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Abstract
In the present research study, for a given multiterm boundary value problem (BVP)
involving the Riemann-Liouville fractional differential equation of variable order, the
existence properties are analyzed. To achieve this aim, we firstly investigate some
specifications of this kind of variable-order operators, and then we derive the required
criteria to confirm the existence of solution and study the stability of the obtained
solution in the sense of Ulam-Hyers-Rassias (UHR). All results in this study are
established with the help of the Darbo’s fixed point theorem (DFPT) combined with
Kuratowski measure of noncompactness (KMNC). We construct an example to
illustrate the validity of our observed results.
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1 Introduction
The idea of fractional calculus is replacing the natural numbers in the derivative order
with rational ones. Although it seems an elementary consideration, it has an interesting
correspondence in explaining some physical phenomena. In the last two decades, signifi-
cant research studies appeared on this topic, and some papers dealt with the existence of
solutions to the problems of variable order; see, for example, [1–7].

Whereas many researchers investigated the existence of solutions for fractional constant-
order problems, the existence of solutions of variable-order problems is rarely mentioned
in the literature (we refer to [8–13]).

As a result of our investigation in this interesting research field, our findings are unique
and noteworthy.

Furthermore, all of the findings in this paper have a great potential to be applied in a
variety of transdisciplinary science applications. With the support of our original findings
in this research study, we are able to do further research on this open research topic. In
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other words, the proposed BVP can be extended to more sophisticated real mathematical
fractional models in the future.

In particular, Bai et al. [14] studied the following problem:
⎧
⎨

⎩

cDu
0+ x(t) = f (t, x(t), Iu

0+ x(t)), t ∈ J := [a, b], u ∈]0, 1],

x(a) = xa,

where cDu
0+ and Iu

0+ stand for the Caputo–Hadamard derivative and Hadamard integral
operators of order u, respectively, f is a given function, xa ∈R, and 0 < a < b < ∞.

Inspired by [14] and [1–5], we deal with the boundary value problem (BVP)
⎧
⎨

⎩

Du(t)
0+ x(t) = f1(t, x(t), Iu(t)

0+ x(t)), t ∈ J := [0, T],

x(0) = 0, x(T) = 0,
(1)

where 1 < u(t) ≤ 2, f1 : J × X × X → X is a continuous function, and Du(t)
0+ and Iu(t)

0+ are the
Riemann–Liouville fractional derivative and integral of variable order u(t).

In this paper, we investigate the solution of (1). Further, we study the stability of the
obtained solution of (1) in the Ulam–Hyers–Rassias (UHR) sense.

2 Preliminaries
In this section, we introduce some important fundamental definitions that will be needed
for obtaining our results in the next sections.

By C(J , X) we denote the Banach space of continuous functions κ : J → X with the norm

‖κ‖ = sup
{∥
∥κ(t)

∥
∥ : t ∈ J

}
,

where X is a real (or complex) Banach space.
For –∞ < a1 < a2 < +∞, we consider the mappings u(t) : [a1, a2] → (0, +∞) and v(t) :

[a1, a2] → (n – 1, n). Then the left Riemann–Liouville fractional integral (RLFI) of variable
order u(t) for function h1(t) is [15–17]

Iu(t)
a+

1
h1(t) =

∫ t

a1

(t – s)u(t)–1

�(u(t))
h1(s) ds, t > a1, (2)

and the left Riemann–Liouville fractional derivative (RLFD) of variable-order v(t) for func-
tion h1(t) is [15–17]

Dv(t)
a+

1
h1(t) =

(
d
dt

)n

In–v(t)
a+

1
h1(t) =

(
d
dt

)n ∫ t

a1

(t – s)n–v(t)–1

�(n – v(t))
h1(s) ds, t > a1. (3)

In case of constant u(t) and v(t), RLFI and RLFD coincide with the standard Riemann–
Liouville fractional derivative and integral, respectively; see, for example, [15, 16, 18].

Let us recall the following pivotal observation.

Lemma 2.1 ([18]) Let α1,α2 > 0, a1 > 0, h1 ∈ L(a1, a2), and Dα1
a+

1
h1 ∈ L(a1, a2). Then the

differential equation

Dα1
a+

1
h1 = 0
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has the unique solution

h1(t) = ω1(t – a1)α1–1 + ω2(t – a1)α1–2 + · · · + ωn(t – a1)α1–n,

and

Iα1
a+

1
Dα1

a+
1
h1(t) = h1(t) + ω1(t – a1)α1–1 + ω2(t – a1)α1–2 + · · · + ωn(t – a1)α1–n

with n – 1 < α1 ≤ n, ω� ∈ R, � = 1, 2, . . . , n.
Furthermore,

Dα1
a+

1
Iα1

a+
1

h1(t) = h1(t)

and

Iα1
a+

1
Iα2

a+
1

h1(t) = Iα2
a+

1
Iα1

a+
1

h1(t) = Iα1+α2
a+

1
h1(t).

Remark 2.1 ([19–21]) Note that the semigroup property is not fulfilled for general func-
tions u(t), v(t), that is,

Iu(t)
a+

1
Iv(t)

a+
1

h1(t) �= Iu(t)+v(t)
a+

1
h1(t).

Example 2.1 Let

u(t) = t, t ∈ [0, 4], v(t) =

⎧
⎨

⎩

2, t ∈ [0, 1],

3, t ∈]1, 4],
h1(t) = 2, t ∈ [0, 4],

Iu(t)
0+ Iv(t)

0+ h1(t) =
∫ t

0

(t – s)u(t)–1

�(u(t))

∫ s

0

(s – τ )v(s)–1

�(v(s))
h1(τ ) dτ ds

=
∫ t

0

(t – s)t–1

�(t)

[∫ 1

0

(s – τ )
�(2)

2 dτ +
∫ s

1

(s – τ )2

�(3)
2 dτ

]

ds

=
∫ t

0

(t – s)t–1

�(t)

[

2s – 1 +
(s – 1)3

3

]

ds,

and

Iu(t)+v(t)
0+ h1(t)| =

∫ t

0

(t – s)u(t)+v(t)–1

�(u(t) + v(t))
h1(s) ds.

So we get

Iu(t)
0+ Iv(t)

0+ h1(t)|t=3 =
∫ 3

0

(3 – s)2

�(3)

[

2s – 1 +
(s – 1)3

3

]

ds =
21
10

,
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Iu(t)+v(t)
0+ h1(t)|t=3 =

∫ 3

0

(3 – s)u(t)+v(t)–1

�(u(t) + v(t))
h1(s) ds

=
∫ 1

0

(3 – s)4

�(5)
2 ds +

∫ 3

1

(3 – s)5

�(6)
2 ds

=
1

12

∫ 1

0

(
s4 – 12s3 + 54s2 – 108s + 81

)
ds

+
1

60

∫ 3

1

(
–s5 + 15s4 – 90s3 + 270s2 – 405s + 243

)
ds

=
665
180

.

Therefore we obtain

Iu(t)
0+ Iv(t)

0+ h1(t)|t=3 �= Iu(t)+v(t)
0+ h1(t)|t=3.

Lemma 2.2 ([22]) Let u : J → (1, 2] be a continuous function. Then for

h1 ∈ Cδ(J , X) =
{

h1(t) ∈ C(J , X), tδh1(t) ∈ C(J , X)
} (

0 ≤ δ ≤ min
t∈J

∣
∣u(t)

∣
∣
)

,

the variable-order fractional integral Iu(t)
0+ h1(t) exists for any points on J .

Lemma 2.3 ([22]) Let u : J → (1, 2] be a continuous function. Then

Iu(t)
0+ h1(t) ∈ C(J , X) for h1 ∈ C(J , X).

Definition 2.1 ([23–25]) A set I ⊂R is called a generalized interval if it is either an inter-
val, or {a1}, or { }.

A finite set P of generalized intervals is called a partition of I if each x ∈ I lies in exactly
one generalized interval E in P .

A function g : I → X is called piecewise constant with respect to partition P of I if for
any E ∈P , g is constant on E.

2.1 Measure of noncompactness
In this subsection, we discuss some necessary background information about KMNCs.

Definition 2.2 ([26]) Let X be a Banach space, and let �X be the bounded subsets of X.
A KMNC is a mapping ζ : �X → [0,∞] constructed as follows:

ζ (D) = inf
{
ε > 0 : D(∈ �X) ⊆ ∪n

�=1D�, diam(D�) ≤ ε
}

,

where

diam(D�) = sup
{‖x – y‖ : x, y ∈ D�

}
.

The following properties are valid for KMNCs.
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Proposition 2.1 ([26, 27]) Let X be a Banach space, and let D, D1, and D2 be bounded
subsets of X. Then:

1. ζ (D) = 0 ⇐⇒ D is relatively compact.
2. ζ (φ) = 0.
3. ζ (D) = ζ (D) = ζ (convD).
4. D1 ⊂ D2 
⇒ ζ (D1) ≤ ζ (D2).
5. ζ (D1 + D2) ≤ ζ (D1) + ζ (D2).
6. ζ (λD) = |λ|ζ (D), λ ∈R.
7. ζ (D1 ∪ D2) = Max{ζ (D1), ζ (D2)}.
8. ζ (D1 ∩ D2) = Min{ζ (D1), ζ (D2)}.
9. ζ (D + x0) = ζ (D) for all x0 ∈ X .

Lemma 2.4 ([28]) If U ⊂ C(J , X) is an equicontinuous and bounded set, then:
(i) the function ζ (U(t)) is continuous for t ∈ J , and

ζ̂ (U) = sup
t∈J

ζ
(
U(t)

)
;

(ii) ζ (
∫ T

0 x(θ ) dθ : x ∈ U) ≤ ∫ T
0 ζ (U(θ )) dθ ,

where

U(s) =
{

x(s) : x ∈ U
}

, s ∈ J .

Theorem 2.1 (DFPT [26]) Let � be nonempty, closed, bounded, and convex subset of a Ba-
nach space X, and let � : � −→ � be a continuous operator satisfying

ζ
(
�(S)

) ≤ kζ (S) for any (S �= ∅) ⊂ �, k ∈ [0, 1),

that is, � is a k-set contraction.
Then � has at least one fixed point in �.

Definition 2.3 ([29]) Let ϑ ∈ C(J , X). Equation of (1) is UHR stable with respect to ϑ if
there exists cf > 0 such that for any ε > 0 and every solution z ∈ C(J , X) of the inequality

∥
∥Du(t)

0+ z(t) – f
(
t, z(t), Iu(t)

0+ z(t)
)∥
∥ ≤ εϑ(t), t ∈ J ,

there exists a solution x ∈ C(J , X) of equation (1) with

∥
∥z(t) – x(t)

∥
∥ ≤ cf εϑ(t), t ∈ J .

3 Existence of solutions
Let us introduce the following assumptions:

(H1) Let n ∈N be an integer, let
P = {J1 := [0, T1], J2 := (T1, T2], J3 := (T2, T3], . . . , Jn := (Tn–1, T]} be a partition of the
interval J , and let u(t) : J → (1, 2] be a piecewise constant function with respect to
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P , that is,

u(t) =
n∑

�=1

u�I�(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1 for t ∈ J1,

u2 for t ∈ J2,
...

un for t ∈ Jn,

where 1 < u� ≤ 2 are constants, and I� is the indicator of the interval
J� := (T�–1, T�], � = 1, 2, . . . , n (with T0 = 0, Tn = T ), such that

I�(t) =

⎧
⎨

⎩

1 for t ∈ J�,

0 elsewhere.

(H2) Let tδf1 : J × X × X → X be a continuous function (0 ≤ δ ≤ mint∈J |(u(t))|). There
exist constants K , L > 0 such that

tδ
∥
∥f1(t, y1, z1)– f1(t, y2, z2)

∥
∥ ≤ K‖y1 –y2‖+L‖z1 –z2‖ for all y1, y2, z1, z2 ∈ X and t ∈ J .

Remark 3.1 According to the remark of [30] on page 20, we can easily show that condi-
tion (H2) and the inequality

ζ
(
tδ

∥
∥f1(t, B1, B2)

∥
∥
) ≤ Kζ (B1) + Lζ (B2)

are equivalent for any bounded sets B1, B2 ⊂ X and t ∈ J .

Further, for a given set U of functions u : J → X, let us denote

U(t) =
{

u(t), u ∈ U
}

, t ∈ J ,

and

U(J) =
{

U(t) : v ∈ U , t ∈ J
}

.

Let us now prove the existence of solution for the BVP (1) via the concepts of MNCK
and DFPT.

For � ∈ {1, 2, . . . , n}, by E� = C(J�, X) we denote the Banach space of continuous functions
x : J� → X equipped with the norm

‖x‖E�
= sup

t∈J�

∥
∥x(t)

∥
∥.

First, we analyze BVP (1).
By (3) the equation of BVP (1) can be expressed as

d2

dt2

∫ t

0

(t – s)1–u(t)

�(2 – u(t))
x(s) ds = f1

(
t, x(t), Iu(t)

0+ x(t)
)
, t ∈ J . (4)
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Taking (H1) into account, equation(4) in the interval J�,� = 1, 2, . . . , n, can be written as

d2

dt2

(∫ T1

0

(t – s)1–u1

�(2 – u1)
x(s) ds + · · · +

∫ t

T�–1

(t – s)1–u�

�(2 – u�)
x(s) ds

)

= f1
(
t, x(t), Iu�

0+ x(t)
)
, t ∈ J�. (5)

Now we introduce the solution to BVP (1).

Definition 3.1 BVP (1) has a solution if there are functions x�,� = 1, 2, . . . , n, such that
x� ∈ C([0, T�], X) fulfills equation (5) and x�(0) = 0 = x�(T�).

According the above observation, BVP (1) can be expressed for any t ∈ Jl , l = 1, 2, . . . , n,
as (5).

For 0 ≤ t ≤ T�–1, taking x(t) ≡ 0, we can write (5) as

Du�

T+
�–1

x(t) = f1
(
t, x(t), Iu�

T+
�–1

x(t)
)
, t ∈ J�.

We will deal with the following BVP:

⎧
⎨

⎩

Du�

T+
�–1

x(t) = f1(t, x(t), Iu�

T+
�–1

x(t)), t ∈ J�,

x(T�–1) = 0, x(T�) = 0.
(6)

For our purpose, the following lemma will be the basis of the solution of (6).

Lemma 3.1 A function x ∈ E� forms a solution of (6) if and only if x fulfills the integral
equation

x(t) = –(T� – T�–1)1–u� (t – T�–1)u�–1Iu�

T+
�–1

f1
(
T�, x(T�), Iu�

T+
�–1

x(T�)
)

+ Iu�

T+
�–1

f1
(
t, x(t), Iu�

T+
�–1

x(t)
)
. (7)

Proof Let x ∈ E� be solution of problem (6). Applying the operator Iu�

T+
�–1

to both sides of
(6), from Lemma 2.1 we find

x(t) = ω1(t – T�–1)u�–1 + ω2(t – T�–1)u�–2

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds, t ∈ J�.

Due to the assumption on the function f1 along with x(T�–1) = 0, we conclude that ω2 = 0.
Let x satisfy x(T�) = 0. Observe that

ω1 = –(T� – T�–1)1–u� Iu�

T+
�–1

f1
(
T�, x(T�), Iu�

T+
�–1

x(T�)
)
.

Then we find

x(t) = –(T� – T�–1)1–u� (t – T�–1)u�–1Iu�

T+
�–1

f1
(
T�, x(T�), Iu�

T+
�–1

x(T�)
)

+ Iu�

T+
�–1

f1
(
t, x(t), Iu�

T+
�–1

x(t)
)
, t ∈ J�.
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Conversely, let x ∈ E� be a solution of integral equation (7), Regarding the continuity of
the unction tδf1 and Lemma 2.1, we deduce that x is a solution of problem (6). �

Our first existence result is based on Theorem 2.1.

Theorem 3.1 Assume that conditions (H1) and (H2) hold and

2(T� – T�–1)u�–1(T1–δ
� – T1–δ

�–1 )
(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

< 1. (8)

Then problem (6) possesses at least one solution on J .

Proof We construct the operator

W : E� → E�

as follows:

Wx(t) = –(T� – T�–1)1–u� (t – T�–1)u�–1Iu�

T+
�–1

f1
(
T�, x(T�), Iu�

T+
�–1

x(T�)
)

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1 f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds, t ∈ J�. (9)

It follows from the properties of fractional integrals and the continuity of function tδf1 that
the operator W is well defined.

Let

R� ≥
2f �(T�–T�–1)u�

�(u�)

1 – 2(T�–T�–1)u�–1(T1–δ
�

–T1–δ
�–1 )

(1–δ)�(u�) (K + L (T�–T�–1)u�

�(u�+1) )

with

f � = sup
t∈J�

∥
∥f1(t, 0, 0)

∥
∥.

We consider the set

BR�
=

{
x ∈ E�,‖x‖E�

≤ R�

}
.

Clearly, BR�
is nonempty, closed, convex, and bounded.

Now we demonstrate that W satisfies the assumptions of Theorem 2.1. We shall prove
it in four phases.

Step 1: W (BR�
) ⊆ (BR�

).
For x ∈ BR�

, by (H2) we get:

∥
∥Wx(t)

∥
∥ ≤ (T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1∥∥f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1∥∥f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds
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≤ 2
�(u�)

∫ T�

T�–1

(T� – s)u�–1∥∥f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

≤ 2
�(u�)

∫ T�

T�–1

(T� – s)u�–1∥∥f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

– f1(s, 0, 0)
∥
∥ds

+
2

�(u�)

∫ T�

T�–1

(T� – s)u�–1∥∥f1(s, 0, 0)
∥
∥ds

≤ 2
�(u�)

∫ T�

T�–1

(T� – s)u�–1s–δ
(
K

∥
∥x(s)

∥
∥ + L

∥
∥Iu�

T+
�–1

x(s)
∥
∥
)

ds +
2f �(T� – T�–1)u�

�(u�)

≤ 2(T� – T�–1)u�–1

�(u�)

∫ T�

T�–1

s–δ

(

K + L
(T� – T�–1)u�

�(u� + 1)

)
∥
∥x(s)

∥
∥ds

+
2f �(T� – T�–1)u�

�(u�)

≤ 2(T� – T�–1)u�–1(T1–δ
� – T1–δ

�–1 )
(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

R�

+
2f �(T� – T�–1)u�

�(u�)
≤ R�,

which means that W (BR�
) ⊆ BR�

.
Step 2: W is continuous.
Let a sequence (xn) converge to x in E�, and let t ∈ J�. Then

∥
∥(Wxn)(t) – (Wx)(t)

∥
∥

≤ (T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1∥∥f1
(
s, xn(s), Iu�

T+
�–1

xn(s)
)

– f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1∥∥f1
(
s, xn(s), Iu�

T+
�–1

xn(s)
)

– f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

≤ (T� – T�–1)1–u� (T� – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1∥∥f1
(
s, xn(s), Iu�

T+
�–1

xn(s)
)

– f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

+
1

�(u�)

∫ T�

T�–1

(t – s)u�–1∥∥f1
(
s, xn(s), Iu�

T+
�–1

xn(s)
)

– f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

≤ 2
�(u�)

∫ T�

T�–1

(T� – s)u�–1∥∥f1
(
s, xn(s), Iu�

T+
�–1

xn(s)
)

– f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

≤ 2
�(u�)

∫ T�

T�–1

s–δ(T� – s)u�–1(K
∥
∥xn(s) – x(s)

∥
∥ + LIu�

T+
�–1

‖xn(s) – x(s)
)‖) ds

≤ 2K
�(u�)

‖xn – x‖E�

∫ T�

T�–1

s–δ(T� – s)u�–1 ds

+
2L

�(u�)
∥
∥Iu�

T+
�–1

(xn – x)
∥
∥

E�

∫ T�

T�–1

s–δ(T� – s)u�–1 ds
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≤ 2K
�(u�)

‖xn – x‖E�

∫ T�

T�–1

s–δ(T� – s)u�–1 ds

+
2L(T� – T�–1)u�

�(u�)�(u� + 1)
‖xn – x‖E�

∫ T�

T�–1

s–δ(T� – s)u�–1 ds

≤
(

2K
�(u�)

+
2L(T� – T�–1)u�

�(u�)�(u� + 1)

)

‖xn – x‖E�

∫ T�

T�–1

s–δ(T� – s)u�–1 ds

≤ (T� – T�–1)u�–1(T�
1–δ – T�–1

1–δ)
(1 – δ)�(u�)

(

2K +
2L(T� – T�–1)u�

�(u� + 1)

)

‖xn – x‖E�
,

that is,

∥
∥(Wxn) – (Wx)

∥
∥

E�
→ 0 as n → ∞.

Thus the operator W is continuous on E�.
Step 3: W is bounded and equicontinuous.
From Step 2 we have W (BR�

) = {W (x) : x ∈ BR�
} ⊂ BR�

, and hence, for each x ∈ BR�
,

we have ‖W (x)‖E�
≤ R�, which means that W (BR�

) is bounded. It remains to check that
W (BR�

) is equicontinuous.
For t1, t2 ∈ J�, t1 < t2, and x ∈ BR�

, we have:

∥
∥(Wx)(t2) – (Wx)(t1)

∥
∥

=
∥
∥
∥
∥–

(T� – T�–1)1–u� (t2 – T�–1)u�–1

�(u�)

×
∫ T�

T�–1

(T� – s)u�–1f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds

+
1

�(u�)

∫ t2

T�–1

(t2 – s)u�–1f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds +
(T� – T�–1)1–u� (t1 – T�–1)u�–1

�(u�)

×
∫ T�

T�–1

(T� – s)u�–1f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds

–
1

�(u�)

∫ t1

T�–1

(t1 – s)u�–1f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds
∥
∥
∥
∥

≤ (T� – T�–1)1–u�

�(u�)
(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

×
∫ T�

T�–1

(T� – s)u�–1∥∥f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

+
1

�(u�)

∫ t1

T�–1

(
(t2 – s)u�–1 – (t1 – s)u�–1)∥∥f1

(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

+
1

�(u�)

∫ t2

t1

(t2 – s)u�–1∥∥f1
(
s, x(s), Iu�

T+
�–1

x(s)
)∥
∥ds

≤ (T� – T�–1)1–u�

�(u�)
(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

×
∫ T�

T�–1

(T� – s)u�–1∥∥f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

– f1(s, 0, 0)
∥
∥ds
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+
(T� – T�–1)1–u�

�(u�)
(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

∫ T�

T�–1

(T� – s)u�–1∥∥f1(s, 0, 0)
∥
∥ds

+
1

�(u�)

∫ t1

T�–1

(
(t2 – s)u�–1 – (t1 – s)u�–1)∥∥f1

(
s, x(s), Iu�

T+
�–1

x(s)
)

– f1(s, 0, 0)
∥
∥ds

+
1

�(u�)

∫ t1

T�–1

(
(t2 – s)u�–1 – (t1 – s)u�–1)∥∥f1(s, 0, 0)

∥
∥ds

+
1

�(u�)

∫ t2

t1

(t2 – s)u�–1∥∥f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

– f1(s, 0, 0)
∥
∥ds

+
1

�(u�)

∫ t2

t1

(t2 – s)u�–1∥∥f1(s, 0, 0)
∥
∥ds.

≤ (T� – T�–1)1–u�

�(u�)
(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

×
∫ T�

T�–1

(T� – s)u�–1s–δ
(
K

∥
∥x(s)

∥
∥ + L

∥
∥Iu�

T+
�–1

x(s)
∥
∥
)

ds

+
f �(T� – T�–1)1–u�

�(u�)
(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

∫ T�

T�–1

(T� – s)u�–1 ds

+
1

�(u�)

∫ t1

T�–1

s–δ
(
(t2 – s)u�–1 – (t1 – s)u�–1)(K

∥
∥x(s)

∥
∥ + L

∥
∥Iu�

T+
�–1

x(s)
∥
∥
)

ds

+
f �

�(u�)

∫ t1

T�–1

(
(t2 – s)u�–1 – (t1 – s)u�–1)ds

+
1

�(u�)

∫ t2

t1

s–δ(t2 – s)u�–1(K
∥
∥x(s)

∥
∥ + L

∥
∥Iu�

T+
�–1

x(s)
∥
∥
)

ds

+
f �

�(u�)

∫ t2

t1

(t2 – s)u�–1 ds

≤ 1
�(u�)

(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)(K‖x‖E�

+ L
∥
∥Iu�

T+
�–1

x
∥
∥

E�

)
∫ T�

T�–1

s–δ ds

+
f �(T� – T�–1)

�(u� + 1)
(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

+
1

�(u�)
(
K‖x‖E�

+ L
∥
∥Iu�

T+
�–1

x
∥
∥

E�

)
∫ t1

T�–1

s–δ
(
(t2 – t1)u�–1)ds

+
f �

�(u�)

(
(t2 – T�–1)u�

u�

–
(t2 – t1)u�

u�

–
(t1 – T�–1)u�

u�

)

+
(t2 – t1)u�–1

�(u�)
(
K‖x‖E�

+ L
∥
∥Iu�

T+
�–1

x
∥
∥

E�

)
∫ t2

t1

s–δ ds +
f �

�(u�)
(t2 – t1)u�

u�

≤ T�
1–δ – T�–1

1–δ

(1 – δ)�(u�)
(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

×
(

K‖x‖E�
+ L

(T� – T�–1)u�

�(u� + 1)
‖x‖E�

)

+
f �(T� – T�–1)

�(u� + 1)
(
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

+
(

(t1
1–δ – T�–1

1–δ)(t2 – t1)u�–1

(1 – δ)�(u�)

)(

K‖x‖E�
+ L

(T� – T�–1)u�

�(u� + 1)
‖x‖E�

)
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+
f �

�(u� + 1)
(
(t2 – T�–1)u� – (t2 – t1)u� – (t1 – T�–1)u�

)

+
(t2

1–δ – t1
1–δ)(t2 – t1)u�–1

(1 – δ)�(u�)

(

K‖x‖E�
+ L

(T� – T�–1)u�

�(u� + 1)
‖x‖E�

)

+
f �(t2 – t1)u�

�(u� + 1)

≤
(

T�
1–δ – T�–1

1–δ

(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

‖x‖E�
+

f �(T� – T�–1)
�(u� + 1)

)

× (
(t2 – T�–1)u�–1 – (t1 – T�–1)u�–1)

+
(

t2
1–δ – T�–1

1–δ

(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

‖x‖E�

)

(t2 – t1)u�–1

+
f �

�(u� + 1)
(
(t2 – T�–1)u� – (t1 – T�–1)u�

)
.

Hence ‖(Wx)(t2) – (Wx)(t1)‖E�
→ 0 as |t2 – t1| → 0, which implies that T(BR�

) is equicon-
tinuous.

Step 4: W is a k-set contraction.
For U ∈ BR�

and t ∈ J�, we have:

ζ
(
W (U)(t)

)
= ζ

(
(Wx)(t), x ∈ U

)

≤
{

(T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1ζ f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1ζ f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds, x ∈ U
}

.

Then Remark 3.1 implies that, for each s ∈ Ji,

ζ
(
W (U)(t)

)

≤
{

(T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

×
∫ T�

T�–1

(T� – s)u�–1
[

K ζ̂ (U)
∫ T�

T�–1

s–δ ds + L
(T� – T�–1)u�

�(u� + 1)
ζ̂ (U)

∫ T�

T�–1

s–δ ds
]

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1
[

K ζ̂ (U)
∫ t

T�–1

s–δ ds

+ L
(T� – T�–1)u�

�(u� + 1)
ζ̂ (U)

∫ t

T�–1

s–δ ds
]

, x ∈ U
}

≤
{

(t – T�–1)u�–1

�(u�)

∫ T�

T�–1

[

K ζ̂ (U)
∫ T�

T�–1

s–δ ds + L
(T� – T�–1)u�

�(u� + 1)
ζ̂ (U)

∫ T�

T�–1

s–δ ds
]

+
(t – T�–1)u�–1

�(u�)

∫ t

T�–1

[

K ζ̂ (U)
∫ t

T�–1

s–δ ds

+ L
(T� – T�–1)u�

�(u� + 1)
ζ̂ (U)

∫ t

T�–1

s–δ ds
]

, x ∈ U
}

≤ [(T�
1–δ – T�–1

1–δ) + (t1–δ – T�–1
1–δ)](t – T�–1)u�–1

(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

ζ̂ (U)
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≤ 2(T�
1–δ – T�–1

1–δ)(T� – T�–1)u�–1

(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

ζ̂ (U).

Therefore we have:

ζ̂ (WU) ≤ 2(T�
1–δ – T�–1

1–δ)(T� – T�–1)u�–1

(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

ζ̂ (U).

Consequently, from (8) we deduce that W forms a set contraction. Hence by Theo-
rem 2.1 problem (6) has at least a solution x̃� in BR�

.
Let

x� =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

x̃�, t ∈ J�.
(10)

We know that x� ∈ C([0, T�], X) defined by (10) satisfies the equation

d2

dt2

(∫ T1

0

(t – s)1–u1

�(2 – u1)
x�(s) ds + · · · +

∫ t

T�–1

(t – s)1–u�

�(2 – u�)
x�(s) ds

)

= f1
(
s, x�(s), Iu�

0+ x�(s)
)

for t ∈ J�, which means that x� is a solution of (5) with x�(0) = 0 and x�(T�) = x̃�(T�) = 0.
Then

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t), t ∈ J1,

x2(t) =

⎧
⎨

⎩

0, t ∈ J1,

x̃2, t ∈ J2,
...

xn(t) =

⎧
⎨

⎩

0, t ∈ [0, T�–1],

x̃�, t ∈ J�,

forms a solution of BVP (1). �

4 Ulam–Hyers–Rassias stability
Theorem 4.1 Assume (H1), (H2), (8), and

(H3) ϑ ∈ C(J�, X) is an increasing function, and there exists λϑ > 0 such that

Iu�

T�–1+ϑ(t) ≤ λϑ(t)ϑ(t) for all t ∈ J�.

Then equation of (1) is UHR stable with respect to ϑ .

Proof Let z ∈ C(J�, X) be a solution of the inequality

∥
∥Du�

T�–1+ z(t) – f1
(
t, z(t), Iu�

T�–1+ z(t)
)∥
∥ ≤ εϑ(t), t ∈ J�. (11)

Let x ∈ C(J�, X) be a solution of the problem

Du�

T�–1+ x(t) = f1
(
t, x(t), Iu�

T�–1+ x(t)
)
, t ∈ J�.
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x(T�–1) = 0, x(T�) = 0

By Lemma 3.1 we have:

x(t) = –
(T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1 f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1 f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds.

By integration of (11) from (H3) we obtain:

∥
∥
∥
∥z(t) +

(T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1 f1
(
s, z(s), Iu�

T+
�–1

z(s)
)

ds

–
1

�(u�)

∫ t

T�–1

(t – s)u�–1 f1
(
s, z(s), Iu�

T+
�–1

z(s)
)

ds
∥
∥
∥
∥

≤ ε

∫ t

T�–1

(t – s)u(i)–1

�(u(i))
ϑ(s) ds

≤ ελϑ(t)ϑ(t).

On the other hand, for each t ∈ J�, we have:

∥
∥z(t) – x(t)

∥
∥

=
∥
∥
∥
∥z(t) +

(T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1 f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds

–
1

�(u�)

∫ t

T�–1

(t – s)u�–1 f1
(
s, x(s), Iu�

T+
�–1

x(s)
)

ds
∥
∥
∥
∥

=
∥
∥
∥
∥z(t) +

(T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1 f1
(
s, z(s), Iu�

T+
�–1

z(s)
)

ds

–
1

�(u�)

∫ t

T�–1

(t – s)u�–1 f1
(
s, z(s), Iu�

T+
�–1

z(s)
)

ds
∥
∥
∥
∥

+
(T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

∫ T�

T�–1

(T� – s)u�–1

∥
∥f1

(
s, z(s), Iu�

T+
�–1

z
)

– f1
(
s, x(s), Iu�

T+
�–1

x
)∥
∥ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1∥∥f1
(
s, z(s), Iu�

T+
�–1

z
)

– f1
(
s, x(s), Iu�

T+
�–1

x
)∥
∥ds

≤ λϑ(t)εϑ(t) +
(T� – T�–1)1–u� (t – T�–1)u�–1

�(u�)

×
∫ T�

T�–1

(T� – s)u�–1s–δ
(
K

∥
∥z(s) – x(s)

∥
∥ + LIu�

T+
�–1

∥
∥z(s) – x(s)

∥
∥
)

ds

+
1

�(u�)

∫ t

T�–1

(t – s)u�–1s–δ
(
K

∥
∥z(s) – x(s)

∥
∥ + LIu�

T+
�–1

∥
∥z(s) – x(s)

∥
∥
)

ds

≤ λϑ(t)εϑ(t) +
(T� – T�–1)u�–1

�(u�)
(
K‖z – x‖E�

+ LIu�

T+
�–1

‖z – x‖E�

)
∫ T�

T�–1

s–δ ds
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+
(T� – T�–1)u�–1

�(u�)
(
K‖z – x‖E�

+ LIu�

T+
�–1

‖z – x‖E�

)
∫ t

T�–1

s–δ ds

≤ λϑ(t)εϑ(t) +
(T� – T�–1)u�–1(T�

1–δ – T�–1
1–δ)

(1 – δ)�(u�)

×
(

K‖z – x‖E�
+ L

(T� – T�–1)u�

�(u� + 1)
‖z – x‖E�

)

+
(T� – T�–1)u�–1(t1–δ – T�–1

1–δ)
(1 – δ)�(u�)

(

K‖z – x‖E�
+ L

(T� – T�–1)u�

�(u� + 1)
‖z – x‖E�

)

≤ λϑ(t)εϑ(t) +
2(T� – T�–1)u�–1(T�

1–δ – T�–1
1–δ)

(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)

‖z – x‖E�
.

Then

‖z – y‖E�

(

1 –
2(T�

1–δ – T�–1
1–δ)(T� – T�–1)u�–1

(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

))

≤ λϑ(t)εϑ(t)

For each t ∈ J�, we obtain:

‖z – y‖E�
≤ λϑ(t)εϑ(t)

(1 – 2(T�
1–δ–T�–11–δ )(T�–T�–1)u�–1

(1–δ)�(u�) (K + L (T�–T�–1)u�

�(u�+1) ))

=
[

1 –
2(T�

1–δ – T�–1
1–δ)(T� – T�–1)u�–1

(1 – δ)�(u�)

(

K + L
(T� – T�–1)u�

�(u� + 1)

)]–1

× λϑ(t)εϑ(t) := cf1εϑ(t).

Then the equation in (6) is UHR stable with respect to ϑ for each � ∈ {1, 2, . . . , n}.
Consequently, the equation in (1) is UHR stable with respect to ϑ . �

5 Example
In this example, we deal with the fractional boundary value problem

⎧
⎪⎨

⎪⎩

Du(t)
0+ x(t) = t– 1

3 e–t

(ee
t2

1+t +4e2t+1)(1+|x(t)|+|Iu(t)
0 x(t)|)

, t ∈ J := [0, 2],

x(0) = 0, x(2) = 0.
(12)

Let

f1(t, y, z) =
t– 1

3 e–t

(ee
t2

1+t + 4e2t + 1)(1 + y + z)
, (t, y, z) ∈ [0, 2] × [0, +∞) × [0, +∞),

u(t) =

⎧
⎨

⎩

3
2 , t ∈ J1 := [0, 1],
9
5 , t ∈ J2 :=]1, 2].

(13)

Then we have:

t
1
3
∣
∣f1(t, y1, z1) – f1(t, y2, z2)

∣
∣ =

∣
∣
∣
∣

e–t

(ee
t2

1+t + 4e2t + 1)

(
1

1 + y1 + z1
–

1
1 + y2 + z2

)∣
∣
∣
∣
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≤ e–t(|y1 – y2| + |z1 – z2|)
(ee

t2
1+t + 4e2t + 1)(1 + y1 + z1)(1 + y2 + z2)

≤ e–t

(ee
t2

1+t + 4e2t + 1)

(|y1 – y2| + |z1 – z2|
)

≤ 1
(e + 5)

|y1 – y2| +
1

(e + 5)
|z1 – z2|.

Thus (H2) holds with δ = 1
3 and K = L = 1

e+5 .
By (13) the equation of problem (12) can be divided into two expressions as follows:

D
3
2
0+ x(t) =

t– 1
3 e–t

(ee
t2

1+t + 4e2t + 1)(1 + |x(t)| + |I 3
2

0 x(t)|)
, t ∈ J1,

D
9
5
1+ x(t) =

t– 1
3 e–t

(ee
t2

1+t + 4e2t + 1)(1 + |x(t)| + |I
9
5

0 x(t)|)
, t ∈ J2.

For t ∈ J1, problem (12) is equivalent to the problem

⎧
⎪⎨

⎪⎩

D
3
2
0+ x(t) = t– 1

3 e–t

(ee
t2

1+t +4e2t+1)(1+|x(t)|+|I
3
2

0 x(t)|)
, t ∈ J1,

x(0) = 0, x(1) = 0.
(14)

Next, we prove that condition (8) is fulfilled.

2(T1
1–δ – T0

1–δ)(T1 – T0)u1–1

(1 – δ)�(u1)

(

K +
L(T1 – T0)u1

�(u1 + 1)

)

=
2

2
3 (e + 5)�( 3

2 )

(

1 +
1

�( 5
2 )

)

� 0.7685 < 1.

Let ϑ(t) = t 1
2 . Then

Iu1
0+ ϑ(t) =

1
�( 3

2 )

∫ t

0
(t – s)

1
2 s

1
2 ds

≤ 1
�( 3

2 )

∫ t

0
(t – s)

1
2 ds

≤ 2
3�( 3

2 )
ϑ(t) := λϑ(t)ϑ(t).

Thus (H3) is satisfied with ϑ(t) = t 1
2 and λϑ(t) = 2

3�( 3
2 )

.
By Theorem 3.1 problem (14) has a solution x1 ∈ E1, and by Theorem 4.1 the equation

in (14) is UHR stable.
For t ∈ J2, problem (12) can be written as follows:

⎧
⎪⎨

⎪⎩

D
9
5
1+ x(t) = t– 1

3 e–t

(ee
t2

1+t +4e2t+1)(1+|x(t)|+|I
9
5

0 x(t)|)
, t ∈ J2,

x(1) = 0, x(2) = 0.
(15)
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We see that

2(T2
1–δ – T1

1–δ)(T2 – T1)u2–1

(1 – δ)�(u2)

(

K +
L(T2 – T1)u2

�(u2 + 1)

)

=
2(2 2

3 – 1)
2
3�( 9

5 )
1

e + 5

(

1 +
1

�( 14
5 )

)

� 0.3913 < 1.

As a result, condition (8) is satisfied. Moreover,

Iu2
1+ ϑ(t) =

1
�( 9

5 )

∫ t

1
(t – s)

4
5 s

1
2 ds

≤ 1
�( 9

5 )

∫ t

1
(t – s)

4
5 ds

≤ 5
9�( 9

5 )
ϑ(t) := λϑ(t)ϑ(t).

Thus (H3) is fulfilled with ϑ(t) = t 1
2 and λϑ(t) = 5

9�( 9
5 )

.
By Theorem 3.1 problem (15) possesses a solution x̃2 ∈ E2, Further, Theorem 4.1 yields

that (15) is UHR stable.
It is known that

x2(t) =

⎧
⎨

⎩

0, t ∈ J1

x̃2(t), t ∈ J2.

As a result, by Definition 3.1 the boundary value problem (12) has a solution

x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t), t ∈ J1,

x2(t) =

⎧
⎨

⎩

0, t ∈ J1,

x̃2(t), t ∈ J2.

In addition, by Theorem 4.1 the equation in (12) is UHR stable.

6 Conclusion
Our proposed multiterm BVP has been successfully investigated in this work via three
theorems: The Darbo’s fixed point theorem (DFPT), the Kuratowski measure of noncom-
pactness (KMNC), and the Ulam-Hyers-Rassias stability (UHR) to prove the existence and
stability of solutions for our proposed BVP. A numerical example is given at the end to sup-
port and validate the potentiality of all our obtained results. As a result of our investigation
into this particular research subject, our results are new and novel. Furthermore, with the
support of our new results in this work, further research works can be investigated on this
open research subject. Our proposed BVP can be possibly extended to other fractional
models.
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