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1 Introduction

Most researchers in the history of mathematics place the origin of fractional calculus in
a work by Leibniz where he introduces the notation of the nth derivative of an arbitrary
function y; that is, 57”3 with # € N. But does it make sense to extend the values of # in
that expression to other numeric fields?. The idea of fractional derivative materialized in
1695, when L'Hopital asked what %ﬁ means if n = % After such an idea having appeared,
many extended definitions of this concept have been constructed under two conceptions:
global (classical) and local. In the first conception, the fractional derivative is defined as
integral, Fourier or Mellin transformations, which means that its nature is not local and
has a memory effect. The second conception of fractional derivative is based on a local
definition through certain incremental ratios. The global formulation is associated with
the appearance of the fractional calculus itself, going back to the pioneering work of Euler,
Laplace, Lacroix, Fourier, Abel, Liouville, etc. until the establishment of the classic defini-
tions of Riemann-Liouville and Caputo. Thus, the classical theory of fractional calculus
constitutes a mathematical analysis tool applied to the investigation of arbitrary order in-
tegrals and derivatives, which extends the concepts of integer-order differentiation and
n-fold integration.
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Furthermore, the study of the practical and theoretical elements of fractional differen-
tial equations has became a base of academic advanced research [1-4]. Many fractional
differential equations, particularly boundary value problems, have gathered the research
interests of researchers in applied mathematics, theoretical physics, and engineering due
to their nonlocality and their powerful flexibility in modeling complex scientific and phys-
ical phenomena that show the memory effect. The dynamics and behavior of certain phys-
ical systems can be explained better with respect to fractional derivatives and fractional
integrals than for classical integer-order systems. In recent years, the great potential of
these integrals and derivatives has been revealed in various fields of natural sciences and
technology, such as biology, fluid mechanics, biomathematics, physics, image processing,
chemistry, and entropy theory [5-36].

Recently, the fractional formulation of boundary value problems related to hybrid differ-
ential equations has received the interests of the most researchers. The 1th order hybrid
differential equations involving first and second kind of disturbances have been discussed,
using the Riemann-Liouville derivatives in [37, 38]. In [39], the authors turned to the ex-
istence property of solutions to hybrid fractional differential equations by terms of both
types applying the Caputo derivative. In 2015, similar results for fractional initial value
problems involving hybrid integro-differential equations are established [40] by Sitho et
al. The existence problems of mild solution for hybrid fractional differential equations
involving the Caputo fractional derivative of arbitrary order are investigated in [41] by
Mahmudov in 2017. For similar research, refer to [42—44].

In [45], Ben Chikh et al. proved the unique solution’s existence and various stabil-
ity’s types for a boundary value problem involving Riemann-Liouville integrals and
then in [46], they implemented same results for a newly-formulated four-point Caputo-
conformable fractional problem involving boundary conditions of the Riemann—-Liouville
conformable type (for more background information about conformable derivative, refer
to [47, 48]) formulated as

£°CCDL 2 p(8) + DY 2 ple) = i, (1), (¢ € [0, KL K* € (2,3))
plt) =0, TECDE p(K) + D p() = b1, (M)

TRCL, p(K) + KT, p(v) = 85,

where v,n € [£o,K], 2 < 0* < k*, 0 < e¥,7{,7y < 1,0 < B}, B5 < k* — 0%, m{,m; e R*, o €
(0,1] and £y > 0, with the map hi: [0, K] x R — R is continuous.

Due to the importance and flexibility of hybrid differential equations in modeling of elec-
tromagnetic waves, deflection of a curved beam, gravity driven by flows etc., Baleanu et
al. [49] designed a hybrid fractional boundary value problem of thermostat control model

and discussed required existence specifications of its solutions in the form

DY () + b6, 9 (1) =0, (tel:=[0,1]),
epl(_2W B
Dl(m)h:o =0, )

~1, v 9 (1) _
kD" )l + (Groam)len =0

wherey € (1,2],y -1€(0,1], n e L, D! = %, k > 0. Inspired by the above previous work,

we investigate in this work a generalized hybrid problem: indeed, we prove the existence
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of solution for the hybrid fractional differential equation including a finite number of
Riemann-Liouville derivatives and Riemann—Liouville integrals of different orders of the

following form:

e* i1 LV * n o
DHWAJ{EW] (1-e%) X0, Dlip(t) = Y1 I7K(E, p(2)),

p(O)-31 TOiH(Ep(t
ot o =0

* L ZUiH(E (1)
ffDﬁl[W“‘-K 3)
L ZPiH(5,p(2))
+(1-1 )Dﬁz[w—A(t/,(/)]|tK 81,

S plt Z, 1IZH( ,0(t))
2z 1[znzaz—mp<“~<
Irl]H[(tp

+(1- *)IMZ[W“:: K =08,

where k € (2,3], 2<6; <k (i=1,...,m), 0<e*, 1,75 <1, 0< B}, By < k — 0, mi,m3,a;,
9;,0:>0,i=1,...,nand t € ] := [0,K]. Also, D* represents the rth Riemann-Liouville

fractional derivative, Z" denotes the nth Riemann—-Liouville integral, and

H(t, p(8)) := H(t, p(£), T p(8), ..., T p(t)),
A(t,p(1) :
K(t,p(8)) = b2, p(8), T p(0), .., T p(®)),

.A(t, o), T p(2),.. Ik”,o(t)),

where k; > 0 and the maps #, and fi [0,K] x R"*! — R and A: [0,K] x R*! — R/{0}
are continuous. In the above suggested structure given by (3), we have several nonlin-
ear functions depending on their components. This type of hybrid fractional boundary
value problem can be employed in description and modeling non-homogeneous physical
processes. The Dhage technique, based on some nonlinear operators, will be used here
regarding the existence property of given fractional boundary value problem (3). In spite
of some previous standard work regarding solutions of the fractional differential equation,
we here aim to study some qualitative properties of solutions to a novel hybrid fractional
boundary value problem which is a more complicated system. Naturally, if one can an-
alyze the behavior of such a hybrid system, then we will be able to simulate other real
phenomena based on these hybrid fractional differential equations.

The scheme of the paper is organized in such an order: In the next section, we present
some essential fractional calculus definitions and notions that will be applied. Next, the
existence results for the multiterm hybrid fractional differential equation are established
in Sect. 3. Ulam—-Hyers type stability and other generalizations for proposed system are
checked in Sect. 4. At the end, some illustrative examples are included to illustrate our

obtained results. Conclusive remarks are expressed in Sect. 6.

2 Essential preliminaries
Some essential fractional calculus definitions and notions that will be used later are pre-

sented in this section.

Page 3 of 28
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Definition 2.1 ([1]) The ¢th Riemann-Liouville fractional integral of a given mapping

¥ :(0,00) — R is expressed as

t _ )51
TEW() = 0 %w(r)dr, c>0

if the R.H.S. exists.

Definition 2.2 ([1]) The ¢th Riemann-Liouville fractional derivative of a given function

¥ :(0,00) — R is expressed as

L (aN\ v
Dy - F(n—§)<dt> o (t—r)s+l ar,

where n = [¢] + 1, if the R.H.S. exists.
From the definition of the Riemann-Liouville fractional derivative, we get the following.

Lemma 2.3 ([1]) Assume that 0* > n* > 0. Then
DI Y) O =y, DI Y)O=T"" .

Lemma 2.4 ([1]) Assume that k* >0 and p(t) € C(0,1)NL(0, 1). Then the linear fractional

differential equation DX p(t) = 0 possesses a solution uniquely as
o(t) = At At AR
where A; e Randn—-1<k* <n.

Lemma 2.5 ([1]) Assume that k* > 0 is the same above. Then, for p(t) € C(0,1) N L(0, 1),
we have

TEDN o) = p(t) + A1t + At 2 4o+ A,
where A; € R.

We shall establish our main existence criterion by the aid of the next theorem known as

Dhage’s technique.

Theorem 2.6 ([50]) Assume that S # () is a convex closed bounded set in the Banach alge-
bra X, Y1,V : X — X, and Y3 : S — X are three operators along with:

(1) 1 and yry are Lipschitz via constants [} and [},

(2) V3 has two specifications: continuity and compactness,

(3) p=yY1pYsv+ynp=peSforallves,

(4) GA*+ 15 <1, where A* = ||y3(S)].
Then it is found a solution in S for the operator equation Y1 pY3p + Yop = p.
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3 Results regarding to the existence property
We turn to the investigation of our required existence criteria in the current situation. The

notation C = C(J,R) represents the space of all continuous mappings from J =

with actions

ol = sup|p(t)
te]

(0-0')(®)=p)p'(t) Vp,p' €C.

(C, Il - II,-) is a Banach algebra. The next lemma is key.

Lemma 3.1 Assume that j is a continuous function on J =
0<e’tf,15 <1,0<Bf,B; <k—0;, mi,m},a;,0;>0,i=1,..

hybrid fractional boundary value problem is expressed as

satisfies the following equation:

p() = Y TUA(t, p(t)) [Z W

i=1

1 [t
i e*I' (k) /0 t-s)

@275 (8" = 1) = ot ot 04(1
__LfLr 7 Tvitm (K +
o E p(K)

i=1

_o-mer -l STk (i) +

e DRI IO 4 (1 e S0, DYp(0) = X (0),
17[
e o =0,
o DA [T O
+(1—T*)D52[W]|tl< 1,
L?L
*I’”l[ﬁ]h%
+ (1= )Ty =5,

8*

tk_l *
Li(t)ds + 3 X

&*

+ @252 — @451 +

@4(1 — 'L'l*)
o*

i=1

TP 3 (K) -

()2(1

[0,K]to R

[0,K], and k € (2,3],2 < 6; <k,
.,n. Then the solution of the

/uﬂﬁ@p@w

T Oy(e* - 1) Zm:Ik—Qrﬂfp(K)

i=1

—-7)(e*-1) " KB
> T p(K
o p(K)

i=1

. O,
Oyt 1Ik B i 2(K) - 2T 2:Z'k+m1 7 (K)

Ik+m2 (1():|

F2] 2 O5(e* = 1) O175 (" = 1) et it
[ - S g

@3(1 — ‘L'l )
+
e*

O3TF s O1TF 4
+ ;—flzk*ﬂl F(K) - 81—*’21“’"1 F(K) + ©18, — O35, +

&

i=1

i=1

0.(1-7)(e
k~6;-P5
D5 it iy - AT

i=1

_&*)Ik-*m vl 1(}:| +ZI0LH t p( ))

i=1

1) N
) sz—ﬁﬁmzp(]()

i=1

Os(1—77) 4
O =1 s 5 k)
8*

(5)

Page 5 of 28
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where the nonzero constant ©;, i € {1,2,3,4} is defined by

o (k) KKFE-1 wld—ﬂ;—l

1=

Tk - B}) I'(k-B3)
0, Lk - D jkpia, w Kk-Fi-2,
Ck-p7-1) Ck-pg5-1)
0y = 2L0 primia L= BITR) sy
Lk + m3) I(k + m3)
O, = o T(k-1) KRmi-2 MT”“’”;%,
Lk + mi—1) Lk + ms—1)
B= @3@2 - @164- (6)

Proof According to the first equation in (4), we obtain

(PO~ ST B )| e -1
D( S Teih(t, pl) ) ZD 0+ RO 7

Let us now take the Riemann-Liouville fractional integral of order k to (7),

p(t) =YL TMH(E p(#) N~ e =1 ' e
S THA( p(0) _gf*r(k—ei)./o(t_S) Pl
ST / (t=9) " x(s)ds + At + At + Asth3,
0

for A;,A,,As € R. Since 2 < k < 3, the first-boundary condition in (4) indicates that A3 = 0.

Thus, we have

p(O) - X0 TVHE () o -1 [T
Y7 T4A(E p(D) ‘Ze*r(k—ei)/o(t'” pls)ds

i=1

g*F(k)/ (t— ) X () ds + Ayt + Ayt 2, ®)

Let us apply the Riemann-Liouville fractional derivative and integral of order y, g, respec-
tively on both sides of (8) such that y € {8}, B3}, q € {m},m}},0<y <k-6;,and 2 < 6; < k.
We obtain

DY (P(t) - X IVHE, p(t))>
> oAt p(0)

m

- Z -1 /t(t — )kt =15(5) ds
 e*T(k—0;-y) Jo

MO gon 1 / s Ph-1)
+A Tty ——— | (-9 ds+A oD’ 4
Ty STh=7) Jy ¢ K@)+ A=

Page 6 of 28
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and

Iq(p(t) - Y iy IMH(E, p(t))>

Yo LA p(2))
= e -1 ‘ k—0;
= _ t—s)0ralp(s)d
;E*F(k—9i+q) p £ pls)ds
LK) kg 1 /t keg-1 5 Fk=1)  kiga
e _— t—s)t ds+ Ay ———— 17,
1F(k+q) " e*T(k +q) 0( ) x(s)ds + 2I‘(k+q—1)

By substituting the values y = 85, ¥ = 85, g = m] and q = m into the above one and using

the second condition in (4), we have

7O (8*—1) “ _._R* ® T*(S*—l) “ 0.+
Ap = %sz 0i=P1 p(K) — ZZTZII( iemy 5 (K)
i=1 i=1

N M ZIk 0— ﬂzp([() 0,(1 '5;)(8* -1) sz—(iﬁmgp(]()

¢ i=1 i=1

OuTr e O0ti .,
+ AT ThoB] 5 (K) = 22 TR 5 (K) + @98, — Oy,
e* e*

N O4(1 -1/ O,(1-15)
8*

)Ik-f’i‘ K (K) - TF5 % (K)

8*

and

*® . 1 m . @ Kk 1 m .
A, = w ZIk—ei—ﬁl p(K) — M ZIk—inm 0 (K)
8*

*
€ i=1 i=1

®3(1 -77)(e" -
e*

sz b5 () - 0,1 1'82)(8 ZIk oo o (K)

i=1 i=1
@ *
3t lzk i %(T) - O 21" "3 (K) + ©18, — O38;

0:1(1 -13)
&*

Os(1 - .
" 73( %) 78 7 1) -
8*

Ik+m2 ( ]()
Let us now substitute the constants’ value of A; and A into (8) by which Eq. (5) is derived

and our proof is ended. d

Some essential hypotheses are presented as follows.

(H1) The given functions A :J x R**! — R\ {0} and B, H:J] x R — R are
continuous.

(H2) 3&,¥:] — R* with bounds || ®|| = sup,; [P (¢)| and || ¥|| = sup,; [W(2)I,

respectively, such that

n+l
}A(t! ul(t)’ ey un+1(t)) - A(t! Vl(t)! e Vn+1(t)) ‘ =< (D(t) (Z |ui - Vi|)

i=1
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and
n+1
}H(t,ul(t),...,uml(t))—H(t vi(t), ...,V (t ’ <\I/(t (Zlu,—v, )

forall (&, u1,...,Ups1), (& V1, ..., Vie1) € x R
(H3) 3P € L*(J,R") and continuous nondecreasing functions &; : [0,00) —> (0, 00),

j=0,...,n with

n

}ﬁ(t,uo,...,un)|§7’(t)( Ei(|”f|))’
j=0

for all t € J and (uo,...,u,) € R*
(H4) 3R > 0 such that

6;

m K
AoQ* Zl 0 l"(oz,+1) +Ho Zi:o T (;+1)
Kl ki K%t ki
1- ||\IJ|| 27=1(21n 0 T +l< +1 |q>|| Zz I(Z} 0 l"(a,+/< +1) )Q*

<R 9

and

HWHZ(

n <19+/( n Kotl‘+k]‘
o ——]Q" <1, 10
O )+|| ||Z(/ eyl (10)

where ko = 0, Ao = sup,; | A(¢,0,...,0)|, Ho = sup,; |H(£,0,...,0)|, and

j=0

Kb
|P”Z ( )W+RV+ ﬁ[Kk 1128, +1©4811)

+ K2 (1018,] + ©381])], (11)
p_ (1e" = 1004 + ©3K)
|B|
m I(Zk—é)i—ﬂ*—l m 1—1* I<2k—9i—ﬂ*—l
x|t Z i + Z (1 - =) ’
P e T'(k—6;- 67 +1) P e T'(k-6; -5 +1)
(le* =1)(©, + ©, K1)
+
|B|
. m I(Zk O +my -1 (1 _ *)I(Zk—eﬁmé—l
x (tz lzls*F(k 0; + mi +1) ZS*F(/( 0; + mj + 1)
2 (le* = 1)K 0
, 12
+;8*F(k—9i+1) (12)
and
W =

O4 + @31(1( i n I(kai—ﬁf—l (1 -7 )(2k+a, B3-1 )

|B] TlZe*I‘(k+o,-—ﬁi"+1) ; eT(k+o,—p5+1)

i=1

Page 8 of 28
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O, + ®1I<_1
+ e —
|B|
*i I<2k+0,'+m*f—1 i (1- 1.2*)I<2k+0‘l'+m>2k—1
x|t +
2L Dk+o;+mt+1) e T(k+o;+m:+1)
i=1 1 i=1 2

Z [<k+a, (13)
= e T(k+o;+1)

Theorem 3.2 Assume (H1)—(H4) hold. Then there is found a solution on ] for the multi-
term hybrid fractional boundary value problem (3).

Proof Constructtheset Bg ={ueC: | p| <R} CC.Obviously, Bz is convex, closed and

bounded. By assuming

K(t, p(0)) = h(t, p(8), T p(®), ..., T p(0)),

and by Lemma 3.1, the solution of the multiterm hybrid fractional boundary value problem

(3) corresponds to the equation

i=1 ¢

i=1

; 1 ' k+o;—1
' ; M/O (=)7K (s, p(s)) ds

k-1
+ r % [% ZIk i ﬂ]p([() %ZIk 9+m1p(1<)

B i=1 i=1
, =T 1) i Th08i p(icy - 2L ZE 2 1) ifk“)"””?p(K )
&* = & i-1

®4‘L-l* < k+o;—B _62‘[2* : k+oj+m’t
Pt > TMOAK(K, p(K)) —* dYor K(K, p(K))

i=1 i=1
+ @252 - @481
O4(1 0,(1
4(7 > THORK(K, p(K)) - 2(— > TRermK(K, p([())j|
i=1 i=1
@3( k—0: Oll'
PR (U A — I i ﬂl I( 24 I/( 9,+m1 K
= [ Zl p(K) - Zl p(K)
, Gl-mEm - 1) > Tk p(K) - Oll-m)e - 1) 3 Tk p(K)
e* e*
i=1 i=1

@3‘[1* . k+o;—BF _@1'[2* < k+oj+mt
L > TR (K, p(K)) — Y TEermK (K, p(K))

i=1 i=1
+ @T(Sz - @351
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O3(1-17) - o B 01(1-1) « ok
+ ——— LN TROBR(K, p(K)) - ——22) TR (K, p(K
> (P ) - =50 (K, ()
+ ZII’ (¢, p(t)). (14)

We build the operators A, €:C — C and %6 : Bg — C by

p(t) =Y TUA(t p(t)), (15)
i=1

_ “ -1 ‘ _ )k-6i-1
2003 [ e pas

n

+ Zm/ (t S)k+al IK(S ,O(S))

i=1

k-1 7704 — 1) & " Or1i(e* - 1) w— «
L Ik—@,'—ﬁl K) - T2\ Ik—0i+m1 K
+ x[ig* Zl p(K) = Zl p(K)

o AT 9 s g - XN D) 5 g g

e*
i=1 i=1
®4TI* . k+o;—BF _ G-‘)2""2* : k+oj+m’
Pt ZlI K(K p()) - —2 2}1 IK(K, p(K))
+ @282 - @461

®4(1_t1*) - k+o—Bx @2(1—1’2*) - k+oj+m
P > TR PR (K, pUK)) = ———+ Y TROrmK (K, p(K))

i=1 i=1

B &*
i=1 i=1

_ ;[% sz 01 p(K) — M ZIk Oimi 5 (K)

* * m
+ Os(1 - - 1) §° ZI" 9P3 p(K) - ©11-m)e" - 1) ZI"“’”’”;,O(K)
¢ i=1 & i=1

®37:1* . k+o;—-By _®1T2* : k+o;+mt
et > TMOAK(K, p(K)) - I K(K, p(K))

i=1 i=1

+ @T(SQ - @381

O3(1 = T1) N~ rhso-p;
P D TMBK(K, p(K))

i=1
O1(1- 72*) - k+ai+m’
- XI:I ]K(K,p(K))j|, (16)
and
Cp(t) = Y T"H(t, p(2)), (17)

i=1

Page 10 of 28
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where A, K and H are illustrated before. Then the integral equation (14) can be expressed

in a form which is denoted by

p(t) =Ap(6)Bp(t) + Ep(t).

We will prove that all of 2, 8, and € fulfill all items of Theorem 2.6.
STEP I: We first prove that 2 and € are Lipschitz on C. Assume that p,v € C. Then, from
(H2), for t € J, we obtain

|le(t) - le(t)|

n

=Y TUA(t () Zzﬂ (t,v())

i=1
= ZI%‘A(;:, o), TF p(2),..., T p( ZI“! (&, v(6), TW(2), ..., T v(2))
i=1 i=1

<D T|A(L o0, I (), ..., T p(8)) = A(t, v(e), T W(8), ..., T (D)) |

i=1
< ZI“"CD(t)(‘,o(t) - V(t)} + ‘Ikl,o(t) —Iklv(t)‘ +oeeet ‘Ik”,o(t) —Ik”v(t)D

kn

o . £
<;I () (1+ bt Taek )>|p(t) v(t)|

E;I“i (l Tk ) p(t)—v(t)|

n n (0{+k
<[P -,
<l ||;<ZF k]+1)||p vl

j=0

Vt € ] with kg = 0. So,

n n I(Otl'+ki
120 - AWl < D) Z oyl LRl
o; J

i=1

for all u,v € C. This ensures that 2 is Lipschitz on C with constant
I(al+k
o _— 0.
1 3(S )
Now, for €:C — C, u,v € C, we obtain

n n szﬁk,
Iep —ev|l < ||w|| Z(Z m) lp =Vl

i=1
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Hence, € : C — C involves the same property on C with constant
n V;+kj
K"
v ——|>0.
I ”Z<Z (W + k& +1))

STEP II: In this step, we prove the complete continuity of 8 formulated on Br. First of

all, assume that {p,} is a sequence in Bz which converges to a point p € Br. From
nlinc}o K(t’ pn(t)) = K(t» ,O(t))»
and by the Lebesque dominated convergence theorem, we immediately get

lim Bp,(t) = Bp(?),

n—00

Vt € ]. This proves the continuity of B on Bg.
To check the uniform boundedness of B(Bz) in B, for any p € Br, we get

n

" I<k+zr,-
Bp(t)| < E e T(k+o;+1)
Bo(t)] < nPn; z<r(k ol ”)[; e T(k+0;+ 1)
Ou+ @K1 o geo-pi-1 "L (1 - 1)Kkl
+ Dat PR 7 Z : + Z sl :
|B] i-1 e*T(k+0; - By +1) i=1 elk+oi-f+1)

0y + O K™ ( e K2kroismi=1 "L (1 - ) K2kroismy-1 )}
+ e —

T +
|B| 2;€*F(k+ai+m’{‘+1) ;S*F(k+ai+m’2‘+l)

4ol (le* = 1)(@4 + ©3T7)
1Bl

I S " (1 - rp) KOl
X Tl* Z * * + Z (* tl) .
~ e T(k-0,-Bf+1) e T(k-0,—B5 +1)
(Ie* = 1])(©y + ©:,K™)
+
|B|

m [<2k O;+m] -1 (1 _ .(Z*)K2k—9,v+m§—1
x| 75
ZS*F(/( 0; + m + 1) 28*F(k—9,«+m§+1)

m .

(|e* = 1)K 0

i ; eT(k-6;+1)
L [KE1(108] + 10381) + KE-2(10155] + 0554])]

1B

Kki
= ”P”Z""<r(k )W+Rv+ﬁ[l<k 1(|®252|+|®451|)

+ K52(1©185] +103811) -
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Thus,

Kki
IBoll < P Z dz(ﬁR)W + RV + —

T [1<k 1128, + 1©4811)

1B
+ K2 (1018,] + 1038, ) ]
=Q" (18)
for all p € Br with Q* illustrated in (11). This yields the required result in this part for B
on Br.

Let us now prove that B(Bz) is equi-continuous in C. Assume that ¢; < £, € J. Then for

any p € Br we have

B () - Bp(er)|

i le* — 1| tz(t _s)k—ei—l (s)ds—/tl(t _S)k—9i—1 (s)ds
e (k- ;) ’ g 0 ’

" 1
* e*T'(k + 03)

i=1

/tz(tz - s)l””"_l]K(s, ,o(s)) ds — /tl (t1 — s)l””"_l]K(s, ,o(s)) ds
0

0

X (
k-1 k-1
L -t
+ 2 ! X
1B|

He* - 1) — .
_ OB =D S pheaiemi o i)

o
i=1

)

GG
8*

) > TR p(K)

i=1

y Qall =T sz 43 p(ic) - 224 _Ti)(g*_l) 3 TR0 p(K)

&* -
i=1 i=1

OuT — e L L OgTh
+ :—fl ST K (K, p(K)) = Y ;—?Ik“’t*le(K, p(K)) + @8, — 045,

i=1 i=1

Os(1 = T7) = hsor gt 0,(1-17}) — i
SN TR B (K, p(K)) - 22 Y TR K (K, p(K
* &* i=1 ( 4 )) & ; ( 8 ))
52— 72| 17 O5(* = 1) x4 g g O173 (8" = 1) N\~ ko
2 :I P p(K) — —2———~ E TR0 p(K)
|B| e* i=1 & i=1

. k% m _E\ (¥ _ "
s O3(1 - 1/)(e* - 1) sz—%—ﬁﬁ‘p([() _ ©:(1 - 7)(e" ~ 1) ZIk_eﬁm;P(K)
8*

o*
i=1 i=1

O37; En: +o—B¥ 0175 §n: +o—m
+ 2*1 i=1 Trreihi K([(,p([()) - 31*2 i=1 e 1K(K"0(K)) + 018, - O38,
O3(1 = 7f) N hroppt O1(1 =) N kv
1 > TR BK(K, p(K)) - —2 3T 2K(K, p(K))

i=1 i=1

Page 13 of 28
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1 k+o;
E*F (k+o;+1) ((t2

+

K*0Fi(|e* - 1))

— ") 4 2t -

Page 14 of 28

m
le* — 1] ; ; o
<Y () 2 -0

4t

k+oj
t1) ) + i3]

m I(k—9i+m’1‘(|8* _ 1|)@2'L'2*

g

2

i=

+||7>||Zul( D )[

I<k+a,'+m‘1‘
+Oy1S
20 ;8*F(k+0 +mi +1)

*F(k—@i—ﬁi"+1)+ s

SR
%

Ou(l - 77)(e* — DKk
e T(k—6,- 65 +1)

e T(k—6;+m] +1)

1|)1<k O;+m’
s*F(k @ +my+1)

<ka, /31

@2(1 -1 )I(k+a,+m2

Ik+o-67+1)

N Z O4(1 — 7 Kk*oiF3
Py eIk +0;,—pB5 +1)

+
l,zzla*l’(k+al+m2+1)

KK0=F1 (|e* - 1))

:| + 028, + |®451|}

m I(k—@ﬁm*l‘('s* -1)

tk_2 _ tk—2 m
+ 2|Tl R T1*®3 Z
i=1

e T'(k-0;— By +1)

@ *
1 ; e T(k—6;+mj +1)

N i O3(1 - 7)(le* — 1PK* 7
e T'(k-0;—B5+1)

){@ Z

i=1

+ ||7>||Zu,(

n Kk+oitm]
+ 017
12 ; e T'(k+o;+m] +1)

e T (k—6; + mj +1)

2 01(1 - 5)(le* - 1|>1<k-9f*’"5}

%

Kk+a,-—ﬂf

exI'(k +o0; —

i @1(1 -1 )I(k+a,+m2

Br+1)

O3(1 — t)Kk*oiF3
+ Z 3( 1'1)
— ¢*T(k +0;— B3 +1)
i=0
Hence, we get
Bo(ts) - Bp(t))| > 0 ast, —> t.

This implies that

IBp(ts) - Bot)| -0 ast, — t.

e*T'(k + o0, + mj + 1)

j| +]018;] + |®351|}~

Thus, from the Arzela—Ascoli theorem, we arrive at the complete continuity of 8 on Bg.

STEP III: The (H3) of Theorem 2.6 is fulfilled.

Assume that p € C and v € By, are arbitrary elements via p = ApBv + €p. Then, by (11)

and (18), we get

lp(®)| < |Ap@)||BV©)] + |€p(8)]
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n

< ZI“"A(t,p(

i=1

+ 1% A(t,0,0,...,

n

i=1

+I"H(t,0,0,...,

5, Ko
= (Z F(O[i + 1)

o K%
i 21: L +1)
and thus
ol = (S ey
i=1

+

m
ZF 5
i=1

In consequence,

" K% m K%
AoQ* Y1 Tl + Ho 2 il TO+1)

(2021) 2021:343

£),Z° p(t),..., T p(t)) - I% A(t,0,0,...,0)

0)|Q"

D TH(E p@), T p(8), ..., T p(8)) = T7H(£,0,0,....,0)

0)

n n I(O(,‘+k}' .
Ao+ @) Farrian )171)Q
i=1

j=0
n n I(l?frk/'
H \II T~ 4 N b
o+ ”Z(, F(l%+,(l}+1))||p||
i=1 \ =0
n I(%’*kj
A + [ ——— |lell |Q"
0 Z P o+ ki + 1)

n

I(ﬂi+kj
5o+ 191 Z _T@% D )"

j=0

<R.

(1 / (L 1
1- ||l]/|| Zz 1(21 0 F(ﬂl+k+1 “(D“ Zz I(Z} 0 Fot,+k +1) )Q*

‘We obtain

lo®| < R.

STEP IV: We prove that [ A* + [5 < 1, in which the item (4) of Theorem 2.6 occurs.

Since

= |BBR)| = sup (sup|Bp(1)]) = Q"
peBR “te]

by the above calculations, we obtain

+kj
II<I>|IZ<ZF(T
n (19,‘+k‘
< ||<I>||Z(Z W)Q + ||‘I’||Z<Zm> <1,

. n I(Z?frk/
) +II\PI|Z ;7r(19,»+k,»+1)

i=1

Page 15 of 28
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with

n n I(txﬁk/‘
= || A
1 ” ”1:21( F(ai+k,+1))

J=0

and

[(l?frk'
5= ”‘I’”Z<Z m)

Therefore, all items of Theorem 2.6 are fulfilled, and so it is found a solution for p =
ApBp + €p and also for the multiterm hybrid fractional boundary value problem (3) on

J. This ends our argument. O

4 Results regarding to stability

In this section, as a special case of the multiterm hybrid fractional boundary value problem
(3), we study Ulam—Hyers, generalized Ulam—Hyers, Ulam-Hyers—Rassias, and general-
ized Ulam—Hyers—Rassias stability by assuming A(t, p(¢)) = A(¢), 7; =1 and 7; = 1 given
by

e DN O] 4 (11— 69) Y01 Do(0) = Y0 K (6 p(0),

p(O-31 TViH(Ep(t
[W“t 0= 0

DP; [PO-EL TV H o) 5 (19)
Zn I“tA(t (1) |t =K =01,
olt TViH(L,
™ [)ZnZIapr]b K =02

First, we pay attention to some definitions on different versions of the stability [51].

Definition 4.1 ([51]) The multiterm hybrid fractional boundary value problem (19) is
Ulam-Hyers stable whenever some c € R* exists so that Ve > 0 and Vv* € C as a solution

function satisfying the inequality

S*Dk["*(t) - Y0, TUH(, m))}
YL ALV ()

<e, (20)

+(1-¢%) ZDQiV*(t) - ZI‘T”K(L vi(t))
-1 -1

there exists another solution function p € C for the multiterm hybrid fractional boundary
value problem (19) with

|V*(t) — ,o(t)| < cs, (t € [O,K]).
Definition 4.2 ([51]) The multiterm hybrid fractional boundary value problem (19) is

named generalized Ulam—Hyers stable if ¢zoix € Cr+(R") exists with Pyn, 701k (0) = 0 so
that, for any solution function v* € C of inequality (20), another function p € C exists

Page 16 of 28
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satisfying the multiterm hybrid fractional boundary value problem (19) for which

vi(®) - p(t)| < pzoix(e), (€ [0,K]),
is valid.

Definition 4.3 ([51]) The multiterm hybrid fractional boundary value problem (19) is
Ulam-Hyers—Rassias stable which is dependent on ¢ : [0, K] — R* whenever 3¢, € R* so
that Ve > 0 and Vv* € C as a solution of the inequality

S*Dk["*(t) - 1 VHG, v*(t))}
T AV ()

+(1-e") Y D () - Y TK (6,0 (1) | < ew(2), (21)
i=1

i=1

there exists another solution function p(£) € C of the multiterm hybrid fractional bound-

ary value problem (19) satisfying
V() - p(8)| < cpe®), (¢ €10,K]).
Definition 4.4 ([51]) The multiterm hybrid fractional boundary value problem (19) is said

to be generalized Ulam—Hyers—Rassias stable depending on ¢ : [0,K] — R™ if 3¢, € R*
so that Ve > 0 and Vv* € C as a solution of the inequality

ey [ V@) = Y TUHI(E, v (2))
”)[ S T A v (D) }

+(1=e") Y DIivi(e) - Y TTK(L, V()| < 0(0), (22)
i=1 i=1

another solution p(¢) € C exists for the multiterm hybrid fractional boundary value prob-
lem (19) satisfying

V() = p(8)| < cpp(t) (¢ €[0,K]).

Remark 4.5 ([51]) v*(¢) € C is named as a solution for (20) iff some function g € C exists
which is dependent on v* and
@) 1g@)l<e,
(if) DAL EL T HC W)y

S T A ()
for t € [0,K].

+(1—e") Y7 Dlivi(t) = Y1, T0K (¢, v¥(2)) + g(8),

Theorem 4.6 Let h: [0,K] x R*™! — R* be continuous and AL* € R* so that

n+l
|A(tur(8), .o, i1 (D) = R(Ev1(8), ., v (D)] < L* (Z |u; — m). (23)

i=1
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If the second condition of (H2) holds, then the multiterm hybrid fractional boundary value
problem (19) is Ulam—Hyers stable on [0, K] and accordingly is generalized Ulam—Hyers
stable if

=X (e Ky ) ey ()
_— — W+ + — ] «1,
— [(a; + 1) — ["(k; + 1) . — T'(9; + k; + 1)

i=1 i=0 i=1 \j=0
where || Al = sup,c(o ) | A®)].

Proof For ¢ >0, and every solution v*(¢) € C of the inequality

n

sk V*(t)—27=11191H(t,v*(t)) . i o . )
P [ YL T At v4(2) }* (1-¢ );D v (t)—;l K(5,v*(2))

=¢

there is found a function g with

19 m n
*Dk[p(t) IR p(t))} ) S D0 - ST ,
S TA( p(2) + (1 € ); p(t) Z (t P(t)) +g(t)

in which |g(¢£)] <e€. So

Vv (t) = ZI“' (t,v (t))[sz (t —5) 0 1v*(s) ds

_ k-1 * 1 ! _ k-1
/(t s) K(tv(t))ds+ *I"(k)_/o(t s) " g(t)ds

s*F(k)
k-1 Oue* - 1) k- — B Oy (e* - 1) “ *
P I —0;=B7 * R S k—0;+m7 _ %
r X [ = ZI 1y*(T) = ZI 14 (K)
i=1 i=1

Oy pr Os_y pr
+ —TFAK (K, v (K)) + —TF Pl g(K)
e* e*

e) . C) «
_ —ZI'“”HK(K, Vi (K)) - —fzhml 2(K) + ©y8, — @)451}
&* €

72| Os(e* - 1) : O1(e* - 1) « :
_l =22 TRO=B H(K) — —— 7 Th=0itmy
[ §: D) v (K)

B &* , ,
i=1 i=1

e . ® ) ) )
+ —TFRK (K, v (K)) + —TZFPlg(K) - ——TF"TK (K, v*(K))
e* e* e*

- 8—:Ik+m1g(1< )+ ©78; - ®361H + ZT’!’H(@ V¥ (2)). (24)

i=1

Moreover, consider p(f) € C as the unique solution of the multiterm hybrid fractional
boundary value problem (19). Then p(¢) is illustrated as

p(t) = ZI“iA(m(t)) [Z ﬁ fo (t—5) " p(s) ds

/ (t—s) gt ds

/ (- s)K(t, p(t)) ds +

&*T(k) *F(k)
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1 Bue - 1) ; Oa(e* - 1) :
+— x [74(8 ) Y T () - SEG > T p(K)
8*

B e*
i=1 i=1

® " ® *
+ —TkF] K(K, p(K)) - —2 ke K(K, p(K)) + ©28, - ®451:|
&* &*

k=2 O3(e* -1) “ * Oq(e*-1) “ *
- | ) TR p(K) - ——) TR p(K
| S - Y Y g

i=1 i=1

%I"’ﬂf K(K, p(K)) - %I“’"TK(K, p(K)) + 0758, - @gSIH
+ > TH(t p(0)). (25)
i=1

Then we have

V' () - p(2)|

- K * - I(ki * *

i=0

+kj
+||W||Z<Zm)|| —o|- (26)

We get
v (&) - o@)|
- K*i * ¢ I(ki * *

(27)

+”‘I’”Z<ZF(T;+1)>” ol

where VW and V are defined in (12) and (13) with 7] = tJ = 1. In consequence,

v @) - p@)|

WanAn Z K4

i=1 T(o+1)

Tﬂi“fkj ‘
1 - ”A“ Zt 1 F(ot +1 (L* Zz 0T k+1 eV + V) ||\II|| Zz I(Zj 0 m)

If we put

WIAIYL, &

i=1 T(aj+1)

c=

+k

- AL, rlé,il L3 rllfil W+ V) - [V 3L 1(21 0T 1?L+k+1))

Page 19 of 28
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then the Ulam—Hyers stability criterion is fulfilled. More generally, for

K%

_ W”‘A” Zz 1 l"a+1
w(e) = P— - IRV
1-|lAll Zi:l m(l’* Zl 0or k+1)W+ V)=l Zz 1 Z, 0 m)

with ¢(0) = 0, the generalized Ulam—Hyers stability criterion is also fulfilled. d

Remark 4.7 ([51]) v*(t) € C is named as a solution for (4.3) iff 3¢ € C depending on v* so
that

(@) gl <8¢>(t)

(ii) e*DH[* %nzlzg%(’ff:(g)“”] F (1= ) Y7 D () = Y, TOK (6 v (0) + g(0),
for t € [0,K].

Note that v*(¢) € C can be represented by

()= Y TUA(LV () [Zﬁ fo (£ )01y (s) ds
i=1 i=1 ¢

L ' k-1 X 1 t ke
+£*F(k)/o(t s) K(t,v(t))ds+—8*r(k)/o(t $)lg(t)ds

k-1 Oue* -1) “ * Oy(e*-1) “ *
_— G — Ik—ei—ﬂl M) — = 7 Ik—9i+m1 (K
s e EARIUR ) AR

B &*
i=1 i=1

@ * @ *
+ — TR (K, v (K)) + —TF Pl g(K)
e* e*

S \ ® )
- 2R (K, v4(K)) = — T g(K) + ©28, — ®431}
e* e*

2] O3(e* - 1) & . O1(e* - 1) & .
"B [ S 21§ gioiosi oy - Q1 7D et o
&* &*
i=1 i=1

® « ® « ® «
+ —TFAR (K, v (K)) + —T*Pig(K) - —T*"TK (K, v*(K))
€ e &*
- —TFig(K) + 78, - ®361H + Y TUH(t, v (). (28)
&* -
Now, we discuss the Ulam—Hyers—Rassias stability of solution to the problem (19).

Theorem 4.8 Let i : [0,K] x R™! — R be continuous and the second condition of (H2)
and also (H3) hold. If3Q > 0 so that

0; a; ki
> 1-1§+1 Ho+ AN, r1§+1 O+ 1Pl X u;(rlzﬂ Q)W)
KL kj
1- ”"Ij” Z 1(21 0 T( 191+k +1) ”A” Zl 1 l"(al+l)

Q>

(29)

with

M= L K1(10282] +10481) + K<2(1016] + [0381])],
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and there exists a function g satisfying Remark 4.7 with 2Q < |g(t)| < e¢(¢) for any t €
[0,K], and (H5) 3 an increasing map ¢ € C([0,K],R*) and 3\, > 0 such that for all t €
[0,K]

2 ¢kl .

— [Ik<ﬂ(t) t (O Fig(r)

€

k 2
+ O, TF i g(t)) + —(®3Ik Flo@) +© Ik*”’lw(t))} <hgp(t),

then the multiterm hybrid fractional boundary value problem (19) is Ulam—Hyers—Rassias
stable and accordingly is generalized Ulam—Hyers—Rassias stable.

Proof Suppose that v* € C is a solution of (4.3) and also let p € C be a solution for the
multiterm hybrid fractional boundary value problem (19). Thus, for small

v (&) - o)
vi(e) - ZI% tv(t))[zm/(t 8) 0ty (s) ds

= /0 (- 9" g(t) ds

k-1 *
*F(k)/(t_s) K(tv(t))ds+

A Ou(e* -1 Oy(e* -1
+ ? [& ZI]( 0;— /31 *(T) 27) ZI" 91+mlv ([()
i=1 i=1

@ * @ *
+ —THHR(K, v (K)) + —TF 1 g(K)
e* &*

S ) ® )
- 2T (K, v4(K)) = — T g(K) + ©28, — ®451}
e* e*

Os(c* - 1) (6% —1) = .
_?{738 ZI”M(K) 7* )Zlk’(’”mlv*(K)

i=1 i=1

® ) ® ) o) .
+ —TPIR(K, v (K)) + —T*Plg(K) - — ™K (K, v*(K))
&* &e* e*

- —:I]“mlg(K) + 078, - @351:|:| + ZII?"H(E V*(t))
e —

n m o1 .
I‘WA ) * — _ k—0;-1_* d
+ ; (t 14 (t)) |:; S*F(k* _01') A (t S) V (S) '

L ' k-1 X 1 t ke
S*F(k)/o(t s) K(t,V(t))dS+8*F(k)/(;(t $)<1g(t) ds

P Oule* - 1) & . Oy(e* — 1) w— .
Ik—ei—ﬂl (T — I/<—9i+m1 *(K
. [ Sozrartiy () - 2D $h g

B e*
i=1 i=1

@ * @ *
+ —TPIR(K, v (K)) + — %Pl g(K)
&* &*

Ot CI—-
- TR (K, v (K)) = —T5"g(K) + 058, - ®451}
&* &*
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k-2 | @ * _ m © * _ "
2 [M Sz 1) - Q1 =D §S e
8*

B &*
i=1 i=1

e . ®
+ —TPIR(K, v (K)) + — 5Pl g(K) - Ik+m111<(1< Vv (K))
&* &*

O1 oyt -
- —T""Mg(K) + O, — O36 TVH t (t t
— IHgK) + 076 31“+Z V()| + ()]

i K% - Kki . *
< 4| Zmivvw(t) RIS Ei(mﬂv H)W+ [y

|B|[<k 1(1828,] + 1©4811) + K*2(1©185] +10381) ]

+||7>||Z (F(k ||p||)W+||p||v

+ E[Kk 1(1©285] +104811) + KX2(1©18, ] + |0351|)]}

m n

KVt
S rter i E(S g I

m n

1(19l'+/<i
+ZZIF(9 ||‘I/||Z<Zm>”ﬂ”

j=

<Al Z 5 Ver(t) +2Q + eru®)
<Al Z F( 1y Veeld) + o0 (t) + ehoo ),

it yields

At t)|<s<||A||Z W+1+x)¢()

For the sake of simplicity, we take

||A||Z Tasn VL

Then
V() = p(O)] < ecyp(t).

Thus, the multiterm hybrid fractional boundary value problem (19) is Ulam—Hyers—
Rassias stable. In addition, if we set ¢ = 1, then the multiterm hybrid fractional boundary

value problem (19) is generalized Ulam—Hyers—Rassias stable. g

Page 22 of 28
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5 Numerical examples
Some illustrative numerical examples will be given in this section to apply and validate
our theoretical results.

Example 5.1 Consider the multiterm hybrid fractional boundary value problem in the
format

281 P(0-3 7 TViH(t,p( 2 6; 2 7o
0.7D [ Zz TUALp() 1+0. 32; 1D (¢) = Zi:1I K(t;P(t)),

pl8)- zflzﬁ:Htp
[—Zz Tanoe) =0 =0
g p(O)-S 1, TOiH(Ep(2))
0.01D 1[—22 T Ap(0) Ne=13
ZViH(,p(t
+099D52[%Wf””]|t 15=0.58,

I%iH
0.067°%5 M FE T Oy g

ﬁl
+094I925[”ZZI+£“’”]|£ 15 =0.85,

(30)

where H,K:/ x R — Rand A:J x R — R\ {0} are formulated by

H(t’ P(t)) = H(tr ,O(t),12'24,0“),23'21,0“)),
At p(0) = A(t, p(0), I*p(2), T°* p(1)),
K (4, p(8)) = h(t, p(0), T p(0), > p(2),

andwesetm=n=2,k=28,0,=211,0, =214, ¢* =0.7, 7y = 0.01, t; = 0.06, &; = 0.58,
8y = 0.85, mi = 0.25, m5 = 9.25, a1 = 523, ap = 0.12, 1 = 0.25, ¥ = 0.56, k; = 2.24, ko =
3.21, K = 1.3 and define

h(t, p(t), T p(t), T p(2))

exp(=2t) [ZMp(e)]  exp(-26)T*p(2)

= exp(—2t)sin(p(t)) + 1+ 2 1+ T80 )

A(t, p(6), T p(t), T p(2))
1 ( p(t) + T p(2) + I p(t) exp(—t))

T4+ 2\ pO)+1+Thp() + TRp(t) 10
H(t, p(t), T p(£), T p(t))
_exp(=t%) t2) exp(-t2)p(t) 1

(Ikl (¢ )+Ik2,0(t)) o —,

T B+1? 6+2t)2 100

We see that

|7(t p(0), T p(0), T2 p (1)) | < exp(=20)[| p(0)] + [T p(0)| + | p (1)),

1 3
< Ii7 [le;(t) -V
j=1

|A(t p1(2), p2(2), p3(2)) = A(2, v1(2), va(2), v3(2)) |

|

I74(2, 01(8), 2(8), 3(8)) = H (£, (£), v (£), t))|_e"p( £) [Zm(t) v

|
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where E1(1p@®)]) = [p@)l, E2(1Z%p(0)]) = |TM p(2)l, E3(1Z%p(0)]) = |T*2p(2)| and P(¢) =
exp(—2¢). Hence, we obtain

exp(—t?)
d(t) = ——, W(t) = .
® 4+ ¢2 ® (3+1)?
Then ||| = ir (I = %, [Pl =1and
Ao = sup|.A(t,(),...,())| =—, Ao = sup|A(t,O,,..,O)| = i
te] 40 te] 100

From MATLAB software and by (9) and (10), we have 1.9502 < R < 37.3794. As all items
of Theorem 3.2 are fulfilled, the multiterm hybrid fractional boundary value problem (30)
admits a solution on [0, 1.3].

For the special case (19), we provide the following examples.

Example 5.2 Consider the multiterm hybrid fractional boundary value problem in the

format

07D POEL LI035 Dip(r) = 32 TR (e, p(0),

p(6)-Y2 | TViH(t,0(t)
[ A(tp()) ]|t0—0

(31)
* IﬁtH
Dﬂl [ Zx(ltp(t) Lot ]lt 1.3 — =0. 58
_y2 iHI(
B[O Ta T IOy 2 0gs,

where H, K :J x R — R are formulated by

H(t, p(2)) = H(t, p(6), T p(8), >* p(2)),

exp(=(t - 6)*)
100

K(5p(8)) = h(t, p(0), T p(0), T**' p(2)),

At p(t) = A(t) = sin(¢ + 10),

andwesetm=n=2,k=28,6; =211, 6, =0.01, ¢* = 0.7, §; = 0.01, 6, = 0.99, m} = 0.06,
B1=0.01, a1 =5.25, 5 = 8.56, %1 = 0.5, ¥ = 11.12, ky = 2.24, k; = 0.21, K = 1.34 and define

2 ki
h(t, p(0), T p(0), T p(8)) = lp(®) + 3 i T p(2)] )

( .
exp(t) +9 lp(t) + Y 2, Thip(t)] + 1

exp (—t%) exp (—£)p(t) 10
(B3 +1)? 61202 11

ol

I74(2, 01(8), 2(8), 3(8)) = H (£, (£), v (£), t))|_e"p( £) [Zm(t) v

H(t, p@), T p(8), T (1)) = sin (Z p(¢) + T p(2)) +

We see that

A, pr(8), p2(E), p3(8)) — At v1(£), v2(8), v3(D)) | [le,(t)

|
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and we obtain

exp(—£%)
3+1)?°

1
L*=—, and V()=
10

4
Then [|¥| = § and || A| = 22CE=4) and

S ~ K
R I N
"A”;F(mu)( 120: F(k,»+1)W+V>

Tl?j+k‘

+ |l Z(Z m) ~0.3520 < 1.

The conditions of Theorem 4.6 imply that the aforementioned problem (31) is Ulam—
Hyers stable and also accordingly is generalized Ulam—Hyers stable.

Example 5.3 We again take the same above example by changing the function 7 as the
form

(Up@)| + 1M p(@)] + 1Z%p@)]) | p(2)]
lo@®)|+1

h(t, p(t), T p(t), T p(2)) = = 1+ : ( + 3). (32)

Then we have

(2, 08, p(0), T p (1))

= t21 z (lo@)| +|T"p@®)] + |Z2p(8)] + 3).

Put P() = 7= and Ei(|p]) = |p| + 1, E2(IT" p]) = |T% p| + 1 and Eo(|T*2p]) = [T*p] + 1.
Select Q > 2.5876 so that

0; ; k
Y o Ho + AL /o O+ 1P Bl Q)W)
itk
1- | Z 1(2, 0 T 191+k]+1) — [l Al Zz 1 T(aﬁl

Q>

By defining g(¢) = 26:)(p(ﬁ)2 and Q = 3, we reach an inequality 29 < g(¢) for any ¢ €
[0,1.34]. Now, we set ¢(t) = exp (%42)? and we obtain ¢, = [ Al Y1, r§a+1)W +1+X,>0.
Hence, Theorem 4.8 implies that the multiterm hybrid fractional boundary value problem
(31) with £ defined in (32) is Ulam—Hyers—Rassias stable and also accordingly is general-

ized Ulam—Hyers—Rassias stable on [0,1.34] for ¢ = 1

6 Conclusion

The existence results for the proposed multiterm hybrid fractional boundary value prob-
lem that involves the Riemann—Liouville operators of finitely many orders have been suc-
cessfully investigated. With the help of three operators having specific properties, we
implemented the defined method in Dhage’s technique for ensuring the existence of solu-
tions. The stability criteria in different versions are checked for a special case. Some rel-
evant numerical examples are provided to validate our obtained theoretical results. The
supposed hybrid fractional boundary value problem (3) is thoroughly abstract and general
but involves some special formats by assuming some specific parameters. One can extend
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it to the differential inclusion by terms of multi-valued version of Dhage’s technique in
future work. In the next work, one can use generalized fractional operators with singular
or non-singular kernels to model real hybrid systems such as the thermostat equation, the
pantograph equation, and the Langevin equation, and to analyze their qualitative behav-
iors theoretically and numerically.
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