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Abstract
We introduce double and triple F-expanding mappings. We prove related fixed point
theorems. Based on our obtained results, we also prove the existence of a solution for
fractional type differential equations by using a weaker condition than the sufficient
small Lipschitz constant studied by Mehmood and Ahmad (AIMS Math. 5:385–398,
2019) and Hanadi et al. (Mathematics 8:1168, 2020). As applications, we ensure the
existence of a unique solution of a boundary value problem for a second-order
differential equation.

MSC: 47H10; 47H19; 54H25

1 Introduction
In 2012, Wardowski [3] generalized the Banach contraction principle by introducing a
new type of contractions, called F-contractions, and established a unique related fixed
point theorem. This modification of BCP motivated many researchers to study further
possibilities of its extensions [4–25]. In 2017, Gornicki [26] presented some new fixed
point results for F-expanding mappings. We modify this setting by introducing multiple
F functions. The usage of multiple F functions permits to find solutions for an extensive
range of integral equations.

The nonlinear fractional differential equations have a valuable role in various fields of
science, such as engineering, biology, fluid mechanics, physics, chemistry, bio-physics. For
more details, see [21, 22, 27–37]. After establishing the fixed point theorems for expanding
type mappings, we provide some new sufficient conditions for the existence of solutions
of an integral boundary value problem for a scalar nonlinear Caputo fractional differential
equation with fractional order in (1, 2). We also compare the obtained result with known
ones in the literature. Furthermore, we use our obtained results to find a solution of an
engineering problem, in which the transformed mathematical model of a problem repre-
senting activation of a spring affected by an external force is a boundary value problem for
a second-order differential equation.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03519-1
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03519-1&domain=pdf
https://orcid.org/0000-0003-4606-7211
mailto:hassen.aydi@isima.rnu.tn


Bashir et al. Advances in Difference Equations        (2021) 2021:359 Page 2 of 25

2 Preliminaries
In this paper, N, N0, R, and R+ denote the set of natural numbers, N∪ {0}, real numbers,
and positive real numbers, respectively. Throughout the paper, every set X taken into ac-
count is nonempty. Wardowski [3] defined the concept of F-contractions as follows.

Definition 2.1 ([3]) Let (X,D) be a metric space. A mapping T : X �→ X is said to be an
F-contraction if there is a real number τ > 0 such that, for all x, y ∈ X,

[
D(Tx, Ty) > 0 implies τ + F

(
D(Tx, Ty)

) ≤ F
(
D(x, y)

)]
,

where F : R+ = (0,∞) �→R is a function satisfying the following conditions:
(F1) F is strictly increasing, that is, for all x, y ∈ R+, x < y, F(x) < F(y);
(F2) For each sequence {αn}∞n=1 of positive numbers, limn→∞αn = 0 if and only if

limn→∞F(αn) = –∞;
(F3) There is k ∈ (0, 1) such that limα �→0+αkF(α) = 0.
Denote by F the set of all functions satisfying conditions (F1)–(F3).

Example 2.1 Let Fi : R+ �→R (i = 1, 2, 3, 4) be defined by
(i) F1(t) = ln t.
(ii) F2(t) = t + ln t.
(iii) F3(t) = – 1√

t .
(iv) F4(t) = ln(t2 + t).
Then F1, F2, F3, F4 ∈F .

Remark 2.1 From the conditions of F-contractions, it is easy to conclude that every F-
contraction mapping is necessarily continuous.

Further, Wardowski [3] stated a modified version of the Banach contraction principle as
follows.

Theorem 2.1 ([3]) Let (X,D) be a complete metric space and T : X �→ X be an F-
contraction. Then T has a unique fixed point, say x∗ ∈ X, and for every x ∈ X, the sequence
{Tnx}n∈N converges to x∗.

For details on F-contraction mappings, see [8, 9, 38, 39]. The concept of F-expanding
mappings is given as follows.

Definition 2.2 ([26]) Let (X,D) be a metric space. A mapping T : X �→ X is said to be
F-expanding if there are F ∈F and a real number τ > 0 such that, for all x, y ∈ X,

[
D(Tx, Ty) > 0 implies F

(
D(Tx, Ty)

) ≥ F
(
D(x, y)

)
+ τ

]
.

3 Main results
Firstly, we introduce two types of double F-expanding mappings that generalized F-
expanding mappings.
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Definition 3.1 Let (X,D) be a metric space. A mapping T : X �→ X is said to be double
F-expanding of type I, if there exist a real number τ > 0 and F1, F2 ∈ F such that, for all
x, y ∈ X, we have

D
(
T2x, T2y

)
> 0 and D(Tx, Ty) > 0

imply min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)}

≥ α2F2
(
D(x, y)

)
+ α1F1

(
D(x, y)

)
+ τ , (1)

where

{
α1 = 0,α2 = 1, if F2(D(T2x, T2y)) ≤ F1(D(Tx, Ty))
α1 = 1,α2 = 0, if F2(D(T2x, T2y)) > F1(D(Tx, Ty))

}

.

Remark 3.1 For some x, y ∈ X, the conditions of Definition 3.1 yield either F2(D(T2x, T2y))
≥ F2(D(x, y)) + τ or F1(D(Tx, Ty)) ≥ F1(D(x, y)) + τ .

Definition 3.2 Let (X,D) be a metric space. A mapping T : X �→ X is said to be double
F-expanding of type II, if there exist τ > 0 and F1, F2 ∈F such that, for all x, y ∈ X,

D
(
T2x, T2y

)
> 0 and D(Tx, Ty) > 0

imply min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)}

≥ α2F2
(
D(x, y)

)
+ α1F1

(
D(x, y)

)
+ τ , (2)

where either α1 = 0 or α2 = 0 and α1 + α2 = 1.

Remark 3.2 For all x, y ∈ X, the double F-expanding mapping of type II will deal with one
of the following two cases (R1) and (R2):

min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)} ≥ F2
(
D(x, y)

)
+ τ , (R1)

min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)} ≥ F1
(
D(x, y)

)
+ τ . (R2)

For some, x, y ∈ X, (R1) further yields F2(D(T2x, T2y)) ≥ F2(D(x, y)) + τ , or, F1(D(Tx,
Ty)) ≥ F2(D(x, y)) + τ .

Similarly, for some x, y ∈ X, (R2) yields F2(D(T2x, T2y)) ≥ F1(D(x, y)) + τ , or, F1(D(Tx,
Ty)) ≥ F1(D(x, y)) + τ .

Next, we introduce triple F-expanding mappings.

Definition 3.3 Let (X,D) be a metric space. A mapping T : X �→ X is said to be a triple
F-expanding mapping, if there exist τ > 0 and F , F1, F2 ∈ F such that, for all x, y ∈ X, we
have

D
(
T2x, T2y

)
> 0 and D(Tx, Ty) > 0

imply min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)} ≥ F
(
D(x, y)

)
+ τ . (3)



Bashir et al. Advances in Difference Equations        (2021) 2021:359 Page 4 of 25

Example 3.1 Take F1(α) = lnα and F2(α) = ln kα, k > 0. Then F1 and F2 ∈F .
The double F-expanding mapping of type I will take the form

min
{
ln k

(
D

(
T2x, T2y

))
, ln

(
D(Tx, Ty)

)} ≥ α2 ln k
(
D(x, y)

)
+ α1 ln

(
D(x, y)

)
+ τ .

Condition (F1) allows us to write

ln min{kD(
T2x, T2y

)
,D(Tx, Ty)) ≥ ln kα2

(
D(x, y)

)α1+α2 + τ .

By the assumption of the definition, we have α1 + α2 = 1, so

min{kD(
T2x, T2y

)
,D(Tx, Ty)) ≥ eτ kα2D(x, y).

Note that if we suppose (as a particular case) that, for all x, y ∈ X,D(Tx, Ty) < kD(T2x, T2y),
then we have D(Tx, Ty) ≥ eτD(x, y) with α2 = 0. That is, T is an expanding mapping. Fur-
ther, if for all x, y ∈ X,D(Tx, Ty) > kD(T2x, T2y), then we have D(T2x, T2y) ≥ eτD(x, y).
Hence, T is neither a contraction nor an expanding mapping.

Example 3.2 Take F1(α) = lnα and F2(α) = ln kα, k > 1. Then F1, F2 ∈F .
Then, by the definition of a double F-expanding mapping of type II, for all x, y ∈ X, we

have

min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)} ≥ α2F2
(
D(x, y)

)
+ α1F1

(
D(x, y)

)
+ τ .

Conditions (R1) and (R2) allow us to write

min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)} ≥ F1
(
D(x, y)

)
+ τ (4)

or

min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)} ≥ F2
(
D(x, y)

)
+ τ . (5)

Relation (4) yields that

min
{
ln

(
kD

(
T2x, T2y

))
, ln

(
D(Tx, Ty)

)} ≥ ln
(
D(x, y)

)
+ τ .

Condition (F1) allows us to write

ln min
{

kD
(
T2x, T2y

)
,D(Tx, Ty)

} ≥ ln
(
D(x, y)

)
+ τ

so that

min
{

kD
(
T2x, T2y

)
,D(Tx, Ty)

} ≥ eτ
(
D(x, y)

)
. (6)

Relation (5) implies that

min
{
ln

(
kD

(
T2x, T2y

))
, ln

(
D(Tx, Ty)

)} ≥ ln
(
kD(x, y)

)
+ τ .
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With the usage of condition (F1), we can write

min
{

kD
(
T2x, T2y

)
,D(Tx, Ty)

} ≥ eτ
(
kD(x, y)

)
. (7)

One may observe that, for all x, f (x) = y ∈ X, relations (6) and (7) produce the sequences
in which the iterates of T may have several combinations of expansions and contractions.

Example 3.3 Given F2(α) = ln k2α, F1(α) = ln k1α, and F(α) = ln kα, where k, k1, k2 > 0, then
F , F1, F2 ∈F .

Then, by the definition of a triple F-expanding mapping, we have for all x, y ∈ X

min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)} ≥ F
(
D(x, y)

)
+ τ

or

min
{
ln

(
k2D

(
T2x, T2y

))
, ln

(
k1D(Tx, Ty)

)} ≥ ln
(
kD(x, y)

)
+ τ .

Condition (F1) allows us to write

ln min{k2D
(
T2x, T2y

)
, k1D(Tx, Ty)) ≥ ln kD(x, y) + τ

or

min{k2D
(
T2x, T2y

)
, k1D(Tx, Ty)) ≥ eτ kD(x, y) + τ .

Then either k2(D(T2x, T2y)) ≥ keτ (D(x, y)) or k1(D(Tx, Ty)) ≥ keτ (D(x, y)).
We can define k2 = 2α2, k1 = 2α1, k1 + k2 = 2, where α1 + α2 = 1.
So that we have either

α2
(
D

(
T2x, T2y

)) ≥ 1
2

keτ
(
D(x, y)

)

or

α1
(
D(Tx, Ty)

) ≥ 1
2

keτ
(
D(x, y)

)
.

Both of the above inequalities can be written as

α2
(
D

(
T2x, T2y

))
+ α1

(
D(Tx, Ty)

) ≥ keτ
(
D(x, y)

)
.

That is a reversal of a mean Lipschitzian mapping, and so the fixed point of (3) will be the
fixed point of T .

Theorem 3.1 Let (X,D) be a complete metric space. Suppose that a surjective continuous
mapping T : X �→ X is a double F-expanding mapping of type I, and for all t1, t2 ∈R+, there
are σ > 0 and τ > σ such that

F2(t2) < F1(t1) implies F1(t1) ≤ F2(t2) + σ . (A)

Then T has a unique fixed point in X, and for every x0 ∈ X, the sequence {Tmx0}∞m=1 con-
verges in X.
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Proof Consider a sequence {x1, x2, . . .} such that, for any x0 ∈ X, we have xm+1 = Txm =
Tm+1x0 for all m ∈ N0. If, for some m ∈N, D(xm, Txm) = 0, T admits a fixed point.

Let D(xm, Txm) = D(Txm–1, Txm) > 0for all m ∈N.
We will prove that limm→∞ D(xm, Txm) = 0.
For any m ∈N, we can write

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ α2F2
(
D(xm–1, xm)

)
+ α1F1

(
D(xm–1, xm)

)
+ τ . (8)

Now, we will discuss the two possible cases (C) and (D):

F1
(
D(Txm–1, Txm)

)
= min

{
F2

(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}
, (C)

F2
(
D

(
T2xm–1, T2xm

))
= min

{
F2

(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}
. (D)

If (C) holds, then by the conditions of Definition 3.1, inequality (8) will take the form

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F1
(
D(xm–1, xm)

)
+ τ . (9)

Relation (9) further yields

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

> min
{

F2
(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
+ τ . (10)

Therefore, the possible existence of (C) implies the existence of (10).
Similarly, if (D) holds, inequality (8) will take the form

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F2
(
D(xm–1, xm)

)
+ τ . (11)

If F2(D(xm–1, xm)) ≥ F1(D(xm–1, xm)), then (11) can be written as

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F1
(
D(xm–1, xm)

)
+ τ . (12)

If F2(D(xm–1, xm)) < F1(D(xm–1, xm)), then condition (A) allows us to write

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F1
(
D(xm–1, xm)

)
– σ + τ . (13)

Combining inequalities (12) and (13),

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F1
(
D(xm–1, xm)

)
+ ηmσ + τ ,

where

ηm =

⎧
⎨

⎩
–1 if F2(t) < F1(t),

0 if F2(t) ≥ F1(t),
t ∈ R+.
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The above inequality can be written as

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
+ ηmσ + τ . (14)

Therefore, the existence of (D) implies the existence of inequality (14).
Both cases (C) and (D) yield inequalities (10) and (13) that can be written in the com-

bined form as follows:

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
+ ηmςmσ + τ ,

where ςm is either 0 or 1.
The above inequality can also be written as

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2xm–2, T2xm–1

))
, F1

(
D(Txm–2, Txm–1)

)}
+ ηmςmσ + τ .

Repeating this process, we have

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2xm–3, T2xm–2

))
, F1

(
D(Txm–3, Txm–2)

)}

ηm–1ςm–1σ + ηmςmσ – 2τ

...

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2x1, T2x0

))
, F1

(
D(Tx1, Tx0)

)}
+

m∑

j=1

ηjςjσ + mτ

or

lim
m→∞ min

{
F2

(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}
–

m∑

j=1

ηjςjσ – mτ

≥ min
{

F2
(
D

(
T2x1, T2x0

))
, F1

(
D(Tx1, Tx0)

)}
. (15)

Next, we will show that T is bijective.
Let Tx = Ty, so that D(Tx, Ty) = 0.
If D(x, y) > 0, we have

min
{

F2
(
D

(
T2x, T2y

))
, F1

(
D(Tx, Ty)

)} ≥ α2F2
(
D(x, y)

)
+ α1F1

(
D(x, y)

)
+ t.

So,

min{F2(0), F1(0)) ≥ α2F2
(
D(x, y)

)
+ α1F1

(
D(x, y)

)
+ t,
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which implies that

F2(0) ≥ F2
(
D(x, y)

)
+ t, or F1(0) ≥ F1

(
D(x, y)

)
+ t.

Both of the above inequalities are contradictions, and so we have D(x, y) = 0 if and only if
x = y. Therefore, T is bijective.

Consider a mapping � such that T� = �T = I , where I is the identity mapping.
For a sequence {x1, x2, . . . , xm+3, . . .} = {x1, Tx1, ...Tm+2x1, ...}, we can choose xm+3 = u1, so

that �m+2u1 = um+3 = x1, �m+1u1 = um+2 = x2,�mu1 = um+1 = x3,�m–1u1 = um = x4. More-
over, xm+3 = u1. It implies that xm+2 = u2, xm+1 = u3, xm = u4. Hence, inequality (20) yields

min
{

F2
(
D(u3, u2)

)
, F1

(
D(u4, u3)

)}
– lim

m→∞

m∑

j=1

ηjςjσ – mτ

≥ lim
m→∞ min

{
F2

(
D(um+2, um+1)

)
, F1

(
D(um+3, um+2)

)}

or

min
{

F2
(
D

(
�2u1,�2u0

))
, F1

(
D

(
�3u1,�3u0

))}
– lim

m→∞

m∑

j=1

ηjςjσ – mτ

≥ lim
m→∞ min

{
F2

(
D

(
�2um,�2um–1

))
, F1

(
D

(
�3um,�3um–1

))}
.

Since σ < τ , we have

lim
m→∞ min

{
F2

(
D

(
�2um,�2um–1

))
, F1

(
D

(
�3um,�3um–1

))}
= –∞. (16)

Now, equation (16) implies that

lim
m→∞ F2

(
D

(
�2um–1,�2um

))
= –∞ (E)

or

lim
m→∞ F1

(
D

(
�3um–1,�3um

))
= –∞. (F)

Condition (F2) among (E) yields that

lim
m→∞D

(
�2um–1,�2um

)
= 0,

or equivalently,

lim
m→∞D

(
�2um–1,�2um

)
= lim

m→∞D(um+1,�um+1) = lim
m→∞D(um,�um) = 0.

Condition (F2) yields

lim
m→∞D

(
�3um–1,�3um

)
= lim

m→∞D(um+2,�um+2) = lim
m→∞D(um,�um) = 0.
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Therefore, from (21) we get

lim
m→∞D(um,�um) = 0. (17)

Now, we will prove that the sequence {um}∞m=1 is a Cauchy sequence. On the contrary,
suppose that there exist ε > 0 and sequences {g(m)}∞n=1 and {h(m)}∞m=1 of natural numbers
such that

g(m) > h(m) > m, D(ug(m), uh(m)) ≥ ε,

D(ug(m)–1, uh(m)) < ε for all m ∈N.
(18)

We further suppose that h(m) is greater than g(m) by l(m).
Now, we can write

ε ≤D(ug(m), uh(m))

≤D(ug(m), ug(m)–1) + D(ug(m)–1, uh(m))

< D(ug(m), ug(m)–1) + ε

= D(ug(m)–1, Tug(m)–1) + ε.

That is,

ε ≤D(ug(m), uh(m)) < D(ug(m)–1, Tug(m)–1) + ε. (19)

The above inequality along with (19) yields

lim
m→∞D(ug(m), uh(m)) = ε.

Further, from (17) there exists N ∈N such that

D(ug(m), Tug(m)) <
ε

4
and D(uh(m), Tuh(m)) <

ε

4
for all m ≥ N . (20)

Next, we claim that

D(ug(m), uh(m)) = D(ug(m)+1, uh(m)+1) > 0 for all m ≥ N . (21)

On the contrary, suppose that there exists r ≥ N such that

D(ug(r)+1, uh(r)+1) = 0. (22)

It follows from (18), (20), and (22) that

ε ≤D(ug(r), uh(r)) ≤D(ug(r), ug(r)+1) + D(ug(r)+1, uh(r))

≤D(ug(r), ug(r)+1) + D(ug(r)+1, uh(r)+1) + D(uh(r)+1, uh(r))

= D(ug(r), Tug(r)) + D(ug(r)+1, uh(r)+1) + D(uh(r), Tuh(r))
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<
ε

4
+ 0 +

ε

4
=

ε

2
.

That is a contradiction.
Next, we suppose that, for some xb(m), xr(m) ∈ X, we have ug(m) = xb(m) and uh(m) = xr(m)

such that ug(m)–1 = Txb(m), uh(m)–1 = Txr(m), ug(m)–2 = T2xb(m), uh(m)–2 = T2xr(m).
Therefore, relation (21) with the assumption of the theorem gives

D(xb(m), xr(m)) = D(xb(m)+1, xr(m)+1) > 0 implies

min
{

F2
(
D

(
T2xb(m), T2xr(m)

))
, F1

(
D(Txb(m), Txr(m))

)}

≥ α2F2(xb(m), xr(m)) + α1F1
(
D(xb(m), xr(m))

)
+ τ . (23)

Now, we will deal with two possible cases of (23):

F2
(
D

(
T2xb(m), T2xr(m)

)) ≥ F2(xb(m), xr(m)) + τ

or

F1
(
D(Txb(m), Txr(m))

) ≥ F1(xb(m), xr(m)) + τ .

Both of the above inequalities will take the form

F2
(
D

(
�2ug(m–4),�2xh(m–4)

)) ≥ F2
(
�4ug(m–4),�4uh(m–4)

)
+ τ

or

F1
(
D

(
�3qg(m–4),�3hr(m–4)

)) ≥ F1
(
�4ug(m),�4uh(m)

)
+ τ .

So that we have the following contradictions: F2(ε) ≥ F2(ε) + τ or F1(ε) ≥ F1(ε) + τ .
Therefore, {um}∞n=1 is a Cauchy sequence. The completeness of (X,D) proves that {um}∞n=1

converges to some point u∗ in X. Now, the continuity of � implies that

D(�u, u) = lim
m→∞D(�um, um) = lim

m→∞D(um+1, um) = D
(
u∗, u∗) = 0.

Therefore, � has a fixed point u∗ in X and �u∗ = u∗ so that u∗ = Tu∗. Now, for the unique-
ness, let us suppose that T has more than one fixed point. That is, there exist two distinct
u, v ∈ X such that Tu = u �= v = Tv.

Therefore, D(u, v) = D(Tu, Tv) = D(T2u, T2v) > 0 with relation (1) implies that either

F1
(
D(Tu, Tv)

) ≥ F1
(
D(u, v)

)
+ τ > F1

(
D(u, v)

)
= F1

(
D(Tu, Tv)

)
(24)

or

F2
(
D

(
T2u, T2v

)) ≥ F2
(
D(u, v)

)
+ τ > F2

(
D(u, v)

)
= F2

(
D

(
T2u, T2v

))
. (25)

Both relations (24) and (25) are the contradictions, and so we have a unique fixed point. �

Theorem 3.2 Let (X,D) be a complete metric space. Suppose that a surjective continuous
mapping T : X �→ X is a double F-expanding mapping of type II, and for all t, t1, t2 ∈ R+,
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there is σ > 0 such that σ < τ and

F2(t) < F1(t) implies F1(t) ≤ F2(t) + σ , (B)

F1(t) < F2(t) implies F2(t) ≤ F1(t) + σ . (B’)

Then T has a unique fixed point in X, and for every x0 ∈ X, the sequence {Tmx0}∞m=1 con-
verges to a definite number.

Proof Consider a sequence {x1, x2, . . .} such that xm+1 = Txm = Tm+1x0 for any x0 ∈ X,
for all m ∈ N0. If, for some m ∈ N, D(xm, Txm) = 0, T will admit a fixed point. Let
D(xm, Txm) = D(Txm–1, Txm) > 0for all m ∈N.

If, for all x, y ∈ X, relation (R2) holds, then the analysis of the previous theorem yields

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
+ τ .

The above inequality can be written as follows:

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2xm–2, T2xm–1

))
, F1

(
D(Txm–2, Txm–1)

)}
+ τ .

Repeating this process, we have

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2xm–3, T2xm–2

))
, F1

(
D(Txm–3, Txm–2)

)}
+ 2τ ,

...

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2x1, T2x0

))
, F1

(
D(Tx1, Tx0)

)}
+ mτ .

Now, the analysis similar to the previous theorem yields

min
{

F2
(
D(u3, u2)

)
, F1

(
D(u4, u3)

)}
– mτ

≥ lim
m→∞ min

{
F2

(
D(um+2, um+1)

)
, F1

(
D(um+3, um+2)

)}

or

min
{

F2
(
D

(
�2u1,�2u0

))
, F1

(
D

(
�3u1,�3u0

))}
– mτ

≥ lim
m→∞ min

{
F2

(
D

(
�2um,�2um–1

))
, F1

(
D

(
�3um,�3um–1

))}
,

lim
m→∞ min

{
F2

(
D

(
�2um,�2um–1

))
, F1

(
D

(
�3um,�3um–1

))}
= –∞. (26)

If, for all x, y ∈ X, relation (R1) holds, then we can write

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F1
(
D(xm–1, xm)

)
+ ηmσ + τ ,
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where

ηm =

⎧
⎨

⎩
–1 if F2(t) < F1(t),

0 if F2(t) ≥ F1(t),
t ∈ R+.

The above inequality will take the form

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
+ ηmσ + τ .

That can be written as

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2xm–2, T2xm–1

))
, F1

(
D(Txm–2, Txm–1)

)}
+ ηmσ + τ .

Repeating this process, we have

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2xm–3, T2xm–2

))
, F1

(
D(Txm–3, Txm–2)

)}

+ ηm–1σ + ηmσ + 2τ

...

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2x1, T2x0

))
, F1

(
D(Tx1, Tx0)

)}
+

m∑

j=1

ηjσ + mτ .

So that

min
{

F2
(
D

(
�2u1,�2u0

))
, F1

(
D

(
�3u1,�3u0

))}
– lim

m→∞

m∑

j=1

ηjσ – mτ

≥ lim
m→∞ min

{
F2

(
D

(
�2um,�2um–1

))
, F1

(
D

(
�3um,�3um–1

))}
.

Since σ < τ , we have

lim
m→∞ min

{
F2

(
D

(
�2um,�2um–1

))
, F1

(
D

(
�3um,�3um–1

))}
= –∞. (27)

Therefore, relations (26) and (27) imply that

lim
m→∞ F2

(
D

(
�2um–1,�2um

))
= –∞.

or,

lim
m→∞ F1

(
D

(
�3um–1,�3um

))
= –∞.
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Now, using the analysis of the previous theorem, relations (R1) and (R2) yield that

F2(ε) ≥ F2(ε) + τ , (28)

F1(ε) ≥ F1(ε) + τ , (29)

F2(ε) ≥ F1(ε) + τ , (30)

F1(ε) ≥ F2(ε) + τ . (31)

As τ > 0, relations (28) and (29) are contradictions.
Now, we consider relation (30)

F2(ε) ≥ F1(ε) + τ .

Using condition (B’), we have

F1(ε) + σ ≥ F1(ε) + τ .

It is a contradiction, as τ > σ .
Similarly, F1(ε) ≥ F2(ε) + τ , which is a contradiction: σ ≤ τ .
The contradictions of relations (28)–(31) prove that {um}∞m=1 is a Cauchy sequence. The

completeness of (X,D) proves that {um}∞m=1 converges to some point u∗ in X.
Now, the continuity of � implies

D(�u, u) = lim
m→∞D(�um, um) = lim

m→∞D(um+1, um) = D
(
u∗, u∗) = 0.

Therefore, � has a fixed point u∗ in X and �u∗ = u∗. So that u∗ = Tu∗. Now, for unique-
ness, let us suppose that T has more than one fixed point. That is, there exist two distinct
u, v ∈ X such that Tu = u �= v = Tv. Therefore, D(u, v) = D(Tu, Tv) = D(T2u, T2v) > 0, and
the assumption of the theorem leads to the following four possibilities:

F1
(
D(u, v)

)
= F1

(
D(Tu, Tv)

) ≥ F1
(
D(u, v)

)
+ τ , (32)

F2
(
D(u, v)

)
= F2

(
D

(
T2u, T2v

)) ≥ F2
(
D(u, v)

)
+ τ , (33)

F2
(
D(u, v)

)
= F2

(
D

(
T2u, T2v

)) ≥ F1
(
D(u, v)

)
+ τ (34)

implies σ + F1
(
D(u, v)

) ≥ F1
(
D(u, v)

)
+ τ ,

F1
(
D(u, v)

)
= F1

(
D(Tu, Tv)

) ≥ F2
(
D(u, v)

)
+ τ (35)

implies σ + F1
(
D(u, v)

) ≥ F1
(
D(u, v)

)
+ τ .

All the four relations (32)–(35) are contradictions, and so we have a unique fixed point. �

Theorem 3.3 Let (X,D) be a complete metric space. Suppose that a continuous mapping
T : X �→ X is a triple F-contraction, and for all t, t1, t2 ∈ R+, there exist σ > 0 and τ > σ

such that F(t1) < Fi(t2) implies Fi(t2) ≤ F(t1) + σ , i = 1, 2.
Then T has a unique fixed point in X, and for every x0 ∈ X, the sequence {Tmx0}∞m=1

converges to a definite number.
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Proof Consider a sequence {x1, x2, . . .} such that xm+1 = Txm = Tm+1x0 for some x0 ∈ X and
for all m ∈W. If, for some m ∈N, D(xm, Txm) = 0, T has a fixed point.

Let D(xm, Txm) = D(Txm–1, Txm) > 0for all m ∈N.
We will prove that limm→∞ D(xm, Txm) = 0.
For any m ∈N, we have

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F
(
D(xm–1, xm)

)
+ τ . (36)

If F(D(xm–1, xm)) ≥ F1(D(xm–1, xm)), inequality (36) can be written as follows:

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F1
(
D(xm–1, xm)

)
+ τ . (37)

If F(D(xm–1, xm)) < F1(D(xm–1, xm)), condition (A) allows us to write

F1
(
D(xm–1, xm)

) ≤ F
(
D(xm–1, xm)

)
+ σ .

Then inequality (36) can be written as

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F1
(
D(xm–1, xm)

)
– σ + τ . (38)

Combining inequalities (37) and (38), we have

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)} ≥ F1
(
D(xm–1, xm)

)
+ ςiσ + τ , (39)

where ςi is either 0 or –1.
Next, we will consider the following two possible cases:

F1
(
D(xm–1, xm)

)
= min

{
F2

(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
(40)

or

F2
(
D(Txm–1, Txm)

)
= min

{
F2

(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
. (41)

If (40) is true, inequality (39) will take the form

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
+ ςiσ + τ . (42)

If (41) is true, we have F2(D(Txm–1, Txm)) < F1(D(xm–1, xm)).
So that relation (41) can be written as

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}
> F2

(
D(Txm–1, Txm)

)
+ ςiσ + τ .

Moreover, condition (41) will change the above inequality in the following form:

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}
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> min
{

F2
(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
+ ςiσ + τ . (43)

Combining (42) and (43), we have

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D(Txm–1, Txm)

)
, F1

(
D(xm–1, xm)

)}
+ ςiσ + τ .

That is equivalent to

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2xm–2, T2xm–1

))
, F1

(
D(Txm–2, Txm–1)

)}
+ ςiσ + τ .

Repeating this process, we have

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2xm–3, T2xm–2

))
, F1

(
D(Txm–3, Txm–2)

)}
+ ςi–1σ + ςiσ + 2τ

...

min
{

F2
(
D

(
T2xm–1, T2xm

))
, F1

(
D(Txm–1, Txm)

)}

≥ min
{

F2
(
D

(
T2x1, T2x0

))
, F1

(
D(Tx1, Tx0)

)}
+ σ

m∑

j=1

ςj + mτ .

Now, the analysis similar to the previous theorem yields that

min
{

F2
(
D(u3, u2)

)
, F1

(
D(u4, u3)

)}
– lim

m→∞

m∑

j=1

ςjσ – mτ

≥ lim
m→∞ min

{
F2

(
D(um+2, um+1)

)
, F1

(
D(um+3, um+2)

)}

or

min
{

F2
(
D

(
�2u1,�2u0

))
, F1

(
D

(
�3u1,�3u0

))}
– lim

m→∞

m∑

j=1

δjσ – mτ

≥ lim
m→∞ min

{
F2

(
D

(
�2um,�2um–1

))
, F1

(
D

(
�3um,�3um–1

))}
.

As τ > σ , we have

lim
m→∞ min

{
F2

(
D

(
�2um,�2um–1

))
, F1

(
D

(
�3um,�3um–1

))}
= –∞. (44)

Therefore, relation (44) implies that

lim
m→∞ F2

(
D

(
�2um–1,�2um

))
= –∞

or
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lim
m→∞ F1

(
D

(
�3um–1,�3um

))
= –∞.

Using the analysis of the previous theorem, we will have

min{F2(ε), F1(ε)) ≥ F(ε) + τ .

That yields either F2(ε) ≥ F(ε) + τ or F1(ε) ≥ F(ε) + τ . Now, with the usage of condition
(B), we can write F2(ε) ≥ F(ε) + τ or F2(ε) > F(ε) + σ , which implies, F2(ε) > F2(ε). It is a
contradiction. Similarly, F1(ε) ≥ F(ε) + τ . Also, it yields a contradiction.

Thus, {um}∞m=1 is a Cauchy sequence. The completeness of (X,D) proves that {um}∞m=1

converges to some point u∗ in X. Now, the continuity of � implies

D(�u, u) = lim
m→∞D(�um, um) = lim

m→∞D(�um+1, um) = D
(
u∗, u∗) = 0.

Therefore, � has a fixed point u∗ in X, that is, �u∗ = u∗. So that u∗ = Tu∗. Now, for unique-
ness, let us suppose that T has more than one fixed point. That is, there exist two distinct
u, v ∈ X such that Tu = u �= v = Tv. Therefore, D(u, v) = D(Tu, Tv) = D(T2u, T2v) > 0 with
min{F2(D(T2u, T2v)), F1(D(Tu, Tv))} ≥ F(D(u, v)) + τ implies that either

F1
(
D(u, v)

)
= F1

(
D(Tu, Tv)

) ≥ F
(
D(u, v)

)
+ τ > F

(
D(u, v)

)
+ σ > F1

(
D(u, v)

)
(45)

or

F2
(
D(u, v)

)
= F2

(
D

(
T2u, T2v

)) ≥ F
(
D(u, v)

)
+ τ > F

(
D(u, v)

)
+ σ > F2

(
D(u, v)

)
. (46)

Since both relations (45) and (46) are contradictions, the mapping T has a unique fixed
point. �

4 Applications to Caputo fractional differential equations
As applications of our work, we will study the existence of solutions of Caputo fractional
differential equations of the fractional order in (1, 2) with an integral boundary condition.
The main condition in the problems studied in [1] (see Theorem 3.2 therein) and [2] (see
Theorem 12 therein) is associated with sufficient small Lipschitz constant. We will use a
less restrictive condition than the Lipschitz condition by applying our obtained fixed point
theorem.

For 1 < r < 2 and a Caputo fractional derivative C
α Dr

t x(t) = 1

(2–r)

∫ t
α

(t – s)1–rx′′(s) ds, con-
sider a nonlinear Caputo fractional differential equation

C
α Dr

t

(
x(t)

)
= f

(
t, x(t)

)
for t ∈ (α,β) (47)

with an integral boundary condition

x(α) = 0, x(β) =
∫ λ

α

x(s) ds (α < λ < β), (48)

where, for some λ ∈ (α,β), x(λ) ∈R and α,β are given real numbers such that 0 ≤ α < β .
Let � = C([α,β],R) be endowed with a norm ‖x‖[α,β] = sups∈[α,β]|x(s)|.
For any x, y ∈ �, we define W(x, y) = ‖x – y‖[α,β].
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In order to assure the existence of solution of nonlinear Caputo fractional differential
equation (47), we consider the following fractional differential equation:

C
α Dr

t (x(t) = g(t) for t ∈ (α,β). (49)

Kilbas [40] proved that the following function

x(t) =
1


(r)

∫ t

α

(t – s)r–1g(s) ds

+
2(t – α)

((λ – α)2 – 2(β – α))
(r)

∫ β

α

(β – s)r–1g(s) ds

–
2(t – α)

((λ – α)2 – 2(β – α))
(r)

∫ λ

α

∫ s

α

(s – ξ )r–1g(ξ ) dξ ds (50)

represents the solution of boundary value problem (48) and (49) for g ∈ �, based on the
following presentation of the solution:

x(t) =
1


(r)

∫ t

α

(t – s)r–1g(s) ds – d1 – d2(t – α).

Next, we will define a mild solution of (47) and (48).

Definition 4.1 The function x ∈ � is a mild solution of boundary value problem (47) and
(48) if it satisfies

x(t) =
1


(r)

∫ t

α

(t – s)r–1T
(
s, x(s)

)
ds

+
2(t – α)

((λ – α)2 – 2(β – α))
(r)

∫ β

α

(β – s)r–1T
(
s, x(s)

)
ds

–
2(t – α)

((λ – α)2 – 2(β – α)
(r)

∫ λ

α

∫ s

α

(s – ξ )r–1T
(
ξ , x(ξ )

)
dξ ds, t ∈ [α,β]. (51)

For any function u ∈ �, we define a surjective mapping ϒ : � → � by

ϒ(u)(t) =
1


(r)

∫ t

α

(t – s)r–1T
(
s, u(s)

)
ds

+
2(t – α)

((λ – α)2 – 2(β – α)
(r)

∫ β

α

(β – s)r–1T
(
s, u(s)

)
ds

–
2(t – α)

((λ – α)2 – 2(β – α))
(r)

∫ λ

α

∫ s

α

(s – ξ )r–1T
(
ξ , u(ξ )

)
dξ ds (52)

for t ∈ [α,β].

Now, we establish the existence result as follows.

Theorem 4.1 Suppose that
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(i) There exist a constant K > 0 with

K(β – α)r

(1 + r)

(
1 +

2K(β – α)
(2(β – α) – (λ – α)2)

(
1 +

λ – α

1 + r

))
∈ (0,∞) (53)

and a function T ∈ C([α,β] ×R,R) such that

∣∣T (t, x) – T (t, y)
∣∣ ≤ K |x – y|r , x, y ∈ R, t ∈ [α,β],

where r ∈ (0, 1];
(ii) There exists a function x0 ∈ � such that W(x0,ϒ(x0)) > 0, where the operator ϒ is

defined by (52);
(iii) For any two functions x, y ∈ � such that W(x, y) > 0, the inequality W(ϒ(x),ϒ(y)) > 0

holds;
Then boundary value problem (47) and (48) has a mild solution.

Proof Note that any fixed point of the mapping ϒ is a mild solution of boundary value
problem (47) and (48). Now, let x, y ∈ � be such that W(x, y) > 0. By condition (i), we
obtain

∣∣ϒ(x)(t) – ϒ(y)(t)
∣∣

≤ 1

(r)

∫ t

α

(t – s)r–1∣∣T
(
s, x(s)

)
– T

(
s, y(s)

)∣∣Ws

+
2(t – α)

(2(β – α) – (λ – α)2)
(r)

∫ β

α

(1 – s)r–1∣∣T
(
s, x(s)

)
– T

(
s, y(s)

)∣∣Ws

+
2(t – α)

(2(β – α) – (λ – α)2)
(r)

∫ λ

α

(∫ s

α

(s – t)r–1∣∣T
(
t, x(t)

)
– T

(
t, y(t)

)∣∣Wt
)
Ws

≤ K

(r)

∫ t

α

(t – s)r–1∣∣x(s) – y(s)
∣
∣r ds

+
2K(t – α)

(2(β – α) – (λ – α)2)
(r)

∫ β

α

(β – s)r–1∣∣x(s) – y(s)
∣∣r ds

+
2K(t – α)

(2(β – α) – (λ – α)2)
(r)

∫ λ

α

(∫ s

α

(s – ξ )r–1∣∣x(ξ ) – y(ξ )
∣
∣r dξ

)
ds

≤
(

K(t – α)r

r
(r)
+

2K(t – α)
(2(β – α) – (λ – α)2)
(r)

(
(β – α)r

r
+

(λ – α)1+r

r(1 + r)

))
‖x – y‖r

∞

≤ K(β – α)r


(1 + r)

(
1 +

2K(β – α)
(2(β – α) – (λ – α)2)

(
1 +

λ – α

1 + r

))
‖x – y‖r

∞

= �‖x – y‖r
∞, t ∈ [α,β],

where

� =
K(β – α)r


(1 + r)

(
1 +

2K(β – α)
(2(β – α) – (λ – α)2)

(
1 +

λ – α

1 + r

))
∈ (0,∞).
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Therefore,

∥∥ϒ(x) – ϒ(y)
∥∥∞ ≤ �‖x – y‖r

∞. (54)

The conditions of the theorem imply that ϒ(x) �= ϒ(y) if and only if x �= y. Therefore, ϒ :
� → � is a bijective mapping. There exists χ : � → � such that ϒχ = I = χϒ (I the
identity mapping).

Next, we suppose that f = ϒ(x) and h = ϒ(y) such that χ (f ) = x and χ (h) = y.
So that

‖f – h‖∞ ≤ �
∥∥χ (f ) – χ (h)

∥∥r
∞.

That implies that

∥
∥χ (f ) – χ (h)

∥
∥∞ ≥

(
1
�

)1/r

‖f – h‖1/r
∞ . (55)

Take κ > �, so one writes

(κ)1/r∥∥χ (f ) – χ (h)
∥
∥∞ ≥

(
κ

�

)1/r

‖f – h‖1/r
∞ . (56)

Moreover, (55) further implies that

∥∥χ2(f ) – χ2(h)
∥∥∞ ≥

(
1
�

)1/r∥∥χ (f ) – χ (h)
∥∥1/r

∞

≥
(

1
�

)( 1
r + 1

r2 )

‖f – h‖1/r2
∞ .

So that

κ
( 1

r + 1
r2 )∥∥χ2(f ) – χ2(h)

∥
∥∞ ≥

(
κ

�

)( 1
r + 1

r2 )

‖f – h‖1/r2
∞ . (57)

Relation (56) yields that

ln (κ)1/r∥∥χ (f ) – χ (h)
∥
∥∞ ≥ 1

r
ln

(
κ

�

)
+ ln‖f – h‖1/r

∞ . (58)

Likewise, relation (56) can be written as

lnκ (1+ 1
r )∥∥χ2(f ) – χ2(h)

∥∥r
∞ ≥ ln

(
κ

�

)
+

1
r

ln

(
κ

�

)
+ ln‖f – h‖1/r

∞

>
1
r

ln

(
κ

�

)
+ ln‖f – h‖1/r

∞ . (59)

Let F2(z) = lnκ (1+ 1
r )(z)r , F1(z) = ln (κ)1/r(z), and F(z) = ln (z)1/r . It is easy to verify that

F , F1, F2 ∈F .
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Combining relations (57) and (59), we have

min
{

F2
(
W

(
χ2(f ),χ2(h)

))
, F1

(
W

(
χ (f ),χ (h)

))} ≥ 1
r

ln

(
κ

�

)
+ F

(
W(f , h)

)
.

Therefore, χ : � → � is a triple F-expanding mapping, and the operator χ has a fixed
point in �. That is, there exists a function x∗ ∈ C([α,β],R) such that x∗ = χ (x∗). This
implies that �(x∗) = x∗. The function x∗ is a mild solution of boundary value problem (47)
and (48). �

Example 4.1 Consider the nonlinear Caputo fractional differential equation

C
2 D1.75

t
(
x(t)

)
=

1√
t + 14

arctan
(√∣∣x(t)

∣∣ + et cos t
)

+ sin t for t ∈ (2, 3) (60)

with the integral boundary conditions

x(2) = 0, x(3) =
∫ 2.5

0
x(s) ds. (61)

Here, r = 1.75. Also,

T (t, x) =
1√

t + 14
arctan

(√|x| + et cos t
)

+ sin t

and

∣∣T (t, x) – T (t, y)
∣∣ ≤

(
π

4
+ 1

)√|x – y|,

where

� =
K(β – α)r


(1 + r)

(
1 +

2K(β – α)
(2(β – α) – (λ – α)2)

(
1 +

λ – α

1 + r

))

=
( π

4 + 1)

(2.75)

(
1 +

2( π
4 + 1)
1.75

3.25
2.75

)
∈ (0,∞).

Note that � > 1. Therefore, Theorem 4.1 guarantees the existence of a solution of bound-
ary value problem (60) and (61).

Remark 4.1 Note that boundary value problem (60) and (61) is also studied in [1] (see
Example 5 therein) and [2] (see Example 3.3 therein). Based on the obtained fixed point
theorems, we used the weaker conditions for the right-hand side part of the equation and
found the existence of a fixed point for K > 1 and � > 1.

5 An application to integral equations
As another application of our work, we will consider an engineering problem in which the
transformed mathematical model of a problem representing activation of spring affected
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by an external force is a boundary value problem for a second-order differential equation.
That is,

ü +
c
m

u̇ = H
(
w, u(w)

)
; u(0) = 0, u̇(0) = a,

where H : [0, I] ×R
+ →R

+ is a continuous function and I > 0.
Conversion of the given problem into the following integral equation is well known:

u(r) =
∫ r

0
H

(
w, u(w)

)
G(r,w), r ∈ [0, I]. (62)

Define the Green function G(r,w) as

G(r,w) =

⎧
⎨

⎩
(r + w)eτ (r–w) if 0 ≤ w≤ r ≤ I,

0 if 0 ≤ r ≤ w≤ I,

with a constant τ = τ (c, m) > 0.
Let X be the set of all continuous functions from [0, I] into R

+. For any arbitrary U ∈ X,
define

‖U‖τ = sup
r∈[0,I]

{∣∣U(r)
∣
∣e–2τr

}
.

Define D : X × X → [0,∞) by

D(x, y) = max
{‖x‖τ ,‖y‖τ

}

for all x, y ∈ X.
Now, in order to find the existence of a solution to the integral equation, we consider a

function g : X → X defined by

g
(
u(r)

)
=

∫ r

0
H

(
w, u(w)

)
G(r,w) (63)

for all u ∈ X and r ∈ [0, I].
We will prove that there exists some v ∈ X such that g(v(r)) = v(r). That is, the fixed point

of the F-expanding mapping is a solution of integral equation (62).

Theorem 5.1 The nonlinear integral equation (58) has a solution if the following condi-
tions hold:

(a) H(w, u(w)) is an increasing function in its second variable;
(b) H(w, u) ≥ kτ 2eτ u, k > 0such thatrτ ≥ 1 + 1

2e2 , where τ > 0, r,w ∈ [0, I], and u ∈R
+;

(c) g : X → X is a surjective continuous mapping.

Proof For all v ∈ X, we have

∣∣g
(
v(w)

)∣∣ = g
(
v(w)

)
=

∫ r

0
H

(
w, v(w)

)
G(r,w) dw.



Bashir et al. Advances in Difference Equations        (2021) 2021:359 Page 22 of 25

Now, using conditions (a) and (b), we can write

|g(
v(w)

)∣∣ ≥ k
∫ r

0
τ 2eτ

∣∣v(w)
∣∣G(r,w) dw

= k
∫ r

0
τ 2eτ

∣∣v(w)
∣∣(r + w)eτ (r–w) dw

= k
∫ r

0
τ 2eτ e2τwe–2τw

∣∣v(w)
∣∣(r + w)eτ (r–w) dw

= k
∫ r

0
τ 2eτ e2τw‖v‖τ (r + w)eτ (r–w) dw

= kτ 2eτ erτ‖v‖τ

∫ r

0
e2τw(r + w)eτw dw

= kτ 2erτ+τ‖v‖τ

(
2
reτr

τ
–

r

τ
–

eτr

τ 2 +
1
τ 2

)

= kerτ+τ‖v‖τ

(
2rτeτr – rτ – eτr + 1

)

= ke2τreτ‖v‖τ

(
2rτ – rτe–τr – 1 + e–τr

)
.

Therefore,

e–2τr
∣
∣g

(
v(w)

)∣∣ ≥ keτ‖v‖τ

(
2tτ – 1 + (1 – rτ )e–τr

)
.

Using condition (b), one gets

2rτ – 1 + (1 – rτ )e–τr ≥ 1.

That is,

∥∥g
(
v(w)

)∥∥
τ
≥ keτ‖v‖τ .

Likewise, for w ∈ X, we can find that

∥∥g(w))
∥∥

τ
≥ keτ‖w‖τ .

Since

max
{‖gv‖τ ,‖gw‖τ

} ≥ max
{

keτ‖v‖τ , keτ‖w‖τ

}
,

we have

D(gv, gw) ≥ keτ max
{‖v‖τ ,‖w‖τ

}
.

Equivalently,

D(gv, gw) ≥ keτD(v, w). (64)
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Therefore,

ln

(
1
k
D(gv, gw)

)
≥ ln

(
D(v, w)

)
+ τ . (65)

Now, relation (64) also implies that

D
(
g2v, g2w

) ≥ k2e2τD(v, w).

That is,

1
k2 D

(
g2v, g2w

) ≥ e2τD(v, w).

Thus,

ln

(
1
k2 D

(
g2v, g2w

)
)

≥ ln
(
D(v, w)

)
+ 2τ .

We deduce

ln

(
1
k2 D

(
g2v, g2w

)
)

> ln
(
D(v, w)

)
+ τ . (66)

Define F1(x) = ln x
k , F2(x) = ln x

k2 , and F(x) = ln x. So that inequalities (65) and (66) take the
form

F1
(
D(Tv, Tw)

) ≥ F
(
D(v, w)

)
+ τ and F2

(
D

(
T2v, T2w

))
> F

(
D(v, w)

)
+ τ .

Both of the above inequalities can be written as

min
{

F1
(
D(Tv, Tw)

)
, F2

(
D

(
T2v, T2w

))} ≥ F
(
D(v, w)

)
+ τ .

Therefore, the fixed point of the above triple F-contraction is the solution of problem
(62). �

6 Conclusion
In this article, we generalized F-expanding mappings by using multiple F functions and
certain conditions on the mapping. These conditions allow us to deal with the class of
mappings whose iterates expand in general, but some of their iterates may contract as
well. Moreover, with the usage of multiple F functions, we presented an idea that allows
to use weaker conditions for several fractional type differential equations. The new gen-
eralizations of F-expanding mappings and the corresponding results will break open new
grounds for the researchers working in the field as they will be able to find the existence
of solutions of an extensive range of differential equations.
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