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1 Introduction
In 2012, Wardowski [3] generalized the Banach contraction principle by introducing a
new type of contractions, called F-contractions, and established a unique related fixed
point theorem. This modification of BCP motivated many researchers to study further
possibilities of its extensions [4—25]. In 2017, Gornicki [26] presented some new fixed
point results for F-expanding mappings. We modify this setting by introducing multiple
F functions. The usage of multiple F functions permits to find solutions for an extensive
range of integral equations.

The nonlinear fractional di erential equations have a valuable role in various fields of
science, such as engineering, biology, fluid mechanics, physics, chemistry, bio-physics. For
more details, see [21, 22, 27—37]. After establishing the fixed point theorems for expanding
type mappings, we provide some new su cient conditions for the existence of solutions
of an integral boundary value problem for a scalar nonlinear Caputo fractional di erential
equation with fractional order in (1, 2). We also compare the obtained result with known
ones in the literature. Furthermore, we use our obtained results to find a solution of an
engineering problem, in which the transformed mathematical model of a problem repre-
senting activation of aspringa ected by an external force is a boundary value problem for
a second-order di erential equation.
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2 Preliminaries

In this paper, N, Np, R, and R. denote the set of natural numbers, N U {0}, real numbers,
and positive real numbers, respectively. Throughout the paper, every set X taken into ac-
count is nonempty. Wardowski [3] defined the concept of F-contractions as follows.

Definition 2.1 ([3]) Let (X, D) be a metric space. A mapping T : X — X is said to be an
F-contraction if there is a real number = > 0 such that, for all x,y € X,

[D(Tx, Ty) > 0 implies © + F(D(Tx, Ty)) < F(D(x,y))],

where F: R, = (0, 00) — R is a function satisfying the following conditions:

(F1) Fis strictly increasing, that is, for all X,y € R., X<y, F(X) < F(y);

(F2) For each sequence {an}a, of positive numbers, limp_.an = 0 if and only if
limp_s oo F(0tn) = —00;

(F3) There is k € (0, 1) such that lim,,., o+a*F(ar) = 0.

Denote by F the set of all functions satisfying conditions (F1)—(F3).

Example2.1 LetF : R, — R (i=1,2,3,4) be defined by
(i) F1(t) =Int.
(i) Fy(t) =t +Int.
(iii) F(t) :—%.
(iv) F4(t) = In(t? +1).
Then Fy,F,F3,Fp € F.

Remark2.1 From the conditions of F-contractions, it is easy to conclude that every F-
contraction mapping is necessarily continuous.

Further, Wardowski [3] stated a modified version of the Banach contraction principle as
follows.

Theorem 2.1 ([3]) Let (X,D) be a complete metric space and TX — X be an F-
contraction Then T has a unique “xed pointsay X € X, and for every x X, the sequence
{T"X}nen CONVeErges to*

For details on F-contraction mappings, see [8, 9, 38, 39]. The concept of F-expanding
mappings is given as follows.

Definition 2.2 ([26]) Let (X,D) be a metric space. A mapping T : X — X is said to be
F-expanding if there are F € F and a real number ¢ >0 such that, for all x,y € X,

[D(Tx, Ty) > 0 implies F(D(Tx, Ty)) > F(D(x.y)) + 7],
3 Main results

Firstly, we introduce two types of double F-expanding mappings that generalized F-
expanding mappings.
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Definition 3.1 Let (X, D) be a metric space. A mapping T : X — X is said to be double
F-expanding of type I, if there exist a real number r >0 and F;,F, € F such that, for all
X,y € X, we have

D(T?x,T?)>0 and D(Tx,Ty)>0
imply min{F>(D(T?x,T?y)),Fi(D(Tx, Ty))}

> w2 (D(X,Y)) +a1F(D(x,Y)) + 7, )
where

a1=0,ap = 1, if F(D(T?%, T2Y)) < F(D(TX, Ty))
a1 =100 =0, if F(D(T2x, T2y)) > F(D(Tx, Ty)) |

Remark3.1 Forsome x,y € X, the conditions of Definition 3.1 yield either F»(D(T 2x, T2y))
> FZ(D(Xr y)) +zor F]_(D(TX, Ty)) = Fl(D(Xv y)) +7.

Definition 3.2 Let (X, D) be a metric space. A mapping T : X — X is said to be double
F-expanding of type I, if there exist T >0 and F;, F, € F such that, for all x,y € X,

D(T?x,T?)>0 and D(Tx,Ty)>0
imply min{F>(D(T?x,T?y)),Fi(D(Tx, Ty))}

> a2 (D(x,Y)) +aiFi(D(x,Y)) + 7, @)
where either a; =0oray; =0and oy +ap = 1.

Remark3.2 Forall x,y € X, the double F-expanding mapping of type Il will deal with one
of the following two cases (R1) and (R2):

min{F(D(T?,T2y)),FL(D(Tx, Ty))} = R(D(x,y)) + 7, (R1)
min{F>(D(T?x, T?y)), F(D(Tx, Ty))} = F1(D(x,y)) + 7. (R2)

For some, X,y € X, (R1) further yields Fo(D(T2x,T2y)) > F(D(x,Y)) + 7, or, Fi(D(Tx,

Ty)) = R(D(xy) + .
Similarly, for some x,y € X, (R2) yields Fo(D(T2x, T2y)) > F1(D(x,y)) + t, or, Fi(D(TX,

Ty)) = F(D(x.y)) + 7.
Next, we introduce triple F-expanding mappings.

Definition 3.3 Let (X, D) be a metric space. A mapping T : X — X is said to be a triple
F-expanding mapping, if there exist ¢ >0 and F,F;,F, € F such that, for all x,y € X, we
have

D(T?x,T?%)>0 and D(Tx,Ty)>0
imply min{F>(D(T?x, T?y)),Fi(D(Tx, Ty))} > F(D(x,y)) + =. (3)
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Example3.1 Take Fi(¢) =Ine and Fy(«) = Inke,k>0. Then Fy and F, € F.
The double F-expanding mapping of type I will take the form

min{Ink(D(T?x, T2y)),In(D(Tx, Ty))} = a2 Ink(D(X,Y)) + o1 In(D(x,y)) + 7.
Condition (F1) allows us to write

Inmin{kD (T2, T2y), D(Tx, Ty)) > Ink*2 (D(x, y))“* " + .
By the assumption of the definition, we have a; + a; =1, s0

min{kD(T?x, T?y), D(Tx, Ty)) > € k2D(X,Y).
Note that if we suppose (as a particular case) that, for all x,y € X, D(Tx, Ty) < kD(T 2x, T2y),
then we have D(Tx, Ty) > € D(x,y) with o, =0. That is, T is an expanding mapping. Fur-
ther, if for all x,y € X, D(Tx, Ty) > kD(T 2, T?y), then we have D(T?x, T?y) > €D(X,Y).
Hence, T is neither a contraction nor an expanding mapping.
Example3.2 Take Fi(¢) =Ine and F(«) =Inka,k>1. Then F, F, € F.

Then, by the definition of a double F-expanding mapping of type I, for all x,y € X, we

have

min{F,(D(T?X, T?y)),FL(D(TX, Ty)) } = c2F2(D(X,Y)) + 1 F1 (D(X,Y)) + 7.

Conditions (R1) and (R2) allow us to write

min{F(D(T?x, T2y)), FL(D(Tx, Ty))} = Fi(D(x,y)) + * 4)
or
min{F(D(T?x, T3y)), Fu(D(Tx, Ty))} = Fo(D(x.y)) + . (5)

Relation (4) yields that
min{In(kD(T?x, T?y)),In(D(Tx, Ty))} > In(D(x,y)) + <.
Condition (F1) allows us to write
Inmin{kD(T?x, T?y), D(Tx, Ty)} = In(D(x,y)) +
so that
min{kD(T?x, T?y), D(Tx, Ty)} = € (D(x,y)). (6)
Relation (5) implies that

min{In(kD(T?x, T?y)),In(D(Tx, Ty))} > In(kD(x,y)) + 7.
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With the usage of condition (F1), we can write
min{kD(T?x, T?y), D(Tx, Ty)} > € (kD(x, y)). (7

One may observe that, for all x,f(x) =y € X, relations (6) and (7) produce the sequences
in which the iterates of T may have several combinations of expansions and contractions.

Example3.3 Given Fy(«) = Inkyer, Fi (o) = Inkyer, and F(«) = In ke, where k, kg, kz > 0, then
F, Fl, F2 e F.
Then, by the definition of a triple F-expanding mapping, we have for all X,y € X

min{F(D(T2, T%)), FL(D(Tx, Ty))} = F(D(x,y)) + 7
or

min{In(kD(T?x, T?y)), In(ky D(TX, Ty)) } > In(KD(x,y)) + 7.
Condition (F1) allows us to write

Inmin{k,D(T2X, T?y), ki D(TX, Ty)) = InkD(X,y) + 7
or
min{k, D(T?x, T?y), ki D(Tx, Ty)) > €kD(x,y) + 7.
Then either ky(D(T2x, T2y)) > ke (D(x,y)) or kyi(D(Tx, Ty)) > k€& (D(x, y)).

We can define ky = 2a, k; = 201, kg + ko =2, where g + ap = 1.
So that we have either

ar(D(T?x, T2y)) > %ker (D(x.y))
or
a1(D(Tx, Ty)) = %ke’(D(x, y))-
Both of the above inequalities can be written as
a2(D(T?%, T2y)) + a1 (D(TX, Ty)) > k€ (D(X,Y)).

That is a reversal of a mean Lipschitzian mapping, and so the fixed point of (3) will be the
fixed point of T.

Theorem 3.1 Let(X, D) be a complete metric spacBuppose that a surjective continuous
mapping T: X — X is a double F-expanding mapping of typednd for all t1,t, € R,, there
areo >0 and t > o such that

Fo(tz) <Fi(ty) implies R(t1) < F(t2) + 0. (A)

Then T has a unique “xed point in X and for every x € X, the sequencél Mxp}%_; con-
verges in X
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Proof Consider a sequence {Xi,Xz,...} such that, for any xo € X, we have Xp+1 = TXm, =
TM*1x, for all m e Ng. If, for some m e N, D(Xm, TXm) =0, T admits a fixed point.

Let D(Xm, TXm) = D(T Xm-1, TXm) > Ofor all m € N.

We will prove that limp,_, oo D(Xm, TXm) = 0.

For any m € N, we can write

min{ F2 (D (T 2Xm_1, T 2Xm)) ) Fl (D(TXm_l, Txm)) }

> 02F (D (Xm-1,Xm)) + @1F1 (D(Xm-1,Xm)) + 7. ®)
Now, we will discuss the two possible cases (C) and (D):

F1(D(TXm-1, TXm)) = min{F> (D(T *Xm-1, T*Xm) ), F1(D(T Xm-1, TXm)) }, (©)
F2(D(T?Xm-1, T?Xm)) = min{F> (D (T *Xm—1, T*Xm) ), F1(D(T Xm-1, TXm)) }. (D)

If (C) holds, then by the conditions of Definition 3.1, inequality (8) will take the form
min{F (D (T *Xm-1, T?Xm)), F1 (D(T Xm-1, TXm)) } = F1(D(Xm-1, Xm)) + . 9)
Relation (9) further yields

min{F>(D(T*Xm-1, T?Xm)), F1(D(T Xm-1, TXm)) }

> min{F (D(TXm-1, TXm)), F1(D(Xm-1,Xm)) } + 7. (10)

Therefore, the possible existence of (C) implies the existence of (10).
Similarly, if (D) holds, inequality (8) will take the form

min{F (D (T Xm—1, T?Xm)), F1 (D(T Xm-1, TXm)) } = F2(D(Xm—1, Xm)) + 7. (11)
If Fo(D(Xm=1,Xm)) > F1(D(Xm-1,Xm)), then (11) can be written as

min{F (D (T Xm—1, T?Xm)), F1 (D(T Xm-1, TXm)) } = F1(D(Xm-1, Xm)) + 7. (12)
If Fo(D(Xm=1,Xm)) < F1(D(Xm-1,Xm)), then condition (A) allows us to write

min{F> (D (T Xm-1, T?Xm)), Ft (D(T Xm—1, TXm)) } = Ft(D(Xm-1,Xm)) =0 + 7. (13)
Combining inequalities (12) and (13),

min{F (D (T Xm-1, T?Xm)), F1 (D(T Xm-1, TXm)) } = F1(D(Xm-1, Xm)) + 1m0 + 7,
where

I TRO<hO. g
0 ifR() > Fu),

Page 6 of 25
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The above inequality can be written as

min{F>(D(T*Xm-1, T?Xm)), F1(D(T Xm-1, TXm)) }
> min{F (D(TXm-1, TXm)), FL(P(Xm-1,Xm)) } + nmo + 7. (14)
Therefore, the existence of (D) implies the existence of inequality (14).
Both cases (C) and (D) yield inequalities (10) and (13) that can be written in the com-

bined form as follows:

min{Fo(D(T*Xm-1, T?Xm)), F1 (D(T Xm-1, TXm)) }

> min{Fz (D(Txm—ll TXm))x F (D(Xm—ll Xm))} *+ mcmo * T,

where ¢n, is either O or 1.
The above inequality can also be written as

min{F>(D(T*Xm-1, T?Xm)), F1 (D(T Xm-1, TXm)) }

> min{F (D(T *Xm-2, T*Xm-1)), F1(D(TXm-2, TXm-1)) } + tmsmo + 7.
Repeating this process, we have

min{F> (D (T *Xm-1, T?Xm)), F1(D(T Xm-1, TXm)) }
> min{F2(D(T *Xm-3, T *Xm-2)), F1 (D(T Xm-3, TXm—2)) }

Nm-1Sm-10 + ImGmo — 2T

min{F>(D(T*Xm-1, T?Xm)), F1(D(T Xm-1, TXm)) }
m
> min{F,(D(T%x1, T2)), FL(D(Tx1, Txo)) } + > ngjo +mr
=1
or
m
Tim min{F(D(T2m-1, 7)), Fi (DT X1, Txm)) } = D njsjo —me
=1
> min{F>(D(T 2%y, T?X0)), FL(D(Tx1, TX0)) }. (15)
Next, we will show that T is bijective.
Let Tx =Ty, so that D(Tx, Ty) =0.
If D(x,y) >0, we have
min{F>(D(T?X, T?y)), FL(D(TX, Ty))} = a2F2(D(X,Y)) + caF1 (D(x,y)) +1.
So,

min{F>(0), F1(0)) > a2F2(D(x,Y)) + a1F1(D(x,Y)) +t,
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which implies that
F(0) > R(D(xy)) +t, or Fi(0) > Fi(D(x,y)) +t.

Both of the above inequalities are contradictions, and so we have D(x,y) =0 if and only if
x =Y. Therefore, T is bijective.

Consider a mapping €2 such that T2 = QT =1, where | is the identity mapping.

For a sequence {X1,Xz, ..., Xm+3, ...} = {X1, TX1,..T™?2xy, ...}, we can choose Xm+3 = Uz, SO
that Q™2u; = Umes = X1, ™01 = Umaz = X2, QMU1 = Umet = X3, Q™ LU = Uy = X4, More-
OVer, Xm+3 = Us. It implies that Xm+2 = Uy, Xm+1 = Us, Xm = Ug. Hence, inequality (20) yields

m
min{F;(D(Us, Uz)), F1(D(us,U)) | = lim > " njgjo —mz
=1

> n}l—{%o min{ F (D(Um+2, Um+1))v Fr (D(Um+3, Um+2)) }

or
m
min{F (D (Q%u1, 22o)), Fy (D(Q°ur, Q%uo))} — lim "5 —me
=1

> lim min{F(D(Q%Um, Q%Um-1)), FL(D(Q3Um, 2%um-1))}.

m—o0

Since o < t, we have

lim min{F>(D(Q2Um, 2°Um-1)), F1(P(2%Um, Q%Um-1)) } = —cc. (16)

m—o0

Now, equation (16) implies that

lim_Fo(D(Q2%um-1, 2%Um)) =00 (E)
or
Tim_Fy (D(2%um-1, 2°Um)) = —o0. (F)

Condition (F2) among (E) yields that

lim D(Q?Um-1, 2%Um) =0,

m—o00

or equivalently,

lim D(Q%Um-1, Q°Um) = lim D(Um+1, QUms1) = lim D(Um, Qum) =0.
m—oo m—oo

m—o0

Condition (F2) yields

lim D(2%Um-1, Q®Um) = lim D(Um+2, QUm+2) = lim D(Um, QUm) = 0.
m—oo m— o0

m—oo
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Therefore, from (21) we get

1im_D(up, Qum) =0. (17
Now, we will prove that the sequence {un}m-; is @ Cauchy sequence. On the contrary,
suppose that there exist ¢ > 0 and sequences {g(m)}52, and {h(m)}x_; of natural numbers

such that

g(m)>h(m)>m,  D(Ugm), Upem)) > &,
(18)
D(Ug(m)-1, Upmy) <& forallmeN.

We further suppose that h(m) is greater than g(m) by [(m).
Now, we can write

& < D(Ug(m), Up@m))
< D(Ug(my, Ugm)-1) + D(Ug(m)—1, Uym))
<D(Ug(m), Ugm)-1) + &

= D(Ug(m)-1, TUgm)-1) * €.

That is,

€ < D(Ugm), Upm)) < D(Ugm)-1, TUgm)-1) + €. (19)
The above inequality along with (19) yields

Jim D(Ug(m), Up(my) = &-
Further, from (17) there exists N € N such that

DUgamy, TUgamy) < % and  D(Ug(m), TUnm) < % forall m > N. (20)
Next, we claim that

D(Ugm), Upm)) = D(Ugmy+1, Upmy+1) >0 forallm > N. (21)
On the contrary, suppose that there exists r > N such that

D(Ug@ry+1, Upry+1) = 0. (22)
It follows from (18), (20), and (22) that

& < D(Ug(r), Un(n) = D(Ug(r), Ugry+1) + D(Ug(ry+1, Up(ry)
< D(Ugry, Ugy+1) + D(Ug(ry+1, Upgry+1) + D(Upry+1, Up(r))

=D(Ug(r), TUg(r)) + D(Ug(ry+1, Un(ry+1) + D(Up(ry, TUp(r)
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+0+

ENJ
TR

That is a contradiction.
Next, we suppose that, for some Xu(m), X;(m) € X, We have Ugm) = Xp(m) and Upm) = Xem)
such that Ug(my—1 = TXp(m), Um)-1 = T Xeqm), Ugmy—2 = T 2Xo(m), Upmy—2 = T 2Xe(m).-
Therefore, relation (21) with the assumption of the theorem gives
D(Xp(m), Xe(m)) = D(Xpmy+1, Xemy+1) >0 implies
min{F2 (D (T *Xo(m), T *Xem)) ), Fr (DT Xe(my, Txem)) |

> a2 (Xp(my, Xe(m)) + @1 F1 (D (Xo(m), Xe(m))) + 7. (23)
Now, we will deal with two possible cases of (23):

F2(D (T 2Xo(m), T Xe(m))) = Fa(Xogm), Xe(m) + 7
or

F1(D(TXom), TXem))) = F1(Xom), Xe(m)) + T
Both of the above inequalities will take the form

Fz(D(QZUg(m_4), szh(m—4))) > Fz(QAUg(m_4), QAUh(m_4)) +7
or

F(D(2%dg(ma), 2*Ne(ms))) = F1(Q Ug(m), Q*up(m) + 7.

So that we have the following contradictions: F,(g) > Fy(¢) + 7 or Fi(e) > Fy(e) + 7.
Therefore, {um}2; isa Cauchy sequence. The completeness of (X, D) proves that {um}52,
converges to some point u* in X. Now, the continuity of Q implies that

D(S2u,u) = lim D(QUm, Um) = 1im D(Ums1, Um) = D(u*,u*) =0.

Therefore, Q2 has a fixed point u* in X and Qu* = u* so that u* = Tu*. Now, for the unique-
ness, let us suppose that T has more than one fixed point. That is, there exist two distinct
u,ve Xsuchthat Tu=uzv=Tv.

Therefore, D(u,v) = D(Tu, Tv) = D(T 2u, T2v) > 0 with relation (1) implies that either

Fi(D(Tu, Tv)) = F1(D(u,V)) + > F1(D(u,V)) = F1(D(Tu, Tv)) (24)
or
F2(D(T2u, T?V)) > F(D(u, V) + 7 > F2(D(u,v)) = R (D(T?u, T2)). (25)

Both relations (24) and (25) are the contradictions, and so we have a unique fixed point. OJ

Theorem 3.2 Let(X, D) be a complete metric spacBuppose that a surjective continuous
mapping T: X — X is a double F-expanding mapping of type Bnd for all t,t;,t, € R+,
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there iso > 0 such thate <7 and
Fo(t) <Fu(t) implies R(t) < F(t) +o, (B)

Fi(t) <Fo(t) implies R(t) < Fu(t) + 0. (B")

Then T has a unique “xed point in X and for every ¥ € X, the sequencél ™xp}x-; con-
verges to a de“nite number

Proof Consider a sequence {Xi,X,...} such that Xm+1 = TXm = T™*x, for any xo € X,
forallm e Np. If, for some m € N, D(Xm, TXm) = 0, T will admit a fixed point. Let
D(Xm, TXm) = D(T Xm-1, TXmp) > Ofor all m € N.

If, for all x,y € X, relation (R2) holds, then the analysis of the previous theorem yields

min{F>(D(T*Xm-1, T?Xm)), F1(D(T Xm-1, TXm)) }

> min{F2 (D(TXm-1, TXm)), F1 (P(Xm-1,Xm)) } + 7.
The above inequality can be written as follows:

min{F (D (T X1, T%m)), Fo(D(T X1, TXm)) }
> min{F (D(TXm2, T %m-1)), F1(D(T Xim_2, TXm1)) } + 7.

Repeating this process, we have

min{F2 (D (T %Xm-1, T 2m) ), F1(D(T Xm—1, TXm)) }
> min{F(D(T?Xmn-s, T?Xm-2)), F1 (D(TXm-3, TXm2)) } + 2,

min{F (D(T %Xm-1, T 2m) ), F1(D(T Xm—1, TXm)) }
> min{F>(D(T?x1, T?%o)), F1(D(Tx1, TXo)) } + me.

Now, the analysis similar to the previous theorem yields
min{F;(D(us3, u)), F1(D(ua4, us)) } —me
> lim min{F2(D(Um+2, Um+1)), F1 (D(Ume+a, Ume2)) }
or

min{F(D(Q%u, Q%up)), F1 (D(Q%uz, Q3up)) } —me
> lim min{F(D(Q%Um, Q°Um-1)), FL(D(QUm, Q%um1))}.

m—o0

lim min{F>(D(Q%Um, 2Um-1)), F1(D(2%Um, Q3Um_1))} = —cc. (26)

m—o0

If, for all x,y € X, relation (R1) holds, then we can write

min{F> (D (T Xm—1, T?Xm)), F1 (D(T Xm-1, TXm)) } = F1(D(Xm-1, Xm)) + im0 + T,
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where

N ERYORT0)
0 ifFy(t) = Fu(t),

The above inequality will take the form

min{F2 (D (T %Xm-1, T m) ), F1(D(T Xm—1, TXm)) }

> mln{ F2 (D(TXm_l, TXm)), F]_ (D(Xm_l, Xm))} + MmO +7.
That can be written as

min{F (D(T X1, T%m)), Fo(D(T X1, TXm)) }

> min{F2(D(T *Xm-2, T?Xm-1)), F1(D(T Xm-2, TXm-1)) } + nmo + 7.
Repeating this process, we have

min{F (D(T *Xm-1, T?Xm) ), F1(D(T Xm-1, TXm)) }
> min{F2(D(T *Xm-3, T *Xm-2)), F1 (D(T Xm-3, TXm—2)) }

+)m-10 + 1m0 + 21

min{F2 (D(TXm—1, T%m)), F1(D(T X1, TXm)) }

> min{F(D(T?x1, %)), F1 (D(Tx1, Tx0)) } + Y mjo +mr.
j=1

So that

m
min{F (D(2*ur, 2%uo)), F1 (D(Qu1, @%uo)) } — lim » "o —mr
=1

> lim min{F(D(Q%Um, Q%Um-1)), F1(D(2%Um, QPum1))}.

T mooo

Since o < t, we have

lim min{F(D(Q2Um, 2°Um-1)), F1(P(2%Um, Q®Um-1)) } = —cc.

m—oo

Therefore, relations (26) and (27) imply that

lim F>(D(Q%Um-1, 2%Up)) =—o0.

m— o0

or,

lim Fy(D(Q2*Um-1, 2%upm)) =—o0.

m— o0

@7)

Page 12 of 25
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Now, using the analysis of the previous theorem, relations (R1) and (R2) yield that

Fa(e) > Fa(e) + 7, (28)
Fi(e) > Fi(e) + 7, (29)
Fa(e) > Fa(e) + 7, (30)
Fi(e) > Fa(e) + 7. (31)

As t >0, relations (28) and (29) are contradictions.
Now, we consider relation (30)

Fo(e) = Fu(e) + 1.
Using condition (B’), we have
Fi(e) +o > Fi(e) + T.

It is a contradiction,as t >o.

Similarly, F1(¢) > Fx(¢) + , which is a contradiction: o < 7.

The contradictions of relations (28)—(31) prove that {um}x-; is a Cauchy sequence. The
completeness of (X, D) proves that {um}ow, converges to some point u* in X.

Now, the continuity of Q implies

D(Qu,u) = lim D(QUpm,Um) = lim D(Ums1,Um) = D(u*, u*) =0.
m— o0 m—o0

Therefore,  has a fixed point u* in X and Qu* = u*. So that u* = Tu*. Now, for unique-
ness, let us suppose that T has more than one fixed point. That is, there exist two distinct
u,v e X such that Tu = u % v = Tv. Therefore, D(u,v) = D(Tu, Tv) = D(T?u, T?v) >0, and
the assumption of the theorem leads to the following four possibilities:

Fi(D(u,v)) = F1(D(Tu, Tv)) = F(D(u,V)) + 7, (32)
F(D(u,v) = F(D(T?u, T?)) = R(D(u,v)) + 7, (33)
F2(D(u,v)) = F(D(T?u, T?V)) > Fi(D(u,v)) + (34)

implies o + F1(D(u,V)) = F1(D(u,v)) + 7,
F1(D(u,v)) = F1(D(Tu, Tv)) = F(D(u,v)) + 7 (35)
implies o + F1(D(u,v)) > F1(D(u,v)) + .

All the four relations (32)—(35) are contradictions, and so we have a unique fixed point. O

Theorem 3.3 Let (X, D) be a complete metric spac8uppose that a continuous mapping
T : X+ X is a triple F-contraction and for all t, t;,t, € R,, there existe >0 and t > o
such that Rt;) < F(ty) implies R(t2) < F(t1) +o,i=1,2.

Then T has a unique “xed point in X and for every ¥ € X, the sequencéT "Xg}ov,
converges to a de“nite number
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Proof Consider asequence {Xy, X, ...} such that Xm+; = TXm = TM*1x, for some xo € X and
for all m e W. If, for some m € N, D(Xm, Txm) =0, T has a fixed point.
Let D(Xm, TXm) = D(T Xm_1, TXm) > Ofor allm € N.
We will prove that limp,_, oo D(Xm, TXm) = 0.
For any m € N, we have
min{F (D (T Xm—1, T?Xm)), F1(D(TXm-1, TXm)) } = F(D(Xm-1,Xm)) + 7. (36)
If F(D(Xm-1,Xm)) > F1(D(Xm-1,Xm)), inequality (36) can be written as follows:
min{F2 (D (T *Xm-1, T?Xm)), F1 (D(T Xm-1, TXm)) } = F1(D(Xm-1, Xm)) + . (37)
If F(D(Xm-1,%m)) < F1(D(Xm-1, Xm)), condition (A) allows us to write
Fl(D(Xm—LXm)) = F(D(Xm—L Xm)) to.
Then inequality (36) can be written as
min{F> (D (T Xm-1, T?Xm)), F1 (D(T Xm-1, TXm)) } = F1(D(Xm-1, Xm)) — 0 + 7. (38)
Combining inequalities (37) and (38), we have

min{F> (D (T Xm—1, T?Xm)), F1 (D(T Xm—1, TXm)) } = F1(D(Xm-1,Xm)) + sio +7,  (39)

where ¢; is either 0 or —1.
Next, we will consider the following two possible cases:

F1(D(Xm-1, Xm)) = min{ P (D(T Xim_1, TXm)), Fr (D (-1, Xm)) } (40)
or

Fo(D(T X1, TXm)) = min{Fo(D(T X1, TXm)), Fr. (D1, Xm)) }- (41)
I (40) is true, inequality (39) will take the form

min{F2 (D (T %Xm-1, T m) ), FL(D(T Xm—1, TXm)) }
> min{F2 (D(TXm-1, TXm)), F1(D(Xm-1,%m)) } + gio + 7. (42)

If (41) is true, we have Fo(D(T Xm-1, TXm)) < F1(D(Xm-1, Xm))-
So that relation (41) can be written as

min{F (D (T Xm-1, T?Xm)), F1 (D(T Xm-1, TXm)) } > F2(D(TXm-1, TXm)) + 5io + 7.
Moreover, condition (41) will change the above inequality in the following form:

min{F2 (D (T %Xm-1, T 2m) ), F1(D(T Xm—1, TXm)) }
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> min{F2 (D(Txm_l, TXm)), F (D(Xm_l, Xm))} +¢io + 1. (43)
Combining (42) and (43), we have

min{F>(D(T*Xm-1, T?Xm)), F1(D(T Xm-1, TXm)) }

> min{F2 (D(T Xm-1, TXm)), F1(P(Xm-1,Xm)) } + sio + 7.
That is equivalent to

min{F (D(T X1, Tm)), Fo(D(T X1, TXm)) }

> min{F> (D(T *Xm-2, T*Xm-1)), F1 (D(T Xm—2, TXm-1)) } + io + 7.
Repeating this process, we have

min{F (D (T2 Xm-1, T m) ), F1(D(T Xm—1, TXm)) }

> min{F2 (D(TZXm_g,TZXm_g)), Fl(D(TXm_g,TXm_z))} +g_10 +gio +2t

min{F (D(T X1, T%m)), Fo(D(T X1, TXm)) }

> min{Fo(D (T2, T2%)), FL(D(Tx1, Txo))} +0 Y g+ me.
j=1

Now, the analysis similar to the previous theorem yields that

m

min{Fz (D(U3, Uz)), Fl(D(U4, U3))} — n}l_r)l’lo<> Z Ggjo —mt
j=1

> lim min{Fz (D(Um+2, Um+1))1 Fr (D(Um+3, Um+2))}

m—o0

or

m
min{F (D(2%ur, 2%uo)), F1 (D(Qu1, @*wo)) } — lim " 8o —me
=1

> lim min{F(D(Q%Um, Q°Um-1)), F1(D(Q3Um, Q%um1))}.

m—o0

As T > o, we have

lim min{F(D(Q2um, 22Um-1)), F1(DP(Q23Um, Q%um-1))} = —occ. (44)

m—o0

Therefore, relation (44) implies that

lim F>(D(2%Um-1, 2°Um)) = —00

m—o0

or
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lim Fy(D(2*Um-1, 2%Um)) =—o0.

m—o0

Using the analysis of the previous theorem, we will have
min{F,(e), F1(¢)) > F(e) + 7.

That yields either F»(¢) > F(e) + 7 or Fy(¢) > F(e) + =. Now, with the usage of condition
(B), we can write F,(¢) > F(e) + T or F,(¢) > F(e) + o, which implies, F,(¢) > F(¢). Itis a
contradiction. Similarly, Fy(g) > F(e) + t. Also, it yields a contradiction.

Thus, {um}se-; is a Cauchy sequence. The completeness of (X, D) proves that {um}y-;
converges to some point u* in X. Now, the continuity of  implies

D(Qu,u) = lim D(QUm, Um) = lim D(QUpm+1, Um) = D(u*,u*) = 0.

Therefore, Q2 hasafixed point u* in X, thatis, Qu* = u*. So that u* = Tu*. Now, for unique-
ness, let us suppose that T has more than one fixed point. That is, there exist two distinct
u,v e X such that Tu = u # v=Tv. Therefore, D(u,v) = D(Tu, Tv) = D(T?u, T?v) > 0 with
min{F,(D(T2u, T2v)), F(D(Tu, Tv))} > F(D(u,Vv)) + t implies that either

F1(D(u,V)) = F1(D(Tu, Tv)) = F(D(u,V)) + > F(D(u,V)) + o > F(D(u,V)) (45)
or

F(D(u,v)) = FR(D(T?u, T?V)) = F(D(u,v)) + > F(D(u,v)) + o > F(D(u,v)). (46)

Since both relations (45) and (46) are contradictions, the mapping T has a unique fixed
point. O

4 Applications to Caputo fractional differential equations
As applications of our work, we will study the existence of solutions of Caputo fractional
di erential equations of the fractional order in (1, 2) with an integral boundary condition.
The main condition in the problems studied in [1] (see Theorem 3.2 therein) and [2] (see
Theorem 12 therein) is associated with su cient small Lipschitz constant. We will use a
less restrictive condition than the Lipschitz condition by applying our obtained fixed point
theorem.

For 1<t <2and a Caputo fractional derivative SDfx(t) = ﬁ fat (t—9'*x"(s)ds con-
sider a nonlinear Caputo fractional di erential equation

CDE(x(t) =f (tx(t)) for te (o, p) (47
with an integral boundary condition
s
K@) =0x(6)= [ x9ds (@<i<p) 48)
where, for some A € (o, 8), X(1) € R and «, 8 are given real numbers such that 0 < o < 8.

Let @ = C([«, 8], R) be endowed with a norm [|X||(q g1 = SUPscfe 571X()!-
Forany x,y € 2, we define W(X,y) = IX— VIl 5
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In order to assure the existence of solution of nonlinear Caputo fractional di erential
equation (47), we consider the following fractional di erential equation:

CDr(x(t)=g(t) forte (a,pB). (49)

Kilbas [40] proved that the following function

X(t) = % fa (t—9 g9 ds

Z(t_a) g _qr1
+(()‘_0‘)2—2(ﬂ—a))1"(t)/a (B—97g(9ds

_ 2(t—a) A pS -
(()‘—“)Z—Z(ﬂ—a))r(r)/a /a(s £)'g(6)d¢ ds (50)

represents the solution of boundary value problem (48) and (49) for g € 2, based on the
following presentation of the solution:

t
X(t) = % /a (t—9"tg(s) ds—d; — da(t — ).

Next, we will define a mild solution of (47) and (48).

Definition 4.1 The function x € © is a mild solution of boundary value problem (47) and
(48) if it satisfies

t
X(t) = % / (t _S)t—lT(s X(S)) ds
2(t—a) p 1
T, 09T
Z(t —Ol) b e -1
- (()»—04)2—2(,3—05)F(t) /o; [1 (S_E) T(EIX(E)) dE dS te [0!,,3]. (51)

For any function u € Q, we define a surjective mapping T : Q — Q by

Y(u)(t) = % / t—9 T (su(s)ds

. 2(t—a)
(=) —2(8—
2(t—a)
(=P —2(B—a)T(x)

’ el d
s f (B—9"T(su(9)ds

/ (s— &) T (£, u(¢)) de ds (52)

fort € [o, B8]
Now, we establish the existence result as follows.

Theorem 4.1 Suppose that
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(i) There exist a constant kK 0 with

K(B—a)r 2K (B —a) A—a
i (et (i) <0 &3)

and a function7 € C([«, 8] x R, R) such that
[T =TEY)| <Kx=y"" xyeRtewAl

where re (0,1];

(il) There exists a function xe Q such thatW(xo, Y(Xo)) > 0, where the operatofr is
de“ned by(52);

(iii ) For any two functions xy € © such that¥W(x,y) > 0, the inequality W(Y (x), Y (y)) >0
holds

Then boundary value probleng47) and (48) has a mild solution

Proof Note that any fixed point of the mapping Y is a mild solution of boundary value
problem (47) and (48). Now, let x,y € @ be such that W(x,y) > 0. By condition (i), we
obtain

RESIOER V0]

<ift(t—s)‘"‘l|7'( X(9) =T (sy(9)|Ws
“To L S SYl

2(t—a)
(B —a) = (h—a))T(x)
2(t—a)
+
@B —a)—(r—)))T() Je

K ‘ -1 _ r
—%/a(t‘s) X9 -9 ds

B
[ =977 ex9) - Tlsy9) s

</ (s—t)" T (t,x()) —T(t,y(t))]Wt)Ws

2K (t — @)
2(B—a) = (=) )L () Ju

2K(t_0l) ’ ° _ eyl _ r
@B—a)— (—a)))T() Jo (/a (s—&)"" [x(€) - y(&)| d§>ds

< K(t—a)t ZK(t—a) (,B—Ol)t ()»—()l)l+t e
‘< e(x) +(2(ﬂ—a)—(x—a)2>r<c)< ) ))”X Yl

<K(;3—oz)r 2K(B—a) A—a o
<T@+ <1+(2(ﬁ—a)—(k—a)2)<l+ 1+t)>”x Yloe

= Alx=yl,, tela,pl

p
B-9 x©-y(9)| ds

where

— K(IB_O‘)c ZK(,B—O() A—a
A= I(1+r) (1+(2(,3—a)—(k—a)2)<1+ 1+t)> € (0, 00).
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Therefore,

[T =TH) [ = AlIX=YIIE- (54)
The conditions of the theorem imply that Y (x) # Y (y) if and only if x #'y. Therefore, T :
Q — Q is a bijective mapping. There exists x : @ — Q such that Tx =1 = xY (I the
identity mapping).

Next, we suppose that f = T(x) and h= T (y) such that x(f) =xand x(h)=y.
So that

If =hiloe < A x )= x ()]
That implies that
1 1/r
-2l = (5) 16 -hi 9)

Take « > A, so one writes

1
@l -x0], = () r-hi, (56)

Moreover, (55) further implies that

Ur
-0 = (5) IxO-x]

> (%)wﬂnf — i,
So that
R -0 2 (%)(%+71Z)||f S &)
Relation (56) yields that
0 )= O], = 0 5 ) +mif =i 8)

Likewise, relation (56) can be written as
1+1),,2 2(m|If K 1. (x 1/
k@D | ()~ x (h)||oozln<X>+Fln(X) +infif —hi
> L) iyt —hpYr, (59)
r A *©

Let F(2) = Inc ™D @), Fi(2) = In ()" (2), and F(2) = In@)Y". It is easy to verify that
F, Fl, F2 e F.
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Combining relations (57) and (59), we have

min{F2(W(x (), (). FL (W (x (©), x (1))} = %m(%) +E(W(E ).

Therefore, x : @ — Q is a triple F-expanding mapping, and the operator x has a fixed
point in ©. That is, there exists a function x* € C([e, 8], R) such that x* = x(x*). This
implies that Q(x*) = x*. The function x* is a mild solution of boundary value problem (47)
and (48). O

Example4.1 Consider the nonlinear Caputo fractional di erential equation

1

CpHL75 -
FO(K0) = 5

arctan(,/|X(t)| + € cost) +sint  fort e (2,3) (60)
with the integral boundary conditions
25
x(2) =0, X(3) = / x(9)ds (61)
0
Here, t =1.75. Also,

T(t,x)= arctan(\/m +€ cost) +sint

1
Ji+14

and
T -7y < (% +1)m,
where

_K(B-a) 2K (B —«) A —a
A F(L+rv) (1+(2(;9—06)—@—01)2)(l+ 1+t>>

C(Z+1) /. 2AZ+1)325
- ri2.75)( * 17 ﬁ) € (0,00).

Note that A > 1. Therefore, Theorem 4.1 guarantees the existence of a solution of bound-
ary value problem (60) and (61).

Remark4.1 Note that boundary value problem (60) and (61) is also studied in [1] (see
Example 5 therein) and [2] (see Example 3.3 therein). Based on the obtained fixed point
theorems, we used the weaker conditions for the right-hand side part of the equation and
found the existence of a fixed point for K >1 and A > 1.

5 An application to integral equations
As another application of our work, we will consider an engineering problem in which the
transformed mathematical model of a problem representing activation of spring a ected
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by an external force is a boundary value problem for a second-order di erential equation.
That is,

i+ %u = H(r,u(w)); u(0)=0,0(0)=a,

where H : [0,1] x R* — R™ is a continuous function and | > 0.
Conversion of the given problem into the following integral equation is well known:

u(r) = /t H (1o, u())G(x,w), te[0,1]. (62)
0
Define the Green function G(t, ) as

t+)et ™) jf0<m<tr<l,
0

if0<t<mw<l,

with a constant ¢ = t(c,m) > 0.
Let X be the set of all continuous functions from [0, |] into R*. For any arbitrary U € X,
define

UL, = sup {|U()[e™}.
tel0,1]
Define D : X x X — [0, c0) by

D(x,y) = max{ [, Iyll, }

forall x,y € X.
Now, in order to find the existence of a solution to the integral equation, we consider a
function g: X — X defined by

g(u(v) = /Ot H (10, u(1v))G(x, rv) (63)

forallue Xand ¢ € [0,1].
We will prove that there exists some v € X such that g(v(t)) = v(t). That is, the fixed point
of the F-expanding mapping is a solution of integral equation (62).

Theorem 5.1 The nonlinear integral equation58) has a solution if the following condi-
tions hold

(@) H(ro,u(tvo)) is an increasing function in its second variable

(b) H(to,u) > kr?€’u, k > Osuch thatz > 1 + %z wheret >0, t,tv € [0,1], and u e R*;

(0 g: X — X is a surjective continuous mapping

Proof For all v e X, we have

l9(v(1))| = g(V(w)) = /Ot H (10, v(10)) G(x, 1v) dtv.
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Now, using conditions (a) and (b), we can write
lg(V(r0))| > k/orrze’\v(m)]G(t, 10) dio
=k /0 tt2e7|v(m)|(t+m)ef(t_“’)dm
=k /0 ' T2 @™ |y(t)| (v + r0)e ) diw
= k/ot 2™ |v]|, (v + )& ™) diy
=kr2e e |vl|, /: €7 (¢ + )" dro

et v et 1
=k’ €TV (22— - == 5+
T 2 2

T T T T

=ke™ |V (2ereF —vT — €T + 1)

=ke e V|, (2t —rreTT —1+€7).

Therefore,

&7 |g(V(w))| = ke IV, (2tr =1+ (1 —rT)e ™).
Using condition (b), one gets

2tr—1+(l—rr)e™t > 1.
That is,

lo(v(w) [, = ke I1vil..
Likewise, for w € X, we can find that

[gtw) |, = ke [jwil..
Since

max{||gul,, |gw, } > max{ke ||v||,, ke [w]. },
we have

D(gugw) = k& max{ ||V, IIw. }.
Equivalently,

D(gv,gw) > ke D(v, ). (64)
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Therefore,

ln<%D(gv, gv@) > In(D(v,w)) + . (65)
Now, relation (64) also implies that

D(¢Pv, °w) > K’ D(v, W).
That is,

= D(@vw) = &

FD( Vv, g°'W) > €7D(V, W).

Thus,
ln<%D(gzv, gzw)) > In(D(v,w)) + 27.
We deduce
ln<%D(gzv, gzw)) >In(D(v,w)) + 7. (66)

Define Fy(x) = In §, F2(x) = In %, and F(x) = Inx. So that inequalities (65) and (66) take the
form

F1(D(Tv, Tw)) > F(D(v,w)) +7 and Fp(D(T?v, T?w)) >F(D(v,w)) + .
Both of the above inequalities can be written as
min{Fy (D(Tv, Tw)), F2(D(T?v, T?w))} > F(D(v,w)) + .

Therefore, the fixed point of the above triple F-contraction is the solution of problem
(62). d

6 Conclusion

In this article, we generalized F-expanding mappings by using multiple F functions and
certain conditions on the mapping. These conditions allow us to deal with the class of
mappings whose iterates expand in general, but some of their iterates may contract as
well. Moreover, with the usage of multiple F functions, we presented an idea that allows
to use weaker conditions for several fractional type di erential equations. The new gen-
eralizations of F-expanding mappings and the corresponding results will break open new
grounds for the researchers working in the field as they will be able to find the existence
of solutions of an extensive range of di erential equations.
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