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Abstract
In this paper, we first consider the stability problem for a class of stochastic
quaternion-valued neural networks with time-varying delays. Next, we cannot
explicitly decompose the quaternion-valued systems into equivalent real-valued
systems; by using Lyapunov functional and stochastic analysis techniques, we can
obtain sufficient conditions for mean-square exponential input-to-state stability of
the quaternion-valued stochastic neural networks. Our results are completely new.
Finally, a numerical example is given to illustrate the feasibility of our results.
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1 Introduction
As is well known, the dynamic research on neural network models has achieved fruitful
results, and it has been applied in pattern recognition, automatic control, signal processing
and artificial intelligence. However, most neural network models proposed and discussed
in the literature are deterministic. It has the characteristics of being simple and easy to an-
alyze. In fact, for any actual system, there is always a variety of random factors. However,
in real nervous systems and in the implementation of artificial neural networks, noise is
unavoidable [1, 2] and should be taken into consideration in modeling. Stochastic neural
network is an artificial neural network and is used as a tool of artificial intelligence. There-
fore, it is of practical importance to study the stochastic neural networks. The authors of
[3] studied the stability of stochastic neural networks in 1996. Subsequently, some schol-
ars carried out a lot of research work and made some progress [4–7]. Due to the finite
switching speed of neurons and amplifiers, time delays inevitably exist in biological and
artificial neural network models. In recent years, the study of the stability of delay stochas-
tic neural networks has become a hot spot in many scholars [8–15]. It is well known that
the external inputs can influence the dynamic behaviors of neural networks in practical
applications. Therefore, it is significant to study the input-to-state stability problem in the
field of stochastic neural networks [16–19].
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Besides, the quaternion-valued neural network has been one of the most popular re-
search hot spots, due to the storage capacity advantage compared to real-valued neural
networks and complex-valued neural networks. It can be applied to the fields of robotics,
attitude control of satellites, computer graphics, ensemble control, color night vision and
image impression [20, 21]. The skew field of quaternion by

Q :=
{

q = qR + iqI + jqJ + kqK}
,

where qR, qI , qJ , qK are real numbers, the three imaginary units i, j and k obey Hamilton’s
multiplication rules:

ij = –ji = k, jk = –kj = i, ki = –ik = j, i2 = j2 = k2 = ijk = –1.

Since quaternion-valued neural networks were proposed, the study of quaternion-valued
neural networks has received much attention of many scholars, and some results have
been obtained for the stability ([22–27]), dissipativity ([28, 29]), input-to-state stability
[30] and anti-periodic solutions [31] for the quaternion-valued neural networks. Very re-
cently, many scholars considered the problem of robust stability for stochastic complex-
valued neural networks [32, 33]. Subsequently, some scholars considered the problem of
stability for stochastic quaternion-valued neural networks [34, 35]. However, to the best of
our knowledge, till now there is still no result about the mean-square exponential input-
to-state stability analysis for the stochastic quaternion-valued neural networks by direct
method. So it is a challenging and important problem in theories and applications.

With the inspiration from the previous research, in order to fill the gap in the research
field of quaternion-valued stochastic neural networks, the work of this paper comes from
two main motivations. (1) The stability criterion is the mean-square exponential input-to-
state stability, which is more general than the traditional mean-square exponential stabil-
ity. In the past decade, many authors studied the input-to-state stability analysis for a class
of stochastic delayed neural networks [16–19]. (2) Recently, little literature [34, 35] had
studied the square-mean stability of quaternion-valued stochastic neural networks, thus it
is worth studying the mean-square exponential input-to-state stability of the quaternion-
valued stochastic neural networks by direct method.

Motivated by the above statement, in this paper, we consider the following stochastic
quaternion-valued neural network:

dzl(t) =

[

–al(t)zl(t) +
n∑

k=1

blk(t)fk
(
zk(t)

)
+

n∑

k=1

clk(t)gk(zk
(
t – θlk(t)

)

+ Ul(t)

]

dt +
n∑

k=1

σlk
(
zk

(
t – ηlk(t)

))
dBk(t), (1.1)

where l ∈ {1, 2, . . . , n} =: N , n is the number of neurons in layers; zl(t) ∈Q is the state of the
pth neuron at time t; al(t) > 0 is the self-feedback connection weight; blk(t) and clk(t) ∈Q

are, respectively, the connection weight and the delay connection weight from neuron k
to neuron l; θlk(t) and ηlk(t) are the transmission delays; fk , gk : Q → Q are the activa-
tion functions; U(t) = (U1(t), U2(t), . . . , Un(t)) belongs to �∞, where �∞ denotes the class
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of essentially bounded functions U from R+ to Qn with ‖U‖∞ = esssupt≥0 ‖U(t)‖Q < ∞;
B(t) = (B1(t), B2(t), . . . , Bn(t))T is an n-dimensional Brownian motion defined on a com-
plete probability space space; σlk : Q → Q is a Borel measurable function; σ = (σlk)n×n is
the diffusion coefficient matrix.

For every z ∈ Q, the conjugate transpose of z is defined as z∗ = zR – izI – jzJ – kzK , and
the norm of z is defined as

‖z‖Q =
√

zz∗ =
√(

zR
)2 +

(
zI

)2 +
(
zJ

)2 +
(
zK

)2.

For every z = (z1, z2, . . . , zn)T ∈ Qn, we define ‖z‖Qn = maxl∈N {‖zl‖Q}.
For convenience, we will adopt the following notation:

a–
l = inf

t∈R
al(t), b+

lk = sup
t∈R

∥∥blk(t)
∥∥
Q

, c+
lk = sup

t∈R

∥∥clk(t)
∥∥
Q

,

θ+ = max
l,k∈N

{
sup
t∈R

θkl(t)
}

, η+ = max
l,k∈N

{
sup
t∈R

ηlk(t)
}

, τ = max
{
θ+,η+}

.

The initial conditions of the system (1.1) is of the form

zl(s) = φl(s), s ∈ [–τ , 0],

where φl ∈ BCF0 ([–τ , 0],Q), l ∈N .
Comparing the previous results, we have the following advantages: Firstly, this is the first

time to study this problem, and it fills the gap in the field of stochastic quaternion-valued
neural networks. Secondly, quaternion-valued stochastic neural network (1.1) contains
real-valued stochastic neural networks and complex-valued stochastic neural networks
as its special cases, the main results of this paper are new and more general than those
in the existing quaternion-valued neural network models in the literature. Thirdly, unlike
some previous studies of quaternion-valued stochastic neural networks, we do not decom-
pose the systems under consideration into real-valued systems, but rather directly study
quaternion-valued stochastic systems. Finally, our method of this paper can be used to
study the mean-square exponential input-to-state stability for other types of quaternion-
valued stochastic neural networks.

This paper is organized as follows: In Sect. 2, we introduce some definitions and state
some preliminary results which are needed in later sections. In Sect. 3, we establish some
sufficient conditions for the mean-square exponential input-to-state stability of system
(1.1). In Sect. 4, we give an example to demonstrate the feasibility of our results. Finally,
we draw a conclusion in Sect. 5.

2 Preliminaries and basic knowledge
In this section, we introduce the quaternion version Itô formula and the definition of the
mean-square exponential input-to-state stability.

Let (�,F , {Ft}t≥0, P) be a complete probability space with a natural filtration {Ft}t≥0 sat-
isfying the usual conditions (i.e., it is right continuous, and F0 contains all P-null sets).
Denote by BCF0 ([–τ , 0],Qn) the family of all bounded, F0-measurable, C([–τ , 0],Qn)-
valued random variables. Denote by L2

F0
([–τ , 0],Qn) the family of all F0-measurable,

C([–τ , 0],Qn)-valued random variables φ, satisfying sups∈[–τ ,0] E‖φ(s)‖2
Q < ∞, where E de-

notes the expectation of the stochastic process.
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Definition 2.1 Consider an n-dimensional quaternion-valued stochastic differential
equation:

dz(t) = f
(
t, z(t), z

(
t – θ (t)

))
dt + g

(
t, z(t), z

(
t – η(t)

))
dB(t),

where z(t) = (z1(t), z2(t), . . . , zn(t))T ∈Qn. For V (t, z) : R+ ×Qn →R+ (in fact, we can write
V (t, z) = V (t, zR, zI , zJ , zK )), define the R-derivative of V as

∂V (t, z)
∂zR

∣∣∣∣
zI ,zJ ,zK =const

=
(

∂V (t, z(t))
∂zR

1
, . . . ,

∂V (t, z(t))
∂zR

n

)∣∣∣∣
zI ,zJ ,zK =const

,

∂V (t, z)
∂zI

∣∣∣∣
zR ,zJ ,zK =const

=
(

∂V (t, z(t))
∂zI

1
, . . . ,

∂V (t, z(t))
∂zI

n

)∣∣∣∣
zR ,zJ ,zK =const

,

∂V (t, z)
∂zJ

∣∣∣∣
zR ,zI ,zK =const

=
(

∂V (t, z(t))
∂zJ

1
, . . . ,

∂V (t, z(t))
∂zJ

n

)∣∣∣∣
zR ,zI ,zK =const

,

∂V (t, z)
∂zK

∣∣∣∣
zR ,zI ,zJ =const

=
(

∂V (t, z(t))
∂zK

1
, . . . ,

∂V (t, z(t))
∂zK

n

)∣∣∣∣
zR ,zI ,zJ =const

,

where const represents constant. Let C1,2(R+ ×Qn,R+) denote the family of all nonnega-
tive functions V (t, z) on R+ ×Qn, which are once continuously differentiable in t and twice
differentiable in zR, zI , zJ and zK . Then, for V ∈ C1,2(R+ ×Qn,R+), the quaternion version
of the Itô formula takes the following form:

dV (t, z)

=
∂V (t, z)

∂t
dt +

∂V (t, z)
∂zR dzR +

∂V (t, z)
∂zI dzI +

∂V (t, z)
∂zJ dzJ +

∂V (t, z)
∂zK dzK

+
1
2

n∑

l,k=1

∂2V (t, z)
∂zR

l ∂zR
k

dzR
l dzR

k +
1
2

n∑

l,k=1

∂2V (t, z)
∂zI

l ∂zI
k

dzI
l dzI

k

+
1
2

n∑

l,k=1

∂2V (t, z)
∂zJ

l ∂zJ
k

dzJ
l dzJ

k +
1
2

n∑

l,k=1

∂2V (t, z)
∂zK

l ∂zK
k

dzK
l dzK

k

+
n∑

l,k=1

∂2V (t, z)
∂zR

l ∂zI
k

dzR
l dzI

k +
n∑

l,k=1

∂2V (t, z)
∂zR

l ∂zJ
k

dzR
l dzJ

k

+
n∑

l,k=1

∂2V (t, z)
∂zR

l ∂zK
k

dzR
l dzK

k +
n∑

l,k=1

∂2V (t, z)
∂zI

l ∂zJ
k

dzI
l dzJ

k

+
n∑

l,k=1

∂2V (t, z)
∂zI

l ∂zK
k

dzI
l dzK

k +
n∑

l,k=1

∂2V (t, z)
∂zJ

l ∂zK
k

dzJ
l dzK

k

= LV (t, z) dt +
[

∂V (t, z)
∂zR gR(t) +

∂V (t, z)
∂zI gI(t) +

∂V (t, z)
∂zJ gJ (t)

+
∂V (t, z)

∂zK gK (t)
]

dB(t),
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where f (t) = f (t, z(t), z(t – θ (t))), g(t) = g(t, z(t), z(t – η(t))), and operator LV (t, z) is defined
as

LV (t, z)

=
∂V (t, z)

∂t
+

∂V (t, z)
∂zR f R(t) +

∂V (t, z)
∂zI f I(t) +

∂V (t, z)
∂zJ f J (t) +

∂V (t, z)
∂zK f K (t)

+
1
2
(
gR(t)

)T ∂2V (t, z)
∂(zR)2 gR(t) +

1
2
(
gI(t)

)T ∂2V (t, z)
∂(zI)2 gI(t) +

1
2
(
gJ (t)

)T ∂2V (t, z)
∂(zJ )2 gJ (t)

+
1
2
(
gK (t)

)T ∂2V (t, z)
∂(zK )2 gK (t) +

(
gR(t)

)T ∂2V (t, z)
∂zR

l ∂zI
k

gI(t) +
(
gR(t)

)T ∂2V (t, z)
∂zR

l ∂zJ
k

gJ (t)

+
(
gR(t)

)T ∂2V (t, z)
∂zR

l ∂zK
k

gK (t) +
(
gI(t)

)T ∂2V (t, z)
∂zI

l ∂zJ
k

gJ (t) +
(
gI(t)

)T ∂2V (t, z)
∂zI

l ∂zK
k

gK (t)

+
(
gJ (t)

)T ∂2V (t, z)
∂zJ

l ∂zK
k

gK (t).

Definition 2.2 The trivial solution of system (1.1) is mean-square exponentially input-
to-state stable, if there exist constants λ > 0, M1 > 0 and M2 > 0 such that

E
∥∥z(t)

∥∥2
Qn ≤M1e–λtE‖φ‖2

1 + M2‖U‖2
∞,

for φ ∈L2
F0

([–τ , 0],Qn) and U ∈ �∞, where

∥∥z(t)
∥∥
Qn =

[ n∑

l=1

∥∥zl(t)
∥∥2
Q

] 1
2

, ‖φ‖1 =

[ n∑

l=1

(
sup

s∈[–τ ,0]

∥∥φl(s)
∥∥2
Q

)] 1
2

.

Lemma 2.1 ([31]) For all a, b ∈Q, a∗b + b∗a ≤ a∗a + b∗b.

Throughout the rest of the paper, we assume that:
(H1) There exist positive constants Lf

k , Lg
k , Lσ

lk such that for any x, y ∈ Q,

∥∥fk(x) – fk(y)
∥∥
Q

≤ Lf
k‖x – y‖Q,

∥∥gk(x) – gk(y)
∥∥
Q

≤ Lg
k‖x – y‖Q,

∥∥σlk(x) – σlk(y)
∥∥
Q

≤ Lσ
lk‖x – y‖Q, fk(0) = gk(0) = σlk(0) = 0, l, k ∈N .

(H2) For l ∈N , there exist positive constants λ and ξk such that

2ξla–
l > λξl + 2ξl +

n∑

k=1

ξk
(
b+

kl
)2(Lf

k
)2 +

n∑

k=1

ξk
(
c+

kl
)2(Lg

k
)2 eλθ+

1 – γ

+
n∑

k=1

ξk
(
Lσ

kl
)2 eλη+

1 – β
,

where γ = supt∈R{θ ′
lk(t)}, β = supt∈R{η′

lk(t)}.

3 Mean-square exponential input-to-state stability
In this section, we will consider the mean-square exponential input-to-state stability of
system (1.1).
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Theorem 3.1 Suppose that Assumptions (H1)–(H2) are satisfied, then, for any initial value
of the dynamical system (1.1), there exists a trivial solution z(t), which is mean-square
exponentially input-to-state stable.

Proof Let σ (t) = (σlk(t))n×n, where σlk(t) = σlk(zk(t – ηlk(t))). We consider the Lyapunov
function as follows:

V
(
t, z(t)

)
= eλt

n∑

l=1

ξlz∗
l (t)zl(t) +

n∑

l=1

�l
(
t, z(t)

)
,

where

�l
(
t, z(t)

)
=

n∑

k=1

(
c+

lk
)2(Lg

k
)2 eλθ+

1 – γ

∫ t

t–θkl(t)
z∗

k (s)zk(s)eλs ds

+
n∑

k=1

(
Lσ

lk
)2 eλη+

1 – β

∫ t

t–ηlk (t)
z∗

k (s)zk(s)eλs ds.

Then, by the Itô formula, we have the following stochastic differential:

dV
(
t, z(t)

)
= LV

(
t, z(t)

)
dt + Vz

(
t, z(t)

)
σ (t) dB(t),

where Vz(t, z(t)) = ( ∂V (t,z(t))
∂z1

, . . . , ∂V (t,z(t))
∂zn

), and L is the weak infinitesimal operator such that

LV
(
t, z(t)

)

=
n∑

l=1

{

λeλtξlz∗
l (t)zl(t) + eλtξlzl(t)

[

–al(t)z∗
l (t) +

n∑

k=1

(
blk(t)fk

(
zk(t)

))∗

+
n∑

k=1

(
clk(t)gk

(
zk

(
t – θkl(t)

)))∗ + U∗
l (t)

]

+ eλtξlz∗
l (t)

[

–al(t)zl(t)

+
n∑

k=1

blk(t)fk
(
zk(t)

)
+

n∑

k=1

clk(t)gk
(
zk

(
t – θkl(t)

))
+ Ul(t)

]

+ ξl

n∑

k=1

(
c+

lk
)2(Lg

k
)2 eλθ+

1 – γ
z∗

k (t)zk(t)eλt – ξl

n∑

k=1

(
c+

lk
)2(Lg

k
)2 eλθ+

1 – γ

(
1 – θ ′

kl(t)
)

× z∗
k
(
t – θkl(t)

)
zk

(
t – θkl(t)

)
eλ(t–θkl(t)) ds + ξl

n∑

k=1

(
Lσ

lk
)2 eλη+

1 – β
z∗

k (t)zk(t)eλt

– ξl

n∑

k=1

(
Lσ

lk
)2 eλη+

1 – β

(
1 – η′

lk(t)
)
z∗

k
(
t – ηlk(t)

)
zk

(
t – ηlk(t)

)
eλ(t–ηlk (t))

+ eλtξl ×
n∑

k=1

[
σlk

(
zk

(
t – ηlk(t)

))]∗[
σlk

(
zk

(
t – ηlk(t)

))]
}

≤
n∑

l=1

{

eλt(λξl – 2ξlal(t)
)
z∗

l (t)zl(t) + eλtξl

n∑

k=1

(
blk(t)fk

(
zk(t)

))∗
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× (
blk(t)fk

(
zk(t)

))
+ eλtξl

n∑

k=1

(
clk(t)gk

(
zk

(
t – θkl(t)

)))∗

× (
clk(t)gk

(
zk

(
t – θkl(t)

)))
+ eλtξlU∗

l (t)Ul(t) + 2eλtξlz∗
l (t)zl(t)

+ eλt
n∑

p=1

ξl

n∑

k=1

(
c+

lk
)2(Lg

k
)2 eλθ+

1 – γ
z∗

k (t)zk(t) – eλtξl

n∑

k=1

(
c+

lk
)2(Lg

k
)2 eλθ+

1 – γ

× (1 – γ )z∗
k
(
t – θkl(t)

)
zk

(
t – θkl(t)

)
e–λθ+ ds + eλtξl

n∑

k=1

(
Lσ

lk
)2 eλη+

1 – β
z∗

k (t)zk(t)

– eλtξl

n∑

k=1

(
Lσ

lk
)2 eλη+

1 – β
(1 – β)z∗

k
(
t – ηlk(t)

)
zk

(
t – ηlk(t)

)
e–λη+

+ eλtξl

n∑

k=1

(
Lσ

lk
)2z∗

k
(
t – ηlk(t)

)
zk

(
t – ηlk(t)

)
}

≤
n∑

l=1

{

eλt(λξl + 2ξl – 2ξla–
l
)
z∗

l (t)zl(t) + eλtξl

n∑

k=1

(
b+

lk
)2(Lf

k
)2z∗

k (t)zk(t)

+ eλtξl

n∑

k=1

(
c+

lk
)2(Lg

k
)2 eλθ+

1 – γ
z∗

k (t)zk(t) + eλtξl

n∑

k=1

(
Lσ

lk
)2 eλη+

1 – β
z∗

k (t)zk(t)

+ eλtξlU∗
l (t)Ul(t)

}

=
n∑

l=1

{

eλt

{(

λξl + 2ξl – 2ξla–
l +

n∑

k=1

ξk
(
b+

kl
)2(Lf

k
)2

+
n∑

k=1

ξk
(
c+

kl
)2(Lg

k
)2 eλθ+

1 – γ

+
n∑

k=1

ξk
(
Lσ

kl
)2 eλη+

1 – β

)

z∗
l (t)zl(t)

}

+ eλtξlU∗
l (t)Ul(t)

}

. (3.1)

From (H2), we easily derive

LV
(
t, z(t)

) ≤ eλt
n∑

l=1

ξlU∗
l (t)Ul(t) ≤ eλt max

l∈N
ξl‖U‖2

∞. (3.2)

Now, similar to the previous literature, we define the stopping time (or Markov time)
�k := inf{s ≥ 0 : |z(s)| ≥ k}, and by the Dynkin formula, we have

E
[
V

(
t ∧ �k , z(t ∧ �k)

)]
= E

[
V (0, z(0)

]
+ E

[∫ t∧�k

0
LV

(
s, z(s)

)
ds

]
. (3.3)

Letting k → ∞ on both sides (3.3), from the monotone convergence theorem, we can get

E
[
V

(
t, z(t)

)]

≤ E
[
V (0, z(0)

]
+ ‖U‖2

∞ max
l∈N

ξl

∫ t

0
eλs ds
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=
n∑

l=1

{

ξlEz∗
l (0)zl(0) + ξl

n∑

k=1

(
c+

lk
)2(Lg

k
)2 eλθ+

1 – γ

∫ 0

–θkl(0)
Ez∗

k (s)zk(s)eλs ds

+ ξl

n∑

k=1

(
Lσ

lk
)2 eλη+

1 – β

∫ 0

–ηlk (0)
Ez∗

k (s)zk(s)eλs ds

}

+
1
λ

‖U‖2
∞ max

l∈N
ξl

(
eλt – 1

)

≤
n∑

l=1

{(

ξl + ξl

n∑

k=1

(
c+

kl
)2(Lg

k
)2

θ+ eλθ+

1 – γ
+ ξl

n∑

k=1

(
Lσ

kl
)2

η+ eλη+

1 – β

)

× E sup
s∈[–τ ,0]

∥∥φl(s)
∥∥2
Q

}

+
1
λ

‖U‖2
∞ max

l∈N
ξl

(
eλt – 1

)
. (3.4)

On the other hand, it follows from the definition of V (t, z(t)) that

E
[
V

(
t, z(t)

)] ≥ Eeλt
n∑

l=1

ξlz∗
l (t)zl(t)

≥ eλt min
l∈N

ξlE
∥∥z(t)

∥∥2
Qn . (3.5)

Combining (3.4) and (3.5), the following holds:

E
∥∥z(t)

∥∥2
Qn

≤ 1
minl∈N ξl

n∑

l=1

{(

ξl + ξl

n∑

k=1

(
c+

kl
)2(Lg

k
)2

θ+ eλθ+

1 – γ
+ ξl

n∑

k=1

(
Lσ

kl
)2

η+ eλη+

1 – β

)

× E sup
s∈[–τ ,0]

∥∥φl(s)
∥∥2
Q

}

+
1

λminl∈N ξl
max
l∈N

ξl‖U‖2
∞

≤M1e–λtE‖φ‖2
1 + M2‖U‖2

∞,

where

M1 =
1

minl∈N ξl

n∑

l=1

ξl

{

1 +
n∑

k=1

(
c+

kl
)2(Lg

k
)2

θ+ eλθ+

1 – γ
+

n∑

k=1

(
Lσ

kl
)2

η+ eλη+

1 – β

}

,

M2 =
1

λminl∈N ξl
max
l∈N

ξl,

which together with Definition 2.2 verifies that trivial solution of system (1.1) is mean-
square exponentially input-to-state stable. The proof is complete. �

Remark 3.1 In the calculation process of Theorem 3.1, by using stochastic analysis theory
and the Itô formula, we obtain the mean-square exponential input-to-state stability of
system (1.1).

Remark 3.2 Theorem 3.1 can be applied to stability criteria for the considered stochastic
network models by employing a non-decomposing method.
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4 Illustrative example
In this section, we give an example to illustrate the feasibility and effectiveness of our
results obtained in Sect. 3.

Example 4.1 Let n = 3. Consider the following quaternion-valued stochastic neural net-
work:

dzl(t) =

[

–al(t)zl(t) +
3∑

k=1

blk(t)fk
(
zk(t)

)
+

3∑

k=1

clk(t)gk(zk
(
t – θlk(t)

)

+ Ul(t)

]

dt +
3∑

k=1

σlk
(
zk

(
t – ηlk(t)

))
dBk(t), (4.1)

where l = 1, 2, 3, the coefficients are follows:

fk(zk) =
1

14
sin zR

k + i
1

12
∣∣zI

k
∣∣ + j

1
15

sin
(
zI

k + zJ
k
)

+ k
1

10
sin zK

k ,

gk(zk) =
1

12
sin

(
zR

k + zJ
k
)

+ i
1

20
sin

(
zR

k + zI
k
)

+ j
1

15
tanh zJ

k + k
1

10
tanh zK

k ,

σlk(zk) =
1

15
sin zR

k + i
1

10
sin zI

k + j
1
8

sin
(
zR

k + zJ
k
)

+ k
1

12
tanh zK

k ,

blk(t) = 0.4 sin(
√

2t) + i0.6 cos(
√

3t) + j0.7 sin t + k0.5 cos(2t),

clk(t) = 1.2 sin t + i0.9 cos(2t) + j sin(
√

2t) + k1.5 cos(
√

3t),

U1(t) = 0.2 sin(
√

3t) + i0.5 cos(2t) + j0.3 cos(
√

2t) + k0.3 sin(
√

3t),

U2(t) = 0.3 cos(
√

2t) + i0.4 sin(
√

3t) + j0.5 sin t + k0.2 cos(
√

3t)),

U3(t) = 0.2 sin(2t) + i0.3 cos(
√

2t) + j0.4 cos t + k0.3 sin(
√

5t)),

a1(t) = 2 +
∣∣sin(

√
3t)

∣∣, a2(t) = 5 – 2 cos(
√

2t),

a3(t) = 7 – 3 cos(
√

5t),

θkl(t) =
1
2
∣∣sin(

√
2t)

∣∣, ηlk(t) =
4
5
∣∣cos(2t)

∣∣, l, k = 1, 2, 3.

Through simple calculations, we have

a–
1 = 2, a–

2 = 3, a–
3 = 4, Lf

k = Lg
k =

1
10

, Lσ
lk =

1
8

,

θ+ =
1
2

, η+ =
4
5

, γ =
1
2

,

β =
4
5

, b+
lk ≤ 1.1225, c+

lk ≤ 2.3452.

Take λ = 0.1, ξ1 = 0.3, ξ2 = 0.4, ξ3 = 0.5, then we have

2ξ1a–
1 = 1.2

> λξ1 + 2ξ1 +
3∑

k=1

ξk
(
b+

k1
)2(Lf

k
)2 +

3∑

k=1

ξk
(
c+

k1
)2(Lg

k
)2 eλθ+

1 – γ
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Figure 1 State trajectories of variables zRl (t) of system (4.1) with UR
l (t) �= 0, l = 1, 2, 3

+
3∑

k=1

ξk
(
Lσ

k1
)2 eλη+

1 – β
≈ 0.8704,

2ξ2a–
2 = 2.4

> λξ2 + 2ξ2 +
3∑

k=1

ξk
(
b+

k2
)2(Lf

k
)2 +

3∑

k=1

ξk
(
c+

k2
)2(Lg

k
)2 eλθ+

1 – γ

+
3∑

k=1

ξk
(
Lσ

k2
)2 eλη+

1 – β
≈ 1.0804,

2ξ3a–
3 = 4

> λξ3 + 2ξ3 +
3∑

k=1

ξk
(
b+

k3
)2(Lf

k
)2 +

3∑

k=1

ξk
(
c+

k3
)2(Lg

k
)2 eλθ+

1 – γ

+
3∑

k=1

ξk
(
Lσ

k3
)2 eλη+

1 – β
≈ 1.2904.

We can check that other conditions of Theorem 3.1 are satisfied. So, we know that a trivial
solution of system (4.1) is mean-square exponentially input-to-state stable (see Figs. 1–4).
The system (4.1) has the initial values z1(0) = 0.3 – 0.3i + 0.5j – 0.3k, z2(0) = –0.2 + 0.4i –
0.4j – 0.45k and z3(0) = 0.1 – 0.1i + 0.2j + 0.35k. We use the Simulink toolbox of Matlab to
get the numerical simulation diagram of this example.

Remark 4.1 By using the Simulink toolbox in MATLAB, Figs. 1–8 show the time revo-
lution of four parts of z1, z2, respectively. When Ul(t) = 0, our results will conclude the
traditionally mean-square exponential stability for the considered stochastic neural net-
works.
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Figure 2 State trajectories of variables zRl (t) of system (4.1) with UR
l (t) = 0, l = 1, 2, 3

Figure 3 State trajectories of variables zIl (t) of system (4.1) with UI
l(t) �= 0, l = 1, 2, 3

Remark 4.2 Quaternion-valued stochastic system includes real-valued stochastic system
as its special cases. In fact, in Example 4.1, if all the coefficients are functions from R to R,
and all the activation functions are functions from R to R, then the state zl(t) ≡ zR

l (t) ∈R,
in this case, systems (4.1) is stochastic real-valued system. Then, similar to the proofs of 3.1
under the same corresponding conditions, one can show that a similar result to Theorem
3.1 is still valid (see [16–19]).
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Figure 4 State trajectories of variables zIl (t) of system (4.1) with UI
l(t) = 0, l = 1, 2, 3

Figure 5 State trajectories of variables zJl (t) of system (4.1) with UJ
l (t) �= 0, l = 1, 2, 3

5 Conclusion
In this paper, we consider the problem of the mean-square exponential input-to-state sta-
bility for the quaternion-valued stochastic neural networks by direct method. Then, by
constructing an appropriate Lyapunov functional, stochastic analysis theory and the Itô
formula, a novel sufficient condition has been derived to ensure the mean-square expo-
nential input-to-state stability for the considered stochastic neural networks. In order
to demonstrate the usefulness of the presented results, a numerical example is given.
This paper improves and extends the old results in the literature [34, 35], and proposes
a good research framework to study the mean-square exponential input-to-state stability
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Figure 6 State trajectories of variables zJl (t) of system (4.1) with UJ
l (t) = 0, l = 1, 2, 3

Figure 7 State trajectories of variables zKl (t) of system (4.1) with UK
l (t) �= 0, l = 1, 2, 3

of quaternion-valued stochastic neural networks with time-varying delays. We expect to
extend this work to the study of other types of stochastic neural networks.
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Figure 8 State trajectories of variables zKl (t) of system (4.1) with UK
l (t) = 0, l = 1, 2, 3
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