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Abstract
In this work, we develop an efficient numerical scheme based on the method of lines
(MOL) to investigate the interesting phenomenon of collisions and reflections of
optical solitons. The established scheme is of second order in space and of fourth
order in time with an explicit nature. We deduce stability restrictions using the von
Neumann stability analysis. We consider a (2 + 1)-dimensional system of a coupled
nonlinear Schrödinger equation as a general model of nonlinear Schrödinger-type
equations. We consider several numerical experiments to demonstrate the
robustness of the scheme in capturing many scenarios of collisions and reflections of
the optical solitons related to nonlinear Schrödinger-type equations. We verify the
scheme accuracy through computing the conserved invariants and comparing the
present results with some existing ones in the literature.
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1 Introduction
Many types of nonlinear Schrödinger equations are used in several areas like plasma
physics, nonlinear optics, systems of fiber communications, Bose–Einstein condensates
of atoms, and fluid dynamics [1–8]. In the field of optical fibers, this type of equations de-
scribes confident types of optical soliton propagation in the fibers and pulse spread over
two-mode optical fibers [2]. Also, the beam propagation in crystals is modeled using this
type of equations. In [6] the behavior of soliton interactions has been real-time imaged
and explored using Bose–Einstein condensates of atoms with awesome collisions limited
to a quasi-one-dimensional waveguide. The propagation of rogue waves in oceans is char-
acterized by nonlinear Schrödinger-type equations as well [9]. Solitary waves generated
by this type of equations are frequently named vector solitons as they typically have two
components. For all previous models, the study of the soliton interactions (collisions) is
an important issue and imposes the investigation of the soliton reflections from walls. It is
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known that vector solitons are passing-through collisions and can be trapped or bounced
off each other.

In this study, we emphasize two important equations:
• (2 + 1)-dimensional nonlinear Schrödinger equation (NLS),
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satisfying the conditions d
dt C1(t) = d

dt C2(t) = 0.
• (2 + 1)-dimensional system of coupled nonlinear Schrödinger equation (CNLS),
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satisfying the conditions d
dt I1(t) = d

dt I2(t) = d
dt I3(t) = 0.

Here � ⊂ R
2 is a bounded domain, T < ∞, α, β are real parameters, i =

√
–1, and the

functions u, v are complex-valued in x, y, and t, and represent wave amplitudes. When
β = 0, the CNLS system (3) turns into two decoupled NLS equations, whereas for β = 1, it
is named the Manakov system. Both of decoupled NLS equation and Manakov system are
integrable, and the collision of solitons is considered elastic, whereas for other β values, the
systems are not integrable, where the soliton collision is considered inelastic. It is known
that for both (1 + 1)-dimensional integrable systems of CNLS and NLS, we can analytically
calculate exact solutions describing solitons reflections. However, in (2 + 1)-dimensions,
these systems lose their integrability and hence one depends on numerical techniques for
exploring the phenomena of solitons reflections and collisions. In literature, there are few
researches that analytically investigate the reflection and collisions of solitons for (1 + 1)-
dimensional systems because of the integrability properties [10–14]. Various numerical
approaches have been presented for solving nonlinear Schrödinger-type equations [15–
20]. Recently, the reflection of solitons due to walls of the (2 + 1)-dimensional cubic NLS is
studied numerically using an explicit–implicit scheme by Crank–Nicolson finite element
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technique [21]. The authors studied the reflection of a single soliton to wall for the NLS
subjected to three boundary condition types, whereas they did not consider soliton col-
lisions in their study. In this paper, we extend the investigation of [21] to capture both
collisions and reflections of solitons for NLS and CNLS by a robust explicit numerical
scheme using the method of lines (MOL) [22–28]. The developed scheme will be exam-
ined for accuracy and stability. We have deduced that the scheme is conditionally stable
in the linearized form. The behavior of soliton collisions and reflections to walls needs
the considered systems to be subjected to appropriate boundary conditions. In our study,
we consider Dirichlet and Neumann boundary conditions. One of the applications of this
research is examined in [29].

This paper is arranged as follows. In Sect. 2, we briefly explain the MOL and construct
a finite difference scheme for the (2 + 1)-dimensional CNLS. Section 3 contains a stability
analysis of the developed scheme. Numerical experiments with several initial conditions
describing solitons interactions of (2 + 1)-dimensional NLS and CNLS are given in Sect. 4.
Illustration of many soliton collisions and reflection scenarios and validation of numerical
results are discussed in Sect. 4 as well. Conclusions are collected in Sect. 5.

2 Method of lines for CNLS
To utilize the method of lines for solving (2 + 1)-dimensional nonlinear Schrödinger type
equations, we consider the CNLS system (3) as an illustration. Firstly, we must decompose
the complex-valued functions u, v in their real and imaginary portions by considering

⎧
⎨

⎩

u = ψ1 + iψ2,

v = ψ3 + iψ4,
(5)

where {ψj}4
j=1 are real-valued functions. By substituting Eq. (5) into system (3) we get the

following system in a matrix form:
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Based on to the MOL, the spatial coordinates x and y in system (6) are discretized with
uniformly two-dimensional rectangular mesh of M × N points, where xm = a + m�x,
yn = b + n�y, m = 1, 2, . . . , M, n = 1, 2, . . . , N , � = [a, b] × [c, d], and �x = (b – a)/M,
�y = (d – c)/N are the spatial grid step sizes. The 2nd-order central finite difference for-
mula is applied to approximate the spatial 2nd-order derivatives at each mesh point. Then
the well-known 4th-order Runge–Kutta method (RK4) is used as a time integrator for solv-
ing the resulting system of 1st-order ordinary differential equations (ODEs) corresponding
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to the predefined initial data using an appropriate time step �t for 0 ≤ t ≤ T . Applying the
2nd-order central finite difference operator to system (6) leads to the following 1st-order
system of ODEs:

dψm,n

dt
= R(ψm,n), (7)

where
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2
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(8)

We obtain the solution of system (7) by utilizing RK4 as follows:
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Scheme (9) is of 2nd order in space and of 4th order in time with an explicit nature. It
is quite easy to be implemented and gives accurate results as we will discuss later. There
is only one disadvantage, the stability restriction, which will be investigated in the next
section.

3 Scheme stability
To deduce the stability restriction condition for Scheme (9), we apply a linearized von
Neumann stability analysis. The linear form of system (6) can be written in the following
version:

ψ t = –
1
2

B(ψxx + ψyy) – αrBψ , (11)

where r = max{r1, r2}.
Based on the von Neumann stability, we represent the solution of the linear system (11)

in a single Fourier mode as

�k
m,n = ξ keiλm�xeiγ n�y, m = 1, 2, . . . , M and n = 1, 2, . . . , N , (12)

where λ,γ are real constants, and ξ is the amplification vector. Substituting of (12) into
system (11) leads to the equation

R̃
(
�k

m,n
)

= εB�k
m,n, (13)
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where R̃ is the RHS of (11) after the discretization of spatial derivatives, and ε is defined
as

ε = –
(

cos(λ�x) – 1
�x2 +

cos(γ�y) – 1
�y2 + αr

)

. (14)

Substituting of (13) into (9) leads to the following equation in a matrix form:

L = I +
4∑

j=1

1
j!

(�tεB)j, (15)

where I denotes the identity matrix. The eigenvalues of L denoted by the symbol 
. The
eigenvalues of the matrix εB are ±iε. According to the von Neumann analysis, a required
condition for the scheme to be stable is that maxj |
j| ≤ 1, j = 1, 2, . . . , 4. Calculating the
eigenvalues of the matrix L, we get

|
j|2 = 1 +
(�tε)8

576
–

(�tε)6

72
, ∀j = 1, 2, . . . , 4. (16)

From Eqs. (14) and (16) we get that |
j| ≤ 1 if the following restriction is achieved:

�t ≤
√

2
2((�x2)–1 + (�y2)–1) – αr

. (17)

With the same procedure of linearized von Neumann stability analysis, we can deduce
the following condition of stability in case of NLS Eq. (1):

�t ≤
√

2
4((�x2)–1 + (�y2)–1) – α max{|u|2} . (18)

4 Numerical experiments
To examine the robustness of the considered scheme in capturing soliton interactions and
reflections from solid walls for 2D nonlinear Schrödinger-type equations, we consider var-
ious numerical experiments related to NLS in Sects. 4.1 and 4.2 and CNLS in the followed
subsections. We examine the conservation of the developed scheme by calculating the
conserved invariants at various selected times. We utilize composite-trapezoidal rule to
compute the integrals in the conserved invariant formulas. Throughout all the considered
numerical experiments, we apply the zero Neumann conditions (∂u/∂n = ∂v/∂n = 0 on
∂�) to all domain boundaries. Only for the first experiment, we apply also the zero Dirich-
let conditions (u = v = 0 on ∂�) in addition to Neumann conditions to illustrate how the
soliton interacts to the wall for both types of boundary conditions as a generalization to
the other numerical experiments. For all the considered experiments, we computed the
numerical solutions using the step sizes �x = 0.05, �y = 0.02, and �t = 10–4 over the com-
putational domain � = [–20, 20] × [–5, 5] up to T = 60, except for the first experiment, in
which the domain is taken as � = [–5, 5] × [–1, 1] up to T = 10 for comparison. The nu-
merical results of the problems related to CNSL system are calculated for α = 1.
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Figure 1 A comparison of a one soliton elastic reflection trajectory between (a) the present results and
(b) the results obtained in [21] up to t = 2

Figure 2 A comparison of soliton wave amplitudes between (a) the present results and (b) the results
obtained in [21] at y = 0 (cross sections) up to t = 2

4.1 Elastic reflection of a single soliton for NLS
In this experiment, we study the NLS Eq. (1) subjected to the following initial condition
of a single soliton solution [20, 21]:

u0 = η

√
2
α

sech
(
η(x – x1)

)
ei(s(x–x1)), (19)

where x1, η, and s are arbitrary parameters standing for the initial location of soliton wave,
wave speed, and wave amplitude/width, respectively. For comparison with earlier work
[21], we selected the parameters in (19) as α = η = s = 2 and x1 = 0. The modulus value of
the solution is plotted vs different values of time in 1D, 2D, and 3D surface visualizations.
This problem is solved subjected to both Dirichlet and Neumann conditions to show how
the soliton behaves at the wall for both cases. All the results discussed here are related to
the solution subjected to the zero Neumann boundary conditions. Figures 1–3 and Table 1
display the results in case of considering the Neumann conditions, whereas Fig. 4 displays
the results when considering the Dirichlet conditions. A comparison of the single soliton
reflection between results of our study and the results obtained in [21] is presented in
Fig. 1. It is acknowledged that the soliton waves of the nonlinear Schrödinger equation
can suffer by instability particularly for the focusing type when the value of α is positive.
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Figure 3 (a) 3D surface plot and (b) contours plots of |u| along the horizontal cross section line for
Experiment 4.1 (zero Neumann conditions)

Table 1 Conservative invariants of the experiment 4.1 at various times

t C1 C2 t C1 C2

0.0 7.999999964 10.66666653 2.0 7.999999960 10.62050857
0.5 7.999999960 10.62050804 3.0 7.999999960 10.62051010
1.25 7.999999964 10.53091372 8.4 7.999999960 10.51321016
1.5 7.999999960 10.62019800 10.0 7.999999964 10.62050870

From Fig. 1 we can note that the spread of the soliton wave remains stable throughout
the investigation, and the reflection is elastic (perfect). The soliton reflection can be also
realized in Fig. 2, where the amplitude of the soliton wave is plotted along the horizontal
cross section line (y = 0).

The values of the invariants C1(t) and C2(t) for this example are shown in Table 1. Set-
ting u(t) = u0 and integrating (2) analytically over the considered domain yield, C1(0) =
7.999999964 and C2(0) = 10.66666653. The authors of [21] concluded that the invariants
C1 and C2 are conserved at the values of 7.9999999 and 10.5, respectively, up to t = 3. In
our study, we have extended the simulation time up to t = 10 for capturing more soliton
reflections to left and right walls. Table 1 clearly illustrates that C1 is exactly conserved
at 7.99999996 and agrees precisely with the analytic value at t = 0, whereas C2 is closely
conserved at 10.62 and differs a little from the analytic value. At the moments in which
the soliton wave is reflected from the wall (e.g., t ≈ 1.25 and t ≈ 8.4), C1 is also precisely
conserved, whereas C2 is almost conserved due to the reflection to the wall.

For more explanation of the behavior of soliton reflections to walls, a 3D surface and
contour plots describing the solution modulus along the horizontal cross section line of
the domain are displayed in Fig. 3 (using the zero Neumann conditions) and Figs. 4 (us-
ing the zero Dirichlet conditions) up to t = 10. During the simulation time interval, it can
be shown that the wave is perfectly reflected two times from the left wall and two times
from the right wall as well. From Figs. 3 and 4 we can conclude that the soliton reflec-
tions are elastic (perfect) for the two types of boundary conditions; however, the soliton
interactions at the boundaries are dissimilar. The soliton wave can undergo an unlimited
number of interactions at each boundary of a finite domain. The soliton during the reflec-
tion to the wall experiences several variations in its profile and finally reverse its direction
and recover its primary profile. We refer to [10] for more detailed information about the
differences between soliton reflections in both types of boundary conditions. From the re-
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Figure 4 (a) 3D surface plot and (b) contours plots of |u| along the horizontal cross section line for
Experiment 4.1 (zero Dirichlet conditions)

sults discussed previously we can note that our results are very consistent with the results
obtained in [21].

4.2 Elastic reflections and collisions of two solitons for NLS
In this experiment, we selected the initial condition subjected to Eq. (1) as a superposition
of two opposite solitons with same speed and different initial locations and amplitudes.
Here we consider

u0 =
2∑

j=1

ηj

√
2
α

sech
(
ηj(x – xj)

)
ei(sj(x–xj)), (20)

where the parameters are chosen as α = 2, η1 = 1, η2 = 1.5, s2 = –s1 = 0.5, and x1 = –x2 = 10.
The value of |u| is displayed in 2D and 3D surface plots. The trajectories of two solitons
interactions and reflections are displayed in Fig. 5. Figure 6 displays the 3D surface plot
and contours of soliton wave modulus along the horizontal line. The scenario of soliton
collisions and reflections during the simulation can be realized from Figs. 5 and 6. As ex-
pected, the two waves hold their features after the collisions and reflections and remain
stable during the traveling period. Here the soliton reflections and collisions are elastic
because there are no small wavelets appeared between the two solitons after the collisions
and reflections and the system of this problem is indeed integrable. During the simula-
tion period 0 ≤ t ≤ 60, there are two collisions at t ≈ 9.0 and t ≈ 46.0, and one reflection
for each soliton wave at t ≈ 27.5. The solitons throughout the boundary reflections ex-
perience some changes in their shapes and then recover their original shapes and reverse
their directions after collision to wall. As was previously noted, the solitons can experience
an infinite number of elastic interactions (collisions or reflections) throughout any finite
domain because such solitons would not possess any decaying through the propagation.

In Table 2 the conserved invariants C1 and C2 at different selected times are calculated.
The conservative values C1(0) and C2(0) are computed by integrating (2) numerically when
u(t) = u0 over the domain �. Table 2 obviously shows that C1 is precisely conserved at
49.999999, whereas C2 is almost conserved at –8.3 up to t = 60. At the moments at which
the soliton waves interacted to the boundaries (t ≈ 27.5), C1 is again conserved, whereas
C2 is nearly conserved due to the deformations caused by the interactions with the walls.
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Figure 5 Trajectory of two solitons elastic collisions and reflections for Experiment 4.2

Figure 6 (a) 3D surface plot and (b) contours plots of |u| along the horizontal cross section line for
Experiment 4.2

Table 2 Conservative quantities of Experiment 4.2 at various times

t C1 C2 t C1 C2

0.0 49.99999978 –8.33333306 27.5 49.99999985 –8.31600665
4.5 49.99999979 –8.38616492 40.0 49.99999981 –8.38616442
9.0 49.99999976 –8.38616488 46.0 49.99999978 –8.38616418
23.0 49.99999976 –8.38616462 60.0 49.99999979 –8.38616474

4.3 Elastic reflections and collisions of two solitons for CNLS
In this experiment, we consider the CNLS system (2) subjected to initial conditions de-
scribed by a superposition of two solitons that move in same direction with different
speeds, initial locations, and amplitudes. Here we use the following initial conditions con-
sidered in [15]:

u0 = v0 =
2∑

j=1

√
2ηj

1 + β
sech

(√
2ηj(x – xj)

)
ei(sj(x–xj)). (21)

The parameters in Eq. (21) are chosen as follows: η1 = 0.5, η2 = 1.0, s1 = 0.1, s2 = 1.0,
x1 = 0, x2 = –10, and β = 2/3. Here the solutions u and v are identical. The simulation of
the soliton collisions and reflections of this experiment are displayed in Fig. 7. A 3D sur-
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Figure 7 Trajectory of two solitons elastic collisions and reflections for Experiment 4.3

Figure 8 (a) 3D surface plot and (b) contours plots of |u| along the horizontal cross section line for
Experiment 4.3

face and contour plot of soliton waves along the horizontal cross section line are shown in
Fig. 8. The scenario of different interactions of the considered solitons during the simula-
tion can be realized from these figures. Observe that the two solitons, which move in the
same direction but with unalike speeds, interact each other two times (near t ≈ 9.0 and
t ≈ 44.5) and then separate after the collisions without any change in shapes or speeds.
During the period of simulation, there is one reflection of the fast soliton initially located
at x = –10 near t ≈28.5. The fast soliton experiences a little deformation in its profile after
the interaction with the right wall and then recovers its original shape when reversing its
way. Here the soliton–soliton and soliton–wall interactions are elastic. As a cause of the
elastic interactions, the solitons can experience an infinite number of collisions or reflec-
tions without any decaying during the propagation.

From Table 3 we can state that the invariants I1 and I2 are conserved at 28.9694486,
whereas the invariant I3 is practically conserved at 1.673267 excluding the values calcu-
lated during the moments of the soliton reflection at right boundary. We can see that all
the invariants are conserved during and after the interactions.
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Table 3 Conservative quantities of Experiment 4.3 at various times

t I1, I2 I3 t I1, I2 I3

0.0 28.96944866 1.673267753 28.5 28.96944869 0.974411665
3.0 28.96944864 1.673267749 35.0 28.96944866 1.673267830
9.0 28.96944866 1.673267566 44.5 28.96944866 1.673267710
23.0 28.96944866 1.673267822 60.0 28.96944863 1.673267916

Figure 9 Trajectory of inelastic collisions and reflections of (a) |u| and (b) |v| for Experiment 4.4

4.4 Inelastic interactions of two solitons for CNLS
In the next investigation, we consider two interactions scenarios reported in [30], which
describe the inelastic soliton collisions. The inelastic interactions can be occurred when
the CNLS system is not exactly/analytically solvable. Moreover, the value of β has a signif-
icant effect in determining the behavior of solitons interaction in a long-time simulation.
In this numerical experiment the CNLS system (2) is solved subjected to the following
initial conditions:

u0 =
√

2η1 sech(
√

2η1x – x1)ei(s1x),

v0 =
√

2η2 sech(
√

2η2x – x2)ei(s2x).
(22)

Here we have chosen the two initial solitons in such way that they move in an opposite
direction with equal velocity, dissimilar initial locations, and different amplitudes. Firstly,
we take η1 = 1.2, η2 = 1.0, s1 = –s2 = 0.6, x2 = –x1 = 10, and β = 2/3. The scenarios of soliton
collisions and reflections are displayed in Figs. 9–12. In these figures the trajectories of
soliton interactions are presented in 1D, 2D, 3D surface and contour plots.

Note that the two soliton waves collided at t ≈ 11.5. After the collision, the waves break
up, and their polarizations are shifted because of the collision. Due to soliton energy, they
are somewhat transferred from the polarization axis of one soliton to the other. Moreover,
the two solitons pass over one another with a slight change in their profiles, and daugh-
ter waves are generated accompanied with small wavelets. As shown in Figs. 9–12, the
generated daughter waves are small ones and split off from the original wave and spread
alongside it, however, in a reversed direction.

Both original solitons and daughter waves are collided and reflected to the walls at t ≈
46.5. They experience some deformation in their profiles during the moments of reflection
and then recover their past profiles in a reverse direction but with small decaying because
of the appearance of small wavelets. Here the soliton collections are inelastic, whereas
the wave interactions to the walls remain perfect. Up to t = 60, the invariants I1 and I2
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Figure 10 3D surface plots of (a) |u| and (b) |v| along the horizontal cross section line for Experiment 4.4

Figure 11 Contour plots of (a) |u| and (b) |v| along the horizontal cross section line for Experiment 4.4

Figure 12 Soliton waves amplitudes for (a) |u| and (b) |v| along the horizontal cross section line at selected
values of t for Experiment 4.4

are conserved at 30.983866 and 28.284271, respectively, whereas the invariant I3 is almost
conserved at –11.2523 excluding the values calculated during the moments of reflections.
It is worth noting that the value of I1, I2, and I3 at t = 46.5 (the moment at which the waves
hit the walls) equal 30.983866, 28.284271, and –11.6352, respectively.

Generating new inelastic interactions can be achieved when considering a relatively
large value of the parameter β and moderate values of waves velocities. As an exam-
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Figure 13 (a) Interaction trajectory and (b) 3D surface plot along y = 0 of the soliton |u| for Experiment 4.4
when β = 3 and s1 = –s2 = 0.4

ple, we present another interesting scenario of the solitons interactions when β = 3 and
s1 = –s2 = 0.4. In Fig. 13 the trajectory and the 3D surface plots of this interaction are dis-
played for the soliton wave solution |u|, just for clarification. Recently, such interactions
were examined in [31].

5 Conclusion
In this investigation, we developed a robust numerical scheme based on the MOL for solv-
ing 2D nonlinear Schrödinger-type equations such as NLS and CNLS. We have examined
many scenarios of elastic and inelastic soliton collisions. We investigated the soliton re-
flections from the boundaries as well for various numerical experiments. The change in
the type of boundary conditions affects the wave characteristic only during a wall collision.
The numerical results demonstrate that, in the case of elastic interactions, the vector soli-
tons experience an unlimited number of collisions and reflections from the walls without
any change in their shapes except at the walls. However, for inelastic interactions, the soli-
tons suffer from some deformation and energy decaying, where the daughter wave and
small wavelets start to appear. We verified the accuracy of the numerical results through
calculating the conserved invariants of the considered systems and comparing current
results with some existing ones. This accuracy reflects the efficiency of the developed
scheme in capturing soliton collisions and reflections of nonlinear Schrödinger-type equa-
tions or any other systems that can generate solitons. In this paper, we offer new results
related to soliton reflections of 2D nonlinear Schrödinger-type equations.
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