get

W
(

x +
h
2

)
– W
(

x –
h
2

)
= hW ′(ξ ) = h

∂W (ξ )
∂x

, x –
h
2

< ξ < x +
h
2

,

Since W (x) ∈ C1[0, L], we have
∣∣∣∣W
(

x +
h
2

)
– W
(

x –
h
2

)∣∣∣∣ =
∣∣∣∣h∂W (ξ )

∂x

∣∣∣∣≤ Ch.

This completes this proof. �

Corollary 2 Combining Lemmas 14 and 16, we obtain

u(x)|xi+ 1
2

xi– 1
2

=
Nx∑
k=1

uk

[
φx

k

(
xi +

1
2

)
– φx

k

(
xi –

1
2

)]
+ O
(
h3). (47)

Proof By Lemma 14 we have

u(x) =
Nx∑
k=1

ukφ
x
k (x) + O

(
h2),

and by Lemma 16 we get

[
u(x) –

Nx∑
k=1

ukφ
x
k (x)

]xi+ 1
2

xi– 1
2

= O
(
h · h2) = O

(
h3).

This completes this proof. �
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Theorem 3 Let Um ∈ H3(�), and let Um
i,j = u(xi, yj, tm) be the exact solution of equation

(3), let um
i,j = u(xi, yj, tm) be the numerical solution of the finite volume element scheme (22).

Then we have the error estimate

∥∥Um – um∥∥
l2 ≤ 4T

√
L1L2C

(
τ 2 + h2

x + h2
y
)
. (48)

Proof By the previous analysis the exact solution Um
i,j = u(xi, yj, tm) of the form (22) has a

local truncation error

O
(
τ 3hxhy + τh3

xhy + τhxh3
y
)

= τO
(
τ 2hxhy + h3

xhy + hxh3
y
)
.

Let em = Um – um be the global truncation error of the initial value e0 = 0. We can obtain
the following error equation in the matrix form:

(Ay ⊗ Ax + ηβAy ⊗ Bx + ηγ By ⊗ Ax + ωβAy ⊗ Cx + ωγ Cy ⊗ Ax)em

= (Ay ⊗ Ax – ηβAy ⊗ Bx – ηγ By ⊗ Ax – ωβAy ⊗ Cx – ωγ Cy ⊗ Ax)em–1

+ τO
(
τ 2 + h2

x + h2
y
)
E,

(49)

where E = [1, 1, . . . , 1]T . Then according to the statement on stability in Theorem 2, we
have

∥∥em∥∥
l2 ≤ 2

∥∥e0∥∥
l2 + 4τ

m∑
d=1

∥∥C(τ 2 + h2
x + h2

y
)
Ed∥∥

l2

≤ 4T
√

L1L2C
(
τ 2 + h2

x + h2
y
)
.

This completes this proof. �

4 Numerical examples
First, we give a fast algorithm for calculating the product of block Toeplitz matrices with
vectors [21, 43]. It is known that thematrices Ay ⊗ Ax, Ay ⊗ Bx, By ⊗ Ax, Ay ⊗ Cx, and
Cy ⊗ Ax are block Toeplitz–Toeplitz block matrices. Taking the matrix Ay ⊗ Ax as an
example, we first extend every Nx × Nx Toeplitz block matrix of Ay ⊗ Ax into a 2Nx × 2Nx

cyclic matrix, so that the original matrix is expanded into an Ny × Ny block Toeplitz–
cyclic block matrix. Then we assemble the new block Toeplitz matrix into a 2Ny × 2Ny

block cycle matrix, so that we generate a 2Ny × 2Ny block cycle matrix with each inner
block of 2Nx × 2Nx block cycle, represented by C. Let F = F2Nx ⊗ F2Ny represent the two-
dimensional discrete Fourier transform matrix, and let c represent the first column of the
newly assembled block cyclic–cyclic block matrix, so that we obtain the Fourier transform
of the vector c:

ĉ = Fc = (F2Nx ⊗ F2Ny )c.

Next, we use the following property of the cyclic matrix:

C = F–1 diag(ĉ)F = (F2Nx ⊗ F2Ny )–1 diag(ĉ)(F2Nx ⊗ F2Ny ).
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We can implement the fast matrix multiplication vector algorithm for two-dimensional
problems, which reduces the computation amount of matrix vector multiplication from
the traditional O(N3) to O(N log N).

We give several numerical examples to verify the validity of the finite volume element
scheme. Just for simplicity of the rest of calculation, let hx = hy = h.

Example 1 First, we consider the following two-dimensional Riesz fractional diffusion
equation:

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t – ∂1+β u

∂|x|1+β – ∂1+γ u
∂|y|1+γ = f , (x, y) ∈ �, 0 < t ≤ 1,

u = 0, (x, y) ∈ ∂�, 0 < t ≤ 1,

u = x2(1 – x)2y2(1 – y)2, (x, y) ∈ �, t = 0,

(50)

where � = (0, 1) × (0, 1), 0 < β , γ < 1, the source term f = etx2(1 – x)2y2(1 – y)2 +
et

2 cos( (1+β)π
2 )

{ 24
�(4–β) [x3–β +(1–x)3–β ]– 12

�(3–β) [x2–β +(1–x)2–β]+ 2
�(2–β) [x1–β +(1–x)1–β ]}y2(1–

y)2 + et

2 cos( (1+γ )π
2 )

{ 24
�(4–γ ) [y3–γ + (1 – y)3–γ ] – 12

�(3–γ ) [y2–γ + (1 – y)2–γ ] + 2
�(2–γ ) [y1–γ + (1 –

y)1–γ ]}x2(1 – x)2, and the exact solution u = etx2(1 – x)2y2(1 – y)2.

We define the L2-norm of the error between the exact solution UM and numerical solu-
tion uM as follows:

Error =
∥∥UM – uM∥∥ =

√√√√h2
N∑

i=1

[
UM

i – uM
i
]2.

Based on the above analysis, the L2-norm and convergence order of Example 1 calcu-
lated by MATLAB program are shown in the following tables. Tables 1 and 2 give the
L2-norm and spatial convergence rate under the condition of τ = h and different β , γ , Ta-
bles 3 and 4 give the L2-norm and time convergence rate under the condition of h = 2–8

and different β , γ . In agreement with the theoretical analysis given before, the time con-
vergence rate and the space convergence rate are both of order 2. Tables 5 and 6 show the
comparison of the calculation time of the three different calculation methods. We easily
see that the fast bicgstab method greatly improves the calculation speed.

To make the data results more intuitive, we present two groups of images. Figure 1 shows
the comparison of numerical solutions and exact solutions under the same conditions. We
can find that the two groups of images are roughly the same. Figure 2 shows the spatial
convergence order images under different β and γ conditions, and we clearly see that the
image data conform to the theoretical results.

Table 1 L2-norm and convergence rate when β = γ = 0.3, 0.5, 0.8 and τ = h

h β = γ = 0.3 β = γ = 0.5 β = γ = 0.8

Error Rate Error Rate Error Rate

1/24 3.7106e–05 – 3.7573e–05 – 3.9845e–05 –
1/25 1.0136e–05 1.8722 1.0213e–05 1.8793 1.0749e–05 1.8902
1/26 2.6712e–06 1.9239 2.6777e–06 1.9313 2.8043e–06 1.9385
1/27 6.9103e–07 1.9507 6.8902e–07 1.9584 7.1849e–07 1.9646
1/28 1.7735e–07 1.9621 1.7567e–07 1.9717 1.8242e–07 1.9777



Bi and Jiang Advances in Difference Equations        (2021) 2021:379 Page 16 of 22

Table 2 L2-norm and convergence rate when β = 0.3, 0.4, 0.5, γ = 0.8, 0.7, 0.6, and τ = h

h β = 0.3, γ = 0.8 β = 0.4, γ = 0.7 β = 0.5, γ = 0.6

Error Rate Error Rate Error Rate

1/24 3.9727e–05 – 3.8506e–05 – 3.7885e–05 –
1/25 1.0777e–05 1.8822 1.0454e–05 1.8810 1.0287e–05 1.8808
1/26 2.8237e–06 1.9323 2.7390e–06 1.9323 2.6944e–06 1.9328
1/27 7.2630e–07 1.9589 7.0428e–07 1.9594 6.9254e–07 1.9600
1/28 1.8508e–07 1.9724 1.7935e–07 1.9734 1.7631e–07 1.9738

Table 3 L2-norm and convergence rate when β = γ = 0.3, 0.5, 0.8 and h = 2–8

τ β = γ = 0.3 β = γ = 0.5 β = γ = 0.8

Error Rate Error Rate Error Rate

1/21 1.1622e–04 – 1.1477e–04 – 1.1043e–04 –
1/22 3.0637e–05 1.9235 3.1111e–05 1.8832 3.1833e–05 1.7945
1/23 7.5963e–06 2.0119 7.7286e–06 2.0091 7.9457e–06 2.0023
1/24 1.7927e–06 2.0832 1.8160e–06 2.0894 1.8646e–06 2.0931

Table 4 L2-norm and convergence rate when β = 0.3, 0.4, 0.5,γ = 0.8, 0.7, 0.6, and h = 2–8

τ β = 0.3, γ = 0.1 β = 0.4, γ = 0.7 β = 0.5, γ = 0.6

Error Rate Error Rate Error Rate

1/21 1.1640e–04 – 1.1388e–04 – 1.1415e–04 –
1/22 3.0373e–05 1.9382 3.1248e–05 1.8657 3.1216e–05 1.8706
1/23 7.5240e–06 2.0132 7.7430e–06 2.0128 7.7576e–06 2.0086
1/24 1.7773e–06 2.0818 1.8122e–06 2.0952 1.8198e–06 2.0918

Table 5 Comparison of the time taken by Gauss elimination, BICGSTAB, and FAST-BICGSTAB methods
when β = γ = 0.3 and τ = h

h Method Time 1 Method Time 2 Method Time 3

1/24 Gauss 0.009686 s BICGSTAB 0.008474 s FAST-BICGSTAB 0.061735 s
1/25 0.526368 s 0.241088 s 0.354841 s
1/26 61.452817 s 6.339914 s 2.628164 s
1/27 4160.579938 s 183.270371 s 15.732230 s
1/28 – – 182.436328 s
1/29 – – 1897.905645 s

Table 6 Comparison of the time taken by Gauss elimination, BICGSTAB, and FAST-BICGSTAB methods
when β = γ = 0.8 and τ = h

h Method Time 1 Method Time 2 Method Time 3

1/24 Gauss 0.009587 s BICGSTAB 0.012225 s FAST-BICGSTAB 0.123099 s
1/25 0.500738 s 0.503436 s 0.947818 s
1/26 62.099249 s 24.926117 s 9.177119 s
1/27 4200.554038 s 995.119451 s 67.557581 s
1/28 – – 962.377248 s
1/29 – – 10141.873806 s

Example 2 Consider the following two-dimensional Riesz fractional convection–diffusion
equation:

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t – ∂1+β u

∂|x|1+β – ∂1+γ u
∂|y|1+γ + ∂u

∂x + ∂u
∂y = f , (x, y) ∈ �, 0 < t ≤ 1,

u = 0, (x, y) ∈ ∂�, 0 < t ≤ 1,

u = x2(1 – x)2y2(1 – y)2, (x, y) ∈ �, t = 0,

(51)
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Figure 1 Comparison of the exact solution uM and the numerical solution UM

Figure 2 Spatial convergence rate of Example 1

where � = (0, 1) × (0, 1), 0 < β , γ < 1, the source term f = etx2(1 – x)2y2(1 – y)2 +
et

2 cos( (1+β)π
2 )

{ 24
�(4–β) [x3–β +(1–x)3–β ]– 12

�(3–β) [x2–β +(1–x)2–β]+ 2
�(2–β) [x1–β +(1–x)1–β ]}y2(1–

y)2 + et

2 cos( (1+γ )π
2 )

{ 24
�(4–γ ) [y3–γ + (1 – y)3–γ ] – 12

�(3–γ ) [y2–γ + (1 – y)2–γ ] + 2
�(2–γ ) [y1–γ + (1 –

y)1–γ ]}x2(1 – x)2 + et(4x3 – 6x2 + 2x)y2(1 – y)2 + et(4y3 – 6y2 + 2y)x2(1 – x)2, and the ex-
act solution u = etx2(1 – x)2y2(1 – y)2.

The L2-norm and convergence order of Example 2 calculated by MATLAB program are
shown in Tables 7–12. As in Example 1, our final results are consistent with the theoretical
analysis.

Similarly, we present two sets of images to more graphically depict the data. Figure 3
shows the errors between the numerical and exacts solutions for different β , γ . We can

Table 7 L2-norm and convergence rate when β = γ = 0.3, 0.5, 0.8 and τ = h

h β = γ = 0.3 β = γ = 0.5 β = γ = 0.8

Error Rate Error Rate Error Rate

1/24 4.4709e–05 – 4.2333e–05 – 4.1909e–05 –
1/25 1.1928e–05 1.9062 1.1359e–05 1.8979 1.1269e–05 1.8949
1/26 3.0803e–06 1.9532 2.9441e–06 1.9479 2.9313e–06 1.9427
1/27 7.8459e–07 1.9731 7.5093e–07 1.9711 7.4905e–07 1.9684
1/28 1.9835e–07 1.9839 1.8995e–07 1.9831 1.8966e–07 1.9816
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Table 8 L2-norm and convergence rate when β = 0.3, 0.4, 0.5, γ = 0.8, 0.7, 0.6, and τ = h

h β = 0.3, γ = 0.8 β = 0.4, γ = 0.7 β = 0.5, γ = 0.6

Error Rate Error Rate Error Rate

1/24 4.3410e–05 – 4.2505e–05 – 4.2049e–05 –
1/25 1.1659e–05 1.8966 1.1419e–05 1.8962 1.1295e–05 1.8964
1/26 3.0296e–06 1.9442 2.9650e–06 1.9453 2.9310e–06 1.9462
1/27 7.7348e–07 1.9697 7.5638e–07 1.9708 7.4717e–07 1.9719
1/28 1.9606e–07 1.9801 1.9152e–07 1.9816 1.8904e–07 1.9827

Table 9 L2-norm and convergence rate when β = γ = 0.3, 0.5, 0.6 and h = 2–8

τ β = γ = 0.3 β = γ = 0.5 β = γ = 0.6

Error Rate Error Rate Error Rate

1/21 1.1683e–04 – 1.1465e–04 – 1.1327e–04 –
1/22 3.0989e–05 1.9146 3.1312e–05 1.8724 3.1468e–05 1.8478
1/23 7.6545e–06 2.0174 7.7527e–06 2.0139 7.8036e–06 2.0117
1/24 1.7903e–06 2.0961 1.8119e–06 2.0972 1.8193e–06 2.1008

Table 10 L2-norm and convergence rate when β = 0.3, 0.4, 0.5, γ = 0.1, 0.7, 0.6, and h = 2–8

τ β = 0.3, γ = 0.1 β = 0.4, γ = 0.7 β = 0.5, γ = 0.6

Error Rate Error Rate Error Rate

1/21 1.1766e–04 – 1.1696e–04 – 1.2989e–04 –
1/22 3.0831e–05 1.9322 3.3372e–05 1.8093 3.1438e–05 2.0467
1/23 7.6083e–06 2.0187 8.1529e–06 2.0333 7.7724e–06 2.0161
1/24 1.7767e–06 2.0984 1.8642e–06 2.1288 1.8170e–06 2.0968

Table 11 Comparison of the time taken by Gauss elimination, BICGSTAB, and FAST-BICGSTAB
methods when β = γ = 0.3 and τ = h

h Method Time 1 Method Time 2 Method Time 3

1/24 Gauss 0.013568 s BICGSTAB 0.010259 s FAST-BICGSTAB 0.262019 s
1/25 0.860206 s 0.349422 s 1.262514 s
1/26 71.711588 s 7.333496 s 6.596356 s
1/27 8532.462135 s 206.940085 s 28.015395 s
1/28 – – 323.858521 s
1/29 – – 3048.820601 s

Table 12 Comparison of the time taken by Gauss elimination, BICGSTAB, and FAST-BICGSTAB
methods when β = γ = 0.8 and τ = h

h Method Time 1 Method Time 2 Method Time 3

1/24 Gauss 0.013328 s BICGSTAB 0.015876 s FAST-BICGSTAB 0.270941 s
1/25 0.857786 s 0.596994 s 1.933745 s
1/26 67.991373 s 25.279196 s 17.303392 s
1/27 7827.717809 s 1158.434168 s 123.636986 s
1/28 – – 1683.692712 s
1/29 – – 18272.333663 s

see that when τ = h = 2–8, the error between the exact and numerical solutions reaches
1e–07. Figure 4 shows the spatial convergence orders under different β , γ , and the data
agree with the theoretical results.
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Figure 3 The errors between uM and UM

Figure 4 Spatial convergence rate of Example 2

Example 3 Consider the following two-dimensional Riesz fractional convection-diffusion
equation:

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t – 3 ∂1+β u

∂|x|1+β – 3 ∂1+γ u
∂|y|1+γ – 5 ∂u

∂x – 5 ∂u
∂y = f , (x, y) ∈ �, 0 < t ≤ 1,

u = 0, (x, y) ∈ ∂�, 0 < t ≤ 1,

u = 0, (x, y) ∈ �, t = 0,

(52)

where � = (0, 1) × (0, 1), 0 < β , γ < 1, the source term f = 3t2x2(1 – x)2y2(1 – y)2 +
3t3

2 cos( (1+β)π
2 )

{ 24
�(4–β) [x3–β +(1–x)3–β ]– 12

�(3–β) [x2–β +(1–x)2–β]+ 2
�(2–β) [x1–β +(1–x)1–β ]}y2(1–

y)2 + 3t3

2 cos( (1+γ )π
2 )

{ 24
�(4–γ ) [y3–γ + (1 – y)3–γ ] – 12

�(3–γ ) [y2–γ + (1 – y)2–γ ] + 2
�(2–γ ) [y1–γ + (1 –

y)1–γ ]}x2(1 – x)2 – 5t3(4x3 – 6x2 + 2x)y2(1 – y)2 – 5t3(4y3 – 6y2 + 2y)x2(1 – x)2, and the
exact solution u = t3x2(1 – x)2y2(1 – y)2.

As in the previous two examples, we use the MATLAB program to produce the following
data results (see Tables 13–14 and Fig. 5). We find that the calculated data are consistent
with the theoretical results obtained from our previous analysis.

5 Conclusion
In this paper, we have successfully given the Crank–Nicolson finite volume element
scheme for two-dimensional Riesz space-fractional convection–diffusion equations. We
use the finite volume element scheme to discretize the space-fractional derivatives and the
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Table 13 L2-norm and convergence rate when β = γ = 0.3, 0.5, 0.8 and τ = h

h β = γ = 0.3 β = γ = 0.5 β = γ = 0.8

Error Rate Error Rate Error Rate

1/24 1.5804e–05 – 1.4156e–05 – 1.2805e–05 –
1/25 4.2150e–06 1.9067 3.8236e–06 1.8884 3.5015e–06 1.8707
1/26 1.0833e–06 1.9601 9.9123e–07 1.9476 9.1644e–07 1.9339
1/27 2.7406e–07 1.9829 2.5219e–07 1.9747 2.3463e–07 1.9657
1/28 6.8920e–08 1.9915 6.3652e–08 1.9862 5.9574e–08 1.9776

Table 14 L2-norm and convergence rate when β = 0.3, 0.4, 0.5, γ = 0.1, 0.5, 0.6, and h = 2–8

τ β = 0.3, γ = 0.1 β = 0.4, γ = 0.5 β = 0.5, γ = 0.6

Error Rate Error Rate Error Rate

1/21 2.9489e–04 – 2.9544e–04 – 2.9512e–04 –
1/22 7.2841e–05 2.0174 7.3103e–05 2.0149 7.3263e–05 2.0101
1/23 1.8106e–05 2.0083 1.8163e–05 2.0089 1.9625e–05 1.9004
1/24 4.4716e–06 2.0176 4.4856e–06 2.0176 4.5131e–06 2.1205

Figure 5 Comparison of color contour plots of the exact solution uM and the numerical solution UM when
β = γ = 0.3 and τ = h = 2–8

CN-scheme to approximate the time derivatives. We show that the fully discrete scheme
is stable and convergent. Finally, we verify the correctness and validity of the theoretical
analysis through three examples.

Acknowledgements
The authors would like to express their sincere thanks to the reviewers for their valuable comments and suggestions,
which have contributed to the improvement of the original manuscript.

Funding
This work is supported by the Natural Science Foundation of Shandong Province of China (No. ZR2017MA020).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 April 2021 Accepted: 18 July 2021

References
1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)



Bi and Jiang Advances in Difference Equations        (2021) 2021:379 Page 21 of 22

2. Lotfy, K.: A novel solution of fractional order heat equation for photothermal waves in a semiconductor medium with
a spherical cavity. Chaos Solitons Fractals 99, 233–242 (2017)

3. Nikan, O., Jafari, H., Golbabai, A.: Numerical analysis of the fractional evolution model for heat flow in materials with
memory. Alex. Eng. J. 59(4), 2627–2637 (2020)

4. Ganji, R.M., Jafari, H., Baleanu, D.: A new approach for solving multi variable orders differential equations with
Mittag-Leffler kernel. Chaos Solitons Fractals 130, 109405 (2020)

5. Tuan, N.H., Aghdam, Y.E., Jafari, H., Mesgarani, H.: A novel numerical manner for two-dimensional space fractional
diffusion equation arising in transport phenomena. Numer. Methods Partial Differ. Equ. 37, 1397–1406 (2021)

6. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep.
339(1), 1–77 (2000)

7. Gorenflo, R., Mainardi, F.: Approximation of Levy–Feller diffusion by random walk. Z. Anal. Anwend. 18(2), 231–246
(1999)

8. Feller, W.: An Introduction to Probability Theory and Its Application, 2nd edn. Wiley, New York (1971)
9. Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional

advection–dispersion equation. J. Comput. Appl. Math. 255, 684–697 (2014)
10. Yang, Q., Turner, I., Moroney, T., Liu, F.: A finite volume scheme with preconditioned Lanczos method for

two-dimensional space-fractional reaction–diffusion equations. Appl. Math. Model. 38(15–16), 3755–3762 (2014)
11. Jia, J., Wang, H.: A fast finite volume method for conservative space-fractional diffusion equations in convex domains.

J. Comput. Phys. 310, 63–84 (2016)
12. Zhang, T., Guo, Q.: The finite difference/finite volume method for solving the fractional diffusion equation. J. Comput.

Phys. 375, 120–134 (2018)
13. Liu, H., Cheng, A., Wang, H.: A parareal finite volume method for variable-order time-fractional diffusion equations.

J. Sci. Comput. 85(1), 19 (2020)
14. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional

diffusion equation. Appl. Math. Model. 38(15–16), 3871–3878 (2014)
15. Feng, L.B., Zhuang, P., Liu, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided

space-fractional diffusion equation. Appl. Math. Comput. 257, 52–65 (2015)
16. Karaa, S., Mustapha, K., Pani, A.K.: Finite volume element method for two-dimensional fractional subdiffusion

problems. IMA J. Numer. Anal. 37(2), 945–964 (2017)
17. Fu, H., Liu, H., Wang, H.: A finite volume method for two-dimensional Riemann–Liouville space-fractional diffusion

equation and its efficient implementation. J. Comput. Phys. 388, 316–334 (2019)
18. Fu, H., Sun, Y., Wang, H., Zheng, X.: Stability and convergence of a Crank–Nicolson finite volume method for space

fractional diffusion equations. Appl. Numer. Math. 139, 38–51 (2019)
19. Zhao, J., Fang, Z., Li, H., Liu, Y.: A Crank–Nicolson finite volume element method for time fractional Sobolev equations

on triangular grids. Mathematics 8(9), 1591 (2020)
20. Zhao, J., Fang, Z., Li, H., Liu, Y.: Finite volume element method with the WSGD formula for nonlinear fractional

mobile/immobile transport equations. Adv. Differ. Equ. 2020, 360 (2020)
21. Wang, H., Wang, K., Sircar, T.: A direct O(N log2N) finite difference method for fractional diffusion equations. J.

Comput. Phys. 229(21), 8095–8104 (2010)
22. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the

Riemann–Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)
23. Arshad, S., Baleanu, D., Huang, J., Al Qurashi, M., Tang, Y., Zhao, Y.: Finite difference method for time-space fractional

advection–diffusion equations with Riesz derivative. Entropy 20(5), 321 (2018)
24. Mirzaee, F., Samadyar, N.: Combination of finite difference method and meshless method based on radial basis

functions to solve fractional stochastic advection–diffusion equations. Eng. Comput. 36(4), 1673–1686 (2020)
25. Anley, E.F., Zheng, Z.: Finite difference approximation method for a space fractional convection–diffusion equation

with variable coefficients. Symmetry 12(3), 485 (2020)
26. She, Z., Qu, H., Liu, X.: Stability and convergence of finite difference method for two-sided space-fractional diffusion

equations. Comput. Math. Appl. 89, 78–86 (2021)
27. Lian, Y., Ying, Y., Tang, S., Lin, S., Wagner, G.J., Liu, W.K.: A Petrov–Galerkin finite element method for the fractional

advection–diffusion equation. Comput. Methods Appl. Mech. Eng. 309, 388–410 (2016)
28. Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element method for space-time fractional diffusion equation.

Numer. Algorithms 72(3), 749–767 (2016)
29. Çelik, C., Duman, M.: Finite element method for a symmetric tempered fractional diffusion equation. Appl. Numer.

Math. 120, 270–286 (2017)
30. Abbaszadeh, M., Dehghan, M.: Analysis of mixed finite element method (MFEM) for solving the generalized fractional

reaction–diffusion equation on nonrectangular domains. Comput. Math. Appl. 78(5), 1531–1547 (2019)
31. Gao, J., Zhao, M., Du, N., Guo, X., Wang, H., Zhang, J.: A finite element method for space-time directional fractional

diffusion partial differential equations in the plane and its error analysis. J. Comput. Appl. Math. 362, 354–365 (2019)
32. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction–diffusion equations.

BIT Numer. Math. 54(4), 937–954 (2014)
33. Pindza, E., Owolabi, K.M.: Fourier spectral method for higher order space fractional reaction–diffusion equations.

Commun. Nonlinear Sci. Numer. Simul. 40, 112–128 (2016)
34. Chen, H., Lü, S., Chen, W.: Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel.

Comput. Math. Appl. 71(9), 1818–1830 (2016)
35. Çelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative.

J. Comput. Phys. 231(4), 1743–1750 (2012)
36. Pindza, E., Owolabi, K.M.: Fourier spectral method for higher order space fractional reaction–diffusion equations.

Commun. Nonlinear Sci. Numer. Simul. 40, 112–128 (2016)
37. Zhu, X.G., Nie, Y.F., Zhang, W.W.: An efficient differential quadrature method for fractional advection–diffusion

equation. Nonlinear Dyn. 90(3), 1807–1827 (2017)
38. Dehghan, M., Abbaszadeh, M., Deng, W.: Fourth-order numerical method for the space-time tempered fractional

diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)



Bi and Jiang Advances in Difference Equations        (2021) 2021:379 Page 22 of 22

39. Shen, J., Sheng, C.: An efficient space-time method for time fractional diffusion equation. J. Sci. Comput. 81(2),
1088–1110 (2019)

40. Feng, R., Liu, Y., Hou, Y., Li, H., Fang, Z.: Mixed element algorithm based on a second-order time approximation
scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model. Eng. Comput. (2020)

41. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)
42. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37, 2nd edn. Springer, Berlin (2007)
43. Jin, X.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)


	The ﬁnite volume element method for the two-dimensional space-fractional convection-diffusion equation
	Abstract
	Keywords

	Introduction
	Finite volume element scheme
	Stability and convergence analysis
	Numerical examples
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


