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Abstract
Numerous mathematicians have studied ‘poly’ as one of the generalizations to special
polynomials, such as Bernoulli, Euler, Cauchy, and Genocchi polynomials. In relation to
this, in this paper, we introduce the degenerate poly-Bell polynomials emanating
from the degenerate polyexponential functions which are called the poly-Bell
polynomials when λ → 0. Specifically, we demonstrate that they are reduced to the
degenerate Bell polynomials if k = 1. We also provide explicit representations and
combinatorial identities for these polynomials, including Dobinski-like formulas,
recurrence relationships, etc.
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1 Introduction
Although various mathematicians studied ‘poly’ as one of the generalizations of Bernoulli,
Euler, Genocchi, and Cauchy polynomials [1, 4, 6–8, 11, 14, 16, 18, 20], the ‘poly’ for Bell
polynomials has not been studied so far. Furthermore, in recent years, a lot of research has
been conducted on various degenerate versions of many special polynomials and num-
bers, accumulating in a renewed interest for mathematicians various special polynomials
and numbers [3, 9, 11, 12, 14–18]. For instance, Kim and Kim [8] reappraised the polyex-
ponential functions in relation to polylogarithm functions, expanding upon the research
which was first conducted by Hardy [5].

With this in mind, in this paper, we define the degenerate poly-Bell polynomials through
their degenerate polyexponential functions, reducing them to the degenerate Bell polyno-
mials if k = 1. Hence, we define the poly-Bell polynomials when λ → 0, providing explicit
expressions and identities involving those polynomials.

In recent years, much research has been done for various degenerate versions of many
special polynomials and numbers. Moreover, various special polynomials and num-
bers regained interest of mathematicians, and quite a few results have been discovered
[3, 9, 11, 12, 14–18]. The polyexponential functions were reconsidered by Kim [8] in view
of an inverse to the polylogarithm functions which were first studied by Hardy [5]. In this
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paper, we define the degenerate poly-Bell polynomials by means of the degenerate poly-
exponential functions, and they are reduced to the degenerate Bell polynomials if k = 1. In
particular, when λ → 0, we call them the poly-Bell polynomials. We also provide explicit
representations and combinatorial identities for these polynomials, including Dobinski-
like formulas, recurrence relationships, etc.

The Bell polynomials Bn(x) =
∑n

k=0 S2(n, k)xn are natural extensions of the Bell numbers
which are a number of ways to partition a set with n elements into nonempty subsets. It
is well known that the generating function of the Bell polynomials is given by

ex(et–1) =
∞∑

n=0

Beln(x)
tn

n!
(see [3, 11, 15, 19]).

For λ ∈R, the degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ and eλ(t) =

∞∑

n=0

(1)n,λ
tn

n!
(see [3, 7, 9, 11, 12, 14–18]), (1)

where (x)0,λ = 1 and (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ).
The fully degenerate Bell polynomials are given by

eλ

(
x
(
eλ(t) – 1

))
=

∞∑

n=0

beln,λ(x)
tn

n!
(see [3]). (2)

When λ → 0, beln,λ(x) = beln(x).
Carlitz considered the degenerate Bernoulli polynomials which are given by

t
eλ(t) – 1

ex
λ(t) =

∞∑

n=0

βn,λ(x)
tn

n!
(see [2]). (3)

When x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers.
The degenerate Genocchi polynomials are given by

2t
eλ(t) + 1

ex
λ(t) =

∞∑

n=0

Gn,λ(x)
tn

n!
(see [12, 16]). (4)

When x = 0, Gn,λ = Gn,λ(0) are called the degenerate Genocchi numbers.
Kim and Kim introduced the modified polyexponential function as

Eik(x) =
∞∑

n=1

xn

(n – 1)!nk (k ∈ Z) (see [8]). (5)

By (5), we see that Ei1(x) = ex – 1.
The degenerate polyexponential function is given by

Eik,λ(x) =
∞∑

n=1

(1)n,λxn

(n – 1)!nk (k ∈ Z) (see [11, 17]). (6)

We note that Ei1,λ(x) = eλ(x) – 1.
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The degenerate poly-Bernoulli polynomials are defined by

Eik,λ(logλ(1 + t))
eλ(t) – 1

ex
λ(t) =

∞∑

n=0

β
(k)
n,λ(x)

tn

n!
(see [14, 17]). (7)

When x = 0, β (k)
n,λ = β

(k)
n,λ(0) are called the degenerate poly-Bernoulli numbers.

Since Ei1,λ(logλ(1 + t)) = t, β (1)
n,λ(x) are the degenerate Bernoulli polynomials.

The degenerate poly-Genocchi polynomials are given by

2 Eik,λ(logλ(1 + t))
eλ(t) + 1

ex
λ(t) =

∞∑

n=0

G(k)
n,λ(x)

tn

n!
(see [16]), (8)

and G(k)
0,λ(x) = 0. When x = 0, G(k)

n,λ = G(k)
n,λ(0) are called the degenerate poly-Genocchi num-

bers.
When k = 1, G(1)

n,λ(x) are the degenerate Genocchi polynomials.
In [9], the degenerate Stirling numbers of the second kind are defined by

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0). (9)

As an inversion formula of (9), the degenerate Stirling numbers of the first kind are defined
by

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0) (see [11, 15]). (10)

From (9) and (10), we note that

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,l(n, k)
tn

n!
(see [11, 15]) (11)

and

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(see [11, 17]), (12)

where

logλ(t) =
1
λ

(
tλ – 1

)
(see [17]) (13)

is the compositional inverse of eλ(t) satisfying logλ(eλ(t)) = eλ(logλ(t)) = t.

2 Degenerate poly-Bell polynomials and numbers
In this section, we define the degenerate poly-Bell polynomials by using of the degener-
ate polyexponential functions and give explicit expressions and identities involving these
polynomials.
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We define the degenerate poly-Bell polynomials bel(k)
n,λ(x), which arise from the degen-

erate polyexponential functions to be

1 + Eik,λ
(
x
(
eλ(t) – 1

))
=

∞∑

n=0

bel(k)
n,λ(x)

tn

n!
(14)

and bel(k)
0,λ(x) = 1.

When x = 1, bel(k)
n,λ = bel(k)

n,λ(1) are called the degenerate poly-Bell numbers.
When k = 1, from (6), we note that

1 + Ei1,λ
(
x
(
eλ(t) – 1

))
= 1 +

∞∑

n=1

(1)n,λ(x(eλ(t) – 1))n

(n – 1)!n

=
∞∑

n=0

(1)n,λ(x(eλ(t) – 1))n

n!

= eλ

(
x
(
eλ(t) – 1

))
=

∞∑

n=0

beln,λ(x)
tn

n!
.

(15)

Combining with (14) and (15), we have

bel(1)
n,λ(x) = beln,λ(x).

When λ → 0, bel(k)
n (x) are called the poly-Bell polynomials.

Theorem 1 For k ∈ Z and n ≥ 1, we have

bel(k)
n,λ(x) =

n∑

l=1

(1)l,λ

lk–1 S2(n, l)xl.

Proof From (6) and (11), we observe that

Eik,λ
(
x
(
eλ(t) – 1

))
=

∞∑

l=1

(1)l,λxl

lk–1
1
l!
(
eλ(t) – 1

)l

=
∞∑

l=1

(1)l,λxl

lk–1

∞∑

n=l

S2,λ(n, l)
tn

n!

=
∞∑

n=1

( n∑

l=1

(1)l,λ

lk–1 S2,λ(n, l)xl

)
tn

n!
.

(16)

Combining with (14) and (16), we have the desired result. �

Theorem 2 For k ∈ Z and n ≥ 1, we have

n∑

m=1

bel(k)
m,λ(x)S1,λ(n, m) =

(1)m,λxm

nk–1 . (17)
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In particular, when x = 1,

n∑

m=1

bel(k)
m,λ S1,λ(n, m) =

(1)m,λ

nk–1 .

Proof By replacing t with logλ(1 + t) in (14), the left-hand side is

1 + Eik,λ(xt) = 1 +
∞∑

n=1

(1)n,λ(xt)n

(n – 1)!nk = 1 +
∞∑

n=1

(1)n,λxn

nk–1
tn

n!
. (18)

On the other hand, from (12), the right-hand side is

∞∑

m=0

bel(k)
m,λ(x)

(logλ(1 + t))m

m!
= 1 +

∞∑

m=1

bel(k)
m,λ(x)

∞∑

n=m
S1,λ(n, m)

tn

n!

= 1 +
∞∑

n=1

( n∑

m=1

bel(k)
m,λ(x)S1,λ(n, m)

)
tn

n!
.

(19)

Combining with coefficients of (18) and (19), we get what we want. �

Theorem 3 (Dobinski-like formulas) For k ∈ Z and n ≥ 1, we have

bel(k)
n,λ(x) =

∞∑

h=1

h∑

m=0

(
m
h

)
(–1)h–m(1)h,λ(m)n,λ

(h – 1)!hk .

Proof From (1) and (6), we observe that

∞∑

n=1

bel(k)
n,λ(x)

tn

n!
=

∞∑

h=1

(1)h,λxh

(h – 1)!hk

(
eλ(t) – 1

)h

=
∞∑

h=1

(1)h,λxh

(h – 1)!hk

h∑

m=0

(
h
m

)

(–1)h–mem
λ (t)

=
∞∑

h=1

(1)h,λxh

(h – 1)!hk

h∑

m=0

(
h
m

)

(–1)h–m
∞∑

n=0

(m)n,λ
tn

n!

=
∞∑

n=0

( ∞∑

h=1

h∑

m=0

(
h
m

)
(–1)h–m(1)h,λ(m)n,λ

(h – 1)!hk

)
tn

n!

=
∞∑

h=1

h∑

m=0

(
h
m

)
(–1)h–m(1)h,λ

(h – 1)!hk

+
∞∑

n=1

( ∞∑

h=1

h∑

m=0

(
h
m

)
(–1)h–m(1)h,λ(m)n,λ

(h – 1)!hk

)
tn

n!
.

(20)
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By comparing with coefficients on both sides of (20), we get

∞∑

h=1

h∑

m=0

(
h
m

)
(–1)h–m(1)h,λ

(h – 1)!hk = 0 and

bel(k)
n,λ(x) =

∞∑

h=1

h∑

m=0

(
m
h

)
(–1)h–m(1)h,λ(m)n,λ

(h – 1)!hk (n ≥ 1). �

Theorem 4 For k ∈ Z and n ≥ 1, we have

n–1∑

m=0

(
n
m

)

(1)n–m,λ bel(k)
m+1,λ(x) =

n∑

m=1

(
n
m

)

(1 – λ)n–m,λ bel(k–1)
m,λ (x).

Proof Differentiating with respect to t in (14), the left-hand side of (14) is

∂

∂t
Eik,λ

(
x
(
eλ(t) – 1

))
=

∂

∂t

∞∑

n=1

xn(eλ(t) – 1)n

(n – 1)!nk

=
e1–λ
λ (t)

eλ(t) – 1

∞∑

n=1

xn(eλ(t) – 1)n

(n – 1)!nk–1

=
e1–λ
λ (t)

eλ(t) – 1
Eik–1,λ

(
x
(
eλ(t) – 1

))

=
e1–λ
λ (t)

eλ(t) – 1

∞∑

n=1

bel(k–1)
n,λ (x)

tn

n!
.

(21)

On the other hand, the right-hand side of (14) is

∂

∂t

( ∞∑

n=0

bel(k)
n,λ(x)

tn

n!

)

=
∞∑

n=1

bel(k)
n,λ(x)

tn–1

(n – 1)!
=

∞∑

n=0

bel(k)
n+1,λ(x)

tn

n!
. (22)

Combining with (21) and (22), we get

(
eλ(t) – 1

) ∞∑

m=0

bel(k)
m+1,λ(x)

tm

m!
= e1–λ

λ (t)
∞∑

m=1

bel(k–1)
m,λ (x)

tm

m!
. (23)

From (23), we have

∞∑

j=1

(1)j,λ
tj

j!

∞∑

m=0

bel(k)
m+1,λ(x)

tm

m!
=

∞∑

i=0

(1 – λ)i,λ
ti

i!

∞∑

m=1

bel(k–1)
m,λ (x)

tm

m!
. (24)

From (24), we get

∞∑

n=1

n–1∑

m=0

(
n
m

)

(1)n–m,λ bel(k)
m+1,λ(x)

tn

n!
=

∞∑

n=1

n∑

m=1

(
n
m

)

(1 – λ)n–m,λ bel(k–1)
m,λ (x)

tn

n!
. (25)
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By comparing with coefficients on both sides of (25), we have

n–1∑

m=0

(
n
m

)

(1)n–m,λ bel(k)
m+1,λ(x) =

n∑

m=1

(
n
m

)

(1 – λ)n–m,λ bel(k–1)
m,λ (x). (26)

�

Theorem 5 For k ∈ Z and n ≥ 1, we have

bel(k)
n,λ(x) =

n∑

j=1

j∑

h=1

h∑

m=1

(1)m,λ

mk–1 S1,λ(h, m)S2,λ(n, j)S2,λ(j, h)xj.

Proof From (6) and (12), we observe that

Eik,λ
(
logλ(1 + t)

)
=

∞∑

m=1

(1)m,λ(logλ(1 + t))m

(m – 1)!mk

=
∞∑

m=1

(1)m,λ

mk–1
(logλ(1 + t))m

m!
=

∞∑

n=1

( n∑

m=1

(1)m,λS1,λ(n, m)
mk–1

)
tn

n!
.

(27)

By replacing t with eλ(x(eλ(t) – 1)) – 1 in (27), we get

Eik,λ
(
x
(
eλ(t) – 1

))
=

∞∑

h=1

( h∑

m=1

(1)m,λS1,λ(h, m)
mk–1

)
1
h!

(
eλ

(
x
(
eλ(t) – 1

))
– 1

)h

=
∞∑

h=1

( h∑

m=1

(1)m,λS1,λ(h, m)
mk–1

) ∞∑

j=h

S2,λ(j, h)xj
∞∑

n=j

S2,λ(n, j)
tn

n!

=
∞∑

n=1

( n∑

j=1

j∑

h=1

h∑

m=1

(1)m,λ

mk–1 S1,λ(h, m)S2,λ(n, j)S2,λ(j, h)xj

)
tn

n!
.

(28)

Combining with (14) and (28), we get what we want. �

For the next theorem, we observe that

∞∑

n=0

β
(k)
n,λ(x)

tn

n!
=

Eik,λ(logλ(1 + t))
eλ(t) – 1

ex
λ(t)

=
∞∑

m=0

β
(k)
m,λ

tm

m!

∞∑

l=0

(x)l,λ
tl

l!
=

∞∑

n=0

( n∑

m=0

(
n
m

)

(x)n–m,λβ
(k)
m,λ

)
tn

n!
.

(29)

By comparing with coefficients on both sides of (29), we get

β
(k)
n,λ(x) =

n∑

m=0

(
n
m

)

(x)n–m,λβ
(k)
m,λ. (30)

Theorem 6 For n ≥ 1, we have

bel(k)
n,λ(x) =

n∑

d=1

d∑

h=1

(
β

(k)
h,λ(1) – β

(k)
h,λ

)
S2,λ(n, d)S2,λ(d, h)xd,

where β
(k)
n,λ are the degenerate poly-Bernoulli numbers.
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Proof From (1), (7), and (30), we observe that

Eik,λ
(
logλ(1 + t)

)
=

(
eλ(t) – 1

)
( ∞∑

j=0

β
(k)
j,λ

tj

j!

)

=

( ∞∑

m=0

(1)m,λ

m!
tm – 1

) ∞∑

j=0

β
(k)
j,λ

tj

j!

=
∞∑

n=0

( n∑

m=0

(
n
m

)

(1)n–m,λβ
(k)
m,λ – β

(k)
n,λ

)
tn

n!

=
∞∑

n=1

(
β

(k)
n,λ(1) – β

(k)
n,λ

) tn

n!
.

(31)

By replacing t with eλ(x(eλ(t) – 1)) – 1 in (31), we get

Eik,λ
(
x
(
eλ(t) – 1

))
=

∞∑

h=1

(
β

(k)
h,λ(1) – β

(k)
h,λ

) (eλ(x(eλ(t) – 1)) – 1)h

h!

=
∞∑

h=1

(
β

(k)
h,λ(1) – β

(k)
h,λ

) ∞∑

d=h

S2,λ(d, h)
1
d!

(
x
(
eλ(t) – 1

))d

=
∞∑

d=1

d∑

h=1

(
β

(k)
h,λ(1) – β

(k)
h,λ

)
S2,λ(d, h)xd

∞∑

n=d

S2,λ(n, d)
tn

n!

=
∞∑

n=1

( n∑

d=1

d∑

h=1

(
β

(k)
h,λ(1) – β

(k)
h,λ

)
S2,λ(n, d)S2,λ(d, h)xd

)
tn

n!
.

(32)

From (14) and (32), we get the desired result. �

Theorem 7 For k ∈ Z and n ≥ 1, we have

bel(k)
n,λ(x) =

n∑

j=1

j∑

h=1

h∑

m=1

(
n
m

)

(1)m,λβ
(k)
h–m,λS2,λ(n, j)S2,λ(j, h)xj,

where β
(k)
n,λ are the degenerate poly-Bernoulli numbers.

Proof From (1) and (7), we observe that

Eik,λ
(
logλ(1 + t)

)
= (eλ – 1)

( ∞∑

j=0

β
(k)
j,λ

tj

j!

)

=
∞∑

m=1

(1)m,λ
tm

m!

∞∑

j=0

β
(k)
j,λ

tj

j!
=

∞∑

n=1

( n∑

m=1

(
n
m

)

(1)m,λβ
(k)
n–m,λ

)
tn

n!
.

(33)
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By replacing t with eλ(x(eλ(t) – 1)) – 1 in (33), from (11), we get

Eik,λ
(
x
(
eλ(t) – 1

))
=

∞∑

h=1

( h∑

m=1

(
n
m

)

(1)m,λβ
(k)
h–m,λ

)
1
h!

(
eλ

(
x
(
eλ(t) – 1

))
– 1

)h

=
∞∑

h=1

( h∑

m=1

(
n
m

)

(1)m,λβ
(k)
h–m,λ

) ∞∑

j=h

S2,λ(j, h)xj
∞∑

n=j

S2,λ(n, j)
tn

n!

=
∞∑

n=1

( n∑

j=1

j∑

h=1

h∑

m=1

(
n
m

)

(1)m,λβ
(k)
h–m,λS2,λ(n, j)S2,λ(j, h)xj

)
tn

n!
.

(34)

Combining with (14) and (34), we get the desired result. �

Theorem 8 For k ∈ Z and n ≥ 1, we have

bel(k)
n,λ(x) =

1
2

n∑

j=1

j∑

h=1

( h∑

i=1

(
h
i

)

(1)i,λG(k)
h–i,λ + 2G(k)

h,λ

)

S2,λ(j, h)S2,λ(n, j)xj,

where G(k)
n,λ are the degenerate poly-Genocchi numbers.

Proof From (1) and (8), we have

2 Eik,λ
(
logλ(1 + t)

)
=

(
eλ(t) + 1

)
( ∞∑

m=0

G(k)
m,λ

tm

m!

)

=

( ∞∑

i=1

(1)i,λ
ti

i!

)( ∞∑

m=0

G(k)
m,λ

tm

m!

)

+ 2
∞∑

m=0

G(k)
m,λ

tm

m!

=
∞∑

h=1

( h∑

i=1

(
h
i

)

(1)i,λG(k)
h–i,λ + 2G(k)

h,λ

)
th

h!
.

(35)

By replacing t with eλ(x(eλ(t) – 1)) – 1 in (35), we get

2 Eik,λ
(
x
(
eλ(t) – 1

))

=
∞∑

h=1

( h∑

i=1

(
h
i

)

(1)i,λG(k)
h–i,λ + 2G(k)

h,λ

)
(eλ(x(eλ(t) – 1)) – 1)h

h!

=
∞∑

h=1

( h∑

i=1

(
h
i

)

(1)i,λG(k)
h–i,λ + 2G(k)

h,λ

) ∞∑

j=h

S2,λ(j, h)xj
∞∑

n=j

S2,λ(n, j)
tn

n!

=
∞∑

n=1

n∑

j=1

j∑

h=1

( h∑

i=1

(
h
i

)

(1)i,λG(k)
h–i,λ + 2G(k)

h,λ

)

S2,λ(j, h)S2,λ(n, j)xj tn

n!
.

(36)

From (14) and (36), we get what we want. �
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3 Further remarks
Remark 1 For λ ∈ (0, 1), let Xλ be the degenerate Poisson random variable with parameter
α > 0 if the probability mass function of X is given by

Pλ(j) = P{Xλ = j} = e–1
λ (α)

αj(1)j,λ

j!
(see [9, 13]), (37)

where j = 0, 1, 2, 3, . . . . It is easy to show that

∞∑

j=0

Pλ(j) = e–1
λ (α)

∞∑

j=1

αj

j!
(1)j,λ = e–1

λ (α)eλ(α) = 1 (see [9, 13]). (38)

Let f (x) be a real variable function on Xλ.
From (17) of Theorem 2, we observe that

E[Xλ] =
∞∑

j=0

jPλ(j) = e–1
λ (α)

∞∑

j=0

1
(j – 1)!

(1)j,λα
j

= e–1
λ (α)

∞∑

j=0

1
(j – 1)!

jk–1
j∑

h=0

S1,λ(j, h) bel(k)
h,λ(α)

= e–1
λ (α)

∞∑

j=0

j∑

h=0

jk–1

(j – 1)!
S1,λ(j, h) bel(k)

h,λ(α).

(39)

In addition, for n ∈ N, we also obtain the moments of Xλ as follows:

E
[
Xn

λ

]
=

∞∑

j=0

jnPλ(j) = e–1
λ (α)

∞∑

j=0

jn–1

(j – 1)!
(1)j,λα

j

= e–1
λ (α)

∞∑

j=0

jn–1

(j – 1)!
jk–1

j∑

h=0

S1,λ(j, h) bel(k)
h,λ(α)

= e–1
λ (α)

∞∑

j=0

j∑

h=0

jn+k–2

(j – 1)!
S1,λ(j, h) bel(k)

h,λ(α).

(40)

Thus, we have the following theorem.

Theorem 9 For λ ∈ (0, 1), let Xλ be the degenerate Poisson random variable with param-
eter α > 0 if the probability mass function of X. Then the expectation and the moments of
Xλ are

E[Xλ] = e–1
λ (α)

∞∑

j=0

j∑

h=0

jk–1

(j – 1)!
S1,λ(j, h) bel(k)

h,λ(α),

E
[
Xn

λ

]
= e–1

λ (α)
∞∑

j=0

j∑

h=0

jn+k–2

(j – 1)!
S1,λ(j, h) bel(k)

h,λ(α),

respectively, where bel(k)
h,λ(α) are the degenerate poly-Bell polynomials.
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Remark 2 Kim and Lee introduced a new type of the degenerate Bell polynomials defined
by

eλ

(
x
(
et – 1

))
=

∞∑

n=0

Beln,λ(x)
tn

n!
(see [10]). (41)

When limλ→0 eλ(x(eλ – 1)) = exp(x(et – 1)) =
∑∞

n=0 beln(x) tn

n! .
We can also consider a new type of degenerate poly-Bell polynomials by

1 + Eik,λ
(
x
(
et – 1

))
=

∞∑

n=0

Bel(k)
n,λ(x)

tn

n!
(42)

and Bel(k)
0,λ(x) = 1.

When x = 1, Bel(k)
n,λ = Bel(k)

n,λ(1) are called the degenerate poly-Bell numbers.
When k = 1, from (42), we note that

1 + Ei1,λ
(
x
(
et – 1

))
= 1 +

∞∑

n=1

(1)n,λ(x(et – 1))n

(n – 1)!n

=
∞∑

n=0

(1)n,λ(x(et – 1))n

(n – 1)!n

= eλ

(
x
(
et – 1

))
=

∞∑

n=0

Beln,λ(x)
tn

n!
.

(43)

From (41) and (43), we have

Bel(1)
n,λ(x) = Beln,λ(x).

When λ → 0, Bel(k)
n (x) are called a new type of the poly-Bell polynomials.

We can obtain similar results in the same way.

4 Conclusion
To summarize, in this paper, λ → 0 is defined as poly-Bell polynomials by introducing
the degenerate poly-Bell polynomials through a degenerate polyexponential function and
reducing it to a degenerate Bell polynomial for k = 1. We derived Dobinski-like formula
in Theorem 3, recurrence relation in Theorem 4, and combinatorial identities for these
polynomials. As for Theorem 1, the explicit formula demonstrated the relationship with
Stirling numbers of the second kind according to k. To conclude, there are various meth-
ods for studying special polynomials and numbers, including: generating functions, com-
binatorial methods, umbral calculus, differential equations, and probability theory. We are
now interested in continuing our research into the application of ‘poly’ versions of certain
special polynomials and numbers in the fields of physics, science, and engineering as well
as mathematics.
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