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1 Introduction and preliminaries

Fixed point theory is one of the dynamic research topics of the last decades due to its vast
application potential on several distinct disciplines; see e.g. [1-4]. Very recently, Proinov
[5] introduced new classes of auxiliary function to propose a new metric fixed point the-
orem that covers many existing fixed point theorems, mostly having appeared in the last
decades. Proinov [5] also showed that recently declared theorems are in fact equivalent to
the special cases of Skof’s theorem [6]. Recently, Proinov type contractions have attracted
the attention of some authors; see e.g. [7-9] On the other hand, another interesting im-
provement was reported in 2015: simulation functions were proposed first by Khojasteh
et al. [10] to unify some well-known fixed point theorems. This approach has been con-
sidered and improved by several authors; see e.g. [11-20].

In this paper, we combine the notions of simulation functions and Proinov type con-
traction to get a more general framework to guarantee the existence of a fixed point. We
investigate the common fixed point of new types mapping under this construction in the
context of complete metric space.

We shall first recall the notations we shall use: R,R*,N for the reals, nonnegative real
numbers and natural numbers, R = R* U {0} = [0,00) and Ny = N U {0} and ® = {¢ :
(0,00) — R}.

Definition 1 (See [10]) A function n:Ry x Rj — R is called a simulation function if the

following conditions hold:
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(m) n(t,s)<s—tforall ¢,s e RS;
(n2) if {t}, {sn} in (0, 00) are two sequences such that lim,,_,  t;, = limy,—, o0 5, > 0, then

lim sup n(ty, ) < 0. (1.1)

m—> 00

For the set of all functions simulation functions 1, we employ the symbol Z.

Theorem 2 ([5]) Let the metric space (X, d) and the mapping P: X — X such that
?(d(Px, Py)) < ¥ (d(x,y)) forall x,y € X with d(Px, Py) > 0,

where U, : (0,00) — R are such that the following conditions hold:

(@) ¥(s) < (s), forany s> 0;

(b) inf,,,, ¥(s) > —o0, for any s > 0;

(c) ifthe sequences {V(am,)} and {Y(a,,)} are convergent with the same limit and
{0 (awm))} is strictly decreasing, then a,, — 0 as m — 00;

(d) limsup . ¥ (s) <liminf,, , ¥ (s) or limsup _, . ¥ (s) <liminf,, o, ¥ (s) for any
s0>0;

(e) limsup,_, o, ¥(s) <liminf,_, , 9 (s) for any s > 0.

Then the mapping P possesses exactly one fixed point.
We mention here the following lemmas which will be useful in the sequel.

Lemma 3 ([21]) Let {x,} be a sequence in a metric space (X, d) such that lim,,_, o, d(x,,
Am+1) = 0. If the sequence {xy } is not Cauchy then there exist ey > 0 and the sequences {m;},
{p1} of positive integers such that my is the smallest index for which m; > p; > I, d(xop;» om;) =
ey and

lim d(7(2pp ?(2m1+1) = lim d(@pl—lr 7(2ml+1)
I—00 l—o00

= ll_if?od(mplr ?(27}11) = ll_if?od(?@plil’ 7(2m[) = €p. (12)

Lemma 4 ([5]) For ¢ : (0,00) — R the following conditions are equivalent:
(1) inf,,, 9 (s) > —oo for every e > 0.
(2) liminf,,,, ¥(s) > —oo for every e > 0.

(3) liminf,,_, o ¥ (a,,) = —oc0 implies lim,,_, o @, = 0.

2 Main results
In what follows, we shall consider that P, Q : X — X and m,ry, 1y : X X X — R} are defined

as

d(x, Qy) + d(y, Px)
2

m(x, y) = maX{d(?c, y), d(x, Px),d(y, Qy), } Ly EeX; (2.1)

d(y, 1+d(x,P.
d(?(’y) (,Qy)(1+d(x,Px))

) 1+d(x, )
r1(x, y) = max { d({,Qde’Eyg‘g) } , wYyeEX, (2.2)
2
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and

d(x, Px)d(x, Qy) + d(y, Qy)d(y, Px) } (2.3)

r(xy) = max{d(K, y) max{d(x, Qy), d(y, Px)}

for any x, y € X such that max{d(x, Qy),d(y, Px)} #O0.

Theorem 5 Let (X, d) be a complete metric space and two mappings P, Q : X — X. Assume
that there exists a function n € Z such that

n(ﬁ(d(l)?@ Qy)):lﬁ(m((’y))) >0, fOV any x,y € X with d(Px, Qy) >0, (2.4)

where ¥, € ©. Then the mappings P, Q have a unique fixed point provided that the fol-
lowing conditions are satisfied:

(m) ¥(s) <(s), forany s>0;
(m) inf,. , ¥ (s) > —o0, for any s > 0;
(a3) if{am}, {bm} aretwo convergent sequences with limy,_, o0 @y = liMy,—, 00 by, > 0 then the

sequences {0 (am)}, {9 (bm)} are convergent and lim,,_, o ¥ (a,,) = limy,— 00 U (by) > 0.

Proof Let 3 € X be an arbitrary, but fixed point and the sequence {x,,} defined as follows:

1 =P, v=Qx, ..., xm1=Pum Xoms2 = Qom+1,

for each m € Ny. First of all, let us remark that, if there exists 719 € N such that %, = Xumg+1,
then %y, is a fixed point of P (in the case that m1 is even) or Q (if m is odd). Moreover,
supposing, for example, that x,, is a fixed point of the mapping P but is not a common
fixed point of P and Q (this means d(%,, Q) > 0), we get d(Pxy,, Qxmy) > 0 and

0 < (P (d(Paing» Qting))» ¥ (M (g » m0)) )
= 0(9 (d(Fng» Qo) )> ¥ (M (Ko o)) )
<Y (M (g Aimo)) = D (A (Xogr Qoo )

since

d(xm()’ 7(mo)1 d(7ﬁ4101P7(m0)1 d(7ﬁfn01 Q7('m0)1
M (g Aimg) = MAX d(imgQaing)+d(img Paimg)
2

= d(7(m0’ QXmo)

and taking (a;) into account we deduce that

0 < Y (M (Xmg» o)) — B (d(img» Qi) < B (M(Aimg» Ao )) — ¥ (A » Qiimg))
=0

(d(Xmor QXmo)) - 7}(d(m’nor QXmO)) =0,

which is a contradiction. Therefore, without loss of generality, we can suppose that x, #
Am+1 for any m € Ny. Thus, supposing that m = 2i, we have d(Pxz;, Qxzi+1) > 0 and from
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(2.4) and (n77), we have

0 < (P (d(Pai» Quie1) ), ¥ (M(a0is 12i41)) )
< (M 1is1)) — 9 (d(Proi Qaair1)) (2.5)

and using (a) we deduce

9 (d(Riets 12ir2)) = ¥ (d(Pai» Qain1)) < ¥ (Maais 2i41)) < ¥ (Maais 22i41))

_9 ( {d(?fzi, sz),d(?CZi,P@i),d(?(zm»Q?(2i+1)»})
=9 | max

d(0iQuir1) +d(x2i+1,PA21)
2

_ s d(x2i 1i41), d(R2i41, 22042),
- max d(2ii+2)+d(xi+1,1i41)
2

= 9 (max{d(xs, i), d(xis1, 1ir2) })- (2.6)

In the case that there exists iy € N such that d(xi;, 2ig+1) < d(%2ig+1, %2ip+2), the inequality
(2.6) leads to ¥ (d(x2ig+15 2ig+2)) < P (d(X2ig+1, Xig+2)), Which is a contradiction. Accordingly,

M (0> 42i+1) = max{d (i, 12i1)> A0 1, 2i42) | = A2i5 2141 (2.7)

and then, for any even natural number 1, the sequence {d (%, %,+1)} is non-increasing and
positive. Of course, using the same argument, there follows a similar conclusion when m
is an odd natural number. Therefore, we can find D > 0 such that lim,,,_, o d(x Xims1) =
limy,— 00 M (%, Xm+1) = D. Assuming that D > 0 by (2.6) we have

P (A1 2m42)) < ¥ (MGos %11)) < 9 (dos 1)) (2.8)

which shows us that the sequence {¢(d(x, xx+1))} is decreasing and moreover, taking (a;)
into account, it is bounded below. Thus, letting m — oo in (2.8), it follows that the se-
quences {9 (d(xm, xm+1))} and {1 (M(%s> 1m+1))} are convergent to the same limit. Therefore,

by (n2) we get

lim sup 1( (A2 2m+1))> ¥ (M (o> A1) < O. (2.9)

m— 00

On the other hand, taking (1) into account, (2.4) implies

1 (9 (d(ms 2+1))> ¥ (M (o> 1)) > 0

and

lim sup (& (2 2m+1))> ¥ (M Gos %141))) = 0,

m— 00

which contradicts (2.9). Thus,

D= lim d(xu, xme1) = O. (2.10)

m— 00
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Next, we claim that the sequence {#,,} is Cauchy. Reasoning by contradiction, if {x,,,} is not
Cauchy, by Lemma 3, we can find ¢ > 0 and the sequences {1}, {p;} of positive integers
such that the equalities (1.2) hold, where m; is smallest index for which m; > p; > [, for all
[ > 1. Replacing in (2.1) x by a2, and y by x,,,-1 we have

d(mel’ XZpl—l)r d(7(2ml: P7(2m1)y d(XZpl—ll Qprl—l)y
M (22> Xopy-1) = Max A Quop;—1)+d(op -1 Prom,)
2

_ d(XZmp 7(2p1—1)y d(XZml: 7(2ml+1)) d(XZpl—lr 7(2p1)¢
=max d(’les?Qpl)+d(7(2pl—l:’le+l)
2

and taking into account (2.1) and (2.10) it follows that

lim m(x2m; xop,-1) = €. (2.11)

m— 00

S0, 1imyy— oo A(Xomy+15 X2p;) = €0 = liMyy— 0o M(X2)5 X2py—1) and by (a3) we get

W}EI;O U (d(7(2m1+1: 7(2171)) = W}gnoo 124 (m(7(2mp 7(2101—1))' (2.12)
Since by (2.4) we have
0= 77(19 (d(PXZrnp Q7(2p1—1)): ¥ (m(7(2m1: 7(2171—1)))! (2.13)

or, taking (17) and (a) into account,
ﬁ(d(@mﬁlx 7(2p[)) = ﬁ(d(PXZmlr Q’(Zp[—l)) < ‘ﬁ(m(?Om,, 7f2p1—1)) < ﬁ(m(@mlr 7(2p[—1))~

Using (2.12) we get 1imy,— o0 9 (d(x2m+15 22p,) = limMys o0 ¥ (M (22> x2p;-1)) > 0. Thus, by
(n2) we have

lim sup (& (d(x@m;+1> 22p,))> ¥ (M2 22-1)) ) < 0, (2.14)

m— 00

which leads to a contradiction, since by (2.13), we have

0 <limsup 77(19 (d(7(2m1+1’ 7(2171))) ¥ (m(7f2mp 7(2p[—1)))'
m— 00
Thereupon, {x,} is a Cauchy sequence. Moreover, since X is a complete metric space, we
can find x, € X such that

lim d(x, %) =0 (2.15)

m—> 00

and we claim that this is a common fixed point of the mappings Q and P. From the point of
view of a previous remark, it is enough to prove that . is a fixed point of Q (or P). Indeed,

supposing d(x., Qx.) > 0, we see that d(Pxom, Qx) = d(azm+1, Qx) = d(x, Q) as m — 00
and then d(Pxy,, Q) > 0 for infinitely many values of m € N. Hence, from (2.4) we have

0< n(ﬂ(d(P@m¢ Q?@«)»W(m(?(zm, ?(*))) < W(m(?(zmv 7&)) - ﬁ(d(@m+l¢ QX*)):
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or
P (d(Pram, Q) < ¥ (Moms ) < ¥ (M2 1), (2.16)
where
M(m %) = max{d(xzm, ), A Pron), d(x,, Q) 202 ) ; d (e Pom) }
= max{d(:@m, %)» d(oms x2m1), (26 Q) Az Q) ; A% 1) }
Thus,

mh_r)réo d(Pxym, Qx) = mli_{noom(?em,?@) =d(x, Qx) >0,

and in view of (a4), lim,;;_, oo ¥ (d(Pxom, Q) = limyy,—, o0 ¥ (M2 &) > 0. Therefore, letting
m — o0 in (2.16), we get lim,,;_, oo U (d(Px2m, Q%)) = limy,— o0 ¥ (M(22m» ) > 0 and using
(m1) and (1) we obtain

0 < limsup n(? (d(Paom, Q%)) ¥ (M(aem» ) <O,

m— 00

a contradiction. Thereupon, d(x., Qx.) = 0, which means that , is a fixed point of Q and
then a common fixed point of P and Q.

Finally, we have to show the uniqueness of this point. If on the contrary, there exists
another point y, € X, different by x,, such that Qy, = Py, since d(Px., Q) > 0, we have

0= n(ﬁ(d(PXau Qy*)), I/f(m(?&,y*)))
which in view of (1;) becomes

9 (d(x ) = 9 (d(Pr, Qui)) < ¥ (M (P, Qui)) < O (M (s 1))

d(x, 1), A7, P, A1, Quie),
=10 <max [ d(e, Qu) + (3, P)
2
= ﬁ(d(x;h y*));

which is obviously a contradiction. O

Corollary 6 Let (X,d) be a complete metric space and a mapping P : X — X. Assume that
there exists a_function n € Z such that

n (0(d(P2c, Py)),

v (maX{d(x, y),d(x, Px), d(y, Py), A, Py) + dly Pr) D) >0,

5 (2.17)

forany x,y € X with d(Px, Py) > 0, where 9,y € ©. Then the mapping P has a unique fixed
point provided that the following conditions are satisfied:
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(m) ¥(s)<v(s), foranys>0;

(a2) inf,g U (s) > —00, for any s > 0;

(a3) if{am}, {bm} aretwo convergent sequences with lim,_, o a4, = liMy,—, 00 by, > 0 then the
sequences {0 (am)}, {9 (bm)} are convergent and lim,,_, o ¥ (ay,) = limy,—, 00 U (by) > 0.

Proof Put Q=P in Theorem 5. O

Theorem 7 Let (X,d) be a complete metric space, two mappings P,Q : X — X and a func-
tion n € Z such that

n((dPx, Qy)), v (rn(x,9))) =0, forany x,y € X with d(Px, Qy) >0, (2.18)

where U,y € ©. Suppose that
(m) ¥(s) <V(s), for any s> 0;
(a2) inf, g U(s) > —00, for any s > 0;
(a3) if {am}, {bm} are convergent sequences with with 1imy,_, o A, = liMy,—0 by, > 0 then
the sequences {0 (a,)}, {0 (b))}, are convergent and lim,,_, oo O (ay,) = lim,,— o0 ¥ (by,).
Then the mappings P, Q have a unique fixed point.

Proof Let x € X be an arbitrary point and the sequence {x,,} in X, defined as follows:

a = P, v=0x, ..., xm1=Pomo om = QRam-1 (2.19)

for every m € N. In what follows, we shall suppose that x, # x+1 for any m € N (using the
same arguments as in the previous proof).

Let 0,,; = d(x, 1) > 0, m € N, First of all, we claim that o0,,,1 < 0,,, for all m € N. For
this purpose, we shall distinguish two situations:

(1) If m = 2i, i € N we have

VR
d(x2i» xi41), 1+d(vi0im1)
d(x2iQui+1) +d(x2i+1.PA2i)
2

7Qi+1»Q’Qi+1)(1+d(’Qi»P?(2i))’
11 (226 x2i+1) = Max

. d(x2i+1,2i+2) A+d (225, 12i+1))
= max (i 1), 1+d(x2i512i41) ’
d(x0ir2i+2)+d i+ 1,22i+1)
2

= maX{d(?@ir xi1), A2 15 ?(2;'+2)}~

Since o, > 0 for any m € N, we see that d(Pxy;, Qazi+1) = d(x2i41, 22i+2) > 0 and by (2.18) we
have

0 < n(?(d(Pi» Qis1))> ¥ (11 (2e2i» 12i41)) )

= (D (d(rir1, 12i42))> ¥ (max{d(ais 12i1), d (21115 2142) })) -
Moreover, from (17) and (g4;) it follows

9 (d(2is1, 12i42)) < ¥ (max{d (i 2is1), A1, 2i42) })

< 0 (max{d (i, x2i41), (2141, 2042 }) - (2.20)

Page 7 of 17
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If max{d(xiy, 12ip+1)» A(R2ig+1> 22ig+2)} = A(R2ig+15 A2ig+2) for some iy € N, the inequality (2.20)
leads to a contradiction. Therefore, 0y; = d(x2i> x2i41) > d(A2i+1, A2iv2) = 0241 for any i € N.
@) Ifm=2i-1,ieN,

d
d(7(2i: 7(21'—1): ( 1+d(xi,12i-1)

r (i i-1) = max d(;,Qai—1)+d (i1, Pa)
2

0i-1,Q0i-1)(1+d(1,Px2;)) }

L+d(xia2i-1)

d(xi-1,%0i-2)1+d (1) 20i—
d(oi, 0i1)s (i-1,0i-2) 1 +d (25,2 1)),
X d(ai0)+d(x0i-1,22i+1)
2

= maX{d(Xzi, 7(25-1), d(7(2i+1: ?(21')}

and using the same arguments it follows that 0,1 = d(x2i-1, %) > d(x2i, A2i+1) = 02:, for any
i € N. Therefore, we conclude that the sequence {0,,} is convergent with the limit D > 0
(being decreasing and bounded below by 0). Moreover, from (2.20) together with (1;) and

we get

B (02i41) < ¥ (02:) < ¥(022). (2.21)
From our considerations, we conclude that the sequence {(02;)} is convergent (being de-
creasing and taking (ap) into account). Thereupon, by (2.21), the sequence {y(05;)}) is con-

vergent and has the same limit as {#(0;)}). If we suppose that D > 0, on the one hand, by

(n1) we have

llifglo (D (02:41), ¥(02:)) = 0.
On the other hand, taking (77;) into account we get

,]LTO (9 (02i41), ¥ (02:)) < 0.
This is a contradiction. Therefore D = 0, so,

lim d(7(m, 7(141+1) =0. (222)

m— 00
We shall prove that {x,,} is a Cauchy sequence. Arguing by contradiction, if {xy,,} is not
Cauchy, by Lemma 3, we can find two sequences {m}, {p;} of positive integers and ¢ such
that m; is smallest index for which m; > p; > [ and (1.2) hold. Letting x = xo.,;, respectively,
Y = Xop—1 in (2.2) we have

d(’Qp[—l:Q’Qpl—l)(1+d(70ml:P7le))
d(m;» 22p-1), T+ d(x2m; 22p;-1)

d(’Qm[vQ’Qpl—l)+d(7Qpl—lvP?Qpl)
2

’

r1(7f2m1) 7(2p1—1) = max

d(’Qpl—l,?Qpl)(1+d(?ﬁ2ml,’t2m[+1))
d(?le: 7(2171—1)) 1+d(9ﬁ2m1r7apl—l)

d(7(2ml:7Qpl)+d(70pl—1:’(2ml+1)
2

’

= max

Page 8 of 17
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and then limyy,— o0 11 (7(2”71’ 7(2[9[_1) =lim,;,— 00 d(?(zml, 7(2191_1) =1im,;,_ o0 d(7(2ml+11 7(2191) =¢ > 0.
Moreover, by (a3),

Jim 2 (d (a1, op)) = mli_gnooﬁ(rl(@mﬁ-l’ o)) (2.23)
Plugging this into (2.18), we have

0 < (P (d(Paom;» Qap-1))» ¥ (11 (Ao 22p1-1)) ) (2.24)
or, taking (1) and (a) into account

B (A1 2p,)) = O (AP Q1)) < ¥ (11 (2emp» A2py-1)) < O (11 (omys 2py-1)) -
Thus, by (2.23), we get

l]i)rgoW(rl(@ml+1’7Qpl)) = l]_i)r};loﬁ(d(@mﬁl:&pl)) >0,
which implies, by (1),

lim sup 77(79 (d(7(2m1+1r 7(2171))’ 14 (rl (7(2m[+1r XZpl))) <0.

l—o00

On the other hand, letting / — oo in (2.24), we have

lim sup 7)(77 (d(7f2m1+17 7(2171))1 w (rl (7(2ml+lr 7(2[7[))) >0,

l—o00

which contradicts the previous inequality. Therefore, the sequence {#,} is Cauchy, and
by the completeness of the space X it is a convergent sequence. Let x, € X such that
lim,;,— o0 X = &~ We claim that x, is a common fixed point of P and Q. First of all, we prove
that %, is a fixed point of Q. If for infinitely many values of 7, d(Paom, Qx:) = d(x2m41, Q) =
0, then

d(x., Q) < d(x Prom) + d(Poom, Q) = d(%e; xome1) = 0, asm — o0

and d(x., Qx.) = 0, so that Qx, = x.
If d(Pxom, Q) > 0 for any m € N, by (2.18) we have

or, equivalently

B (d(Paom Q) < ¥ (11 (o 1)) < O (11 (o> 1))



Algahtani et al. Advances in Difference Equations (2021) 2021:328 Page 10 of 17

Since lim,,,_s oo d(Pxo, Q) = d(x., Q) and

d(xx, d Pxom
id(@m,?@‘), (36, Q) (1+d (01, P2 )),}

1+d(am, %)
(a2 Q) 45D
2

lim ri(agm, xx) = lim max
m— 00

m— 00

1+d(x2m» )

= lim max A2 Q1)+, 2 51)
2

m— 00

i d(oms 1) A, Q) (1+d (2, Q211)) , }

=d(x, Qx),

we see that 1lim,_, oo d(Pxos> Q) = limy,— o0 11 (%2> %:). Therefore, by (a3) it follows that
limy,,—s 00 H(d(Pazm, Qs) = limy,— 00 ¥ (11 (22m» &) and taking () into account,

lim sup 77(19 (d(P?er QX*)): 1/f(rl(?(Zmr 7(*))) <0. (226)

m— 00

But, letting m — oo in (2.25),

lim sup (9 (d(Paom, Qx.)), ¥ (1 (xom» %)) ) = 0.

m—0Q

This is a contradiction; consequently, d(x., Qx.) = 0 and %, is a fixed point of Q and we
assume, by “reductio ad absurdum’, that x is not a fixed point of P. Then d(Qx., Px.) > 0
and (2.18) gives us

0 < (P (d(Qx Px)), ¥ (11 (x 2))) < ¥ (1 (2 1)) = 2 (AP, 1)),

which is equivalent with

d(x ), (1+d(Qx;séx*))d(7(*,P7(*)’
ﬁ(d(;(*,Px*)) < W(rl(?@u 7(*)) = | max d(,[*’Q,(*)JjE,(}fj(ﬁk;(ﬁ)

2

= ¥ (d(x., Px.)) < ¥ (d(x Px))s (2.27)

which is a contradiction. Therefore, by (a4) it follows that d(Px., x.) = 0 and then %, is a
common fixed point of P and Q.

As a last step in our proof, we shall prove the uniqueness of the common fixed point.
Indeed, if there exists another point, for example 3, such that Qy, = y, = Py, and y. # .,
then, since d(Px., Qys) = d(x 1) > 0, from (2.18) we have

0 < n(® (d(Pa Qui))» ¥ (11 (6 1)) < ¥ (11 (e 1)) — (A (30 24))
< 0(7'1 (7(*’1/*)) - l?(d(?(*, y*)) = ﬂ(d(%&’ y*)) - ﬁ(d(?@, y*)),

which is a contradiction. Thereupon, x. =y, so the fixed point of the mappings Q and P
is unique. O

Example 8 Let the set X = {a;,a,a3,a4} and d: X x X — [0, +00) be defined as follows:

d(a;,a;) =d(az,a1) = 2, d(a;,a3) = d(as,a1) = 3, d(ai,as) =d(as,a1) = 5
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d(ay,a3) =d(as,az) = 5,

d(az,a4) = d(ag,a3) = 8,

(2021) 2021:328

d(az, a4) =d(ag,a) = 3;

d(a;,a;) = d(ay, az) = d(as, a3) = d(as,a4) = 0.

Let Q,P: X — X be two mappings where

Pa; = Pa, = Pay = ay,

Qa; = Qay = Qaz = ay,

Pa3 =ay;

Qay = ay,

and we choose the functions n € Z and ¢, ¥ € ©, with

n(t,s) =0.88s —t,

?(s) = s,

¥(s) =0.91s.

Of course, we can easily see that, with these choices, the assumptions (a;)—(a3) of Theo-

rem 7 are obviously satisfied. Thus,

we shall check that (2.18) holds for any #, y € X, such

that d(Px, Qy) > 0. We discuss then the following situations:

¢ X = al, y = a4,
d(Pa;, Qas) =d(ar, a2) = 2,

ri(ai,as) = maxqd(as,as),

= max

d(alx a4):

’

(1+d(ay,Pa;))d(as, Qas) d(ai, Qas) + d(as, Pay) }

1+ d(al, 34) 2
(1+d(a,a1))d(as, a2) d(ag,az) +d(as,ay)
1+ d(al,a4) ’ 2

57
=maxy5,—,=-¢t =5

6’2

and

(9 (d(Pay, Qas)), v (r1(ar,a4))) = 0.88-0.91 -5 -2 =2.004 > 0.

e X =42,y =ay,
d(Pay, Qay) = d(ay,a2) = 2,

ri(az,as) = maxqd(az, as),

d(a27 34),

= max

= max43

4’2

and

’

(1 +d(az,Paz))d(as, Qay) d(az, Qay) + d(ay, Pay) }
1+ d(az, 34) 2

97}_7

(1+d(ag,a1))d(as,a2) d(ai,az) +d(as,ay)
1+ d(ay,a4) ’ 2

2

n(?(d(Pay, Qas)), ¥ (r1(az,a4))) =0.88-0,91-3.5-2=0.8 > 0.

¢ X =4a3,y=ay,

d(Pag, Qal) = d(a27a1) = 2)

Page 11 of 17
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_ (1 +d(as, Pas))d(a;, Qa;) d(as, Qai) +d(ay, Paz) }
ri(as,a;) = maxd(as, ay), ,

1 +d(az,a1) 2
(1 +d(a3,az))d(ai,a;) d(as,a;)+d(a,ar)
=max1{d(as,a;), ,
1+ d(az,a4) 2

g
=max4y3,0,—¢ =3
2
and
n((d(Pas, Qay)), ¥ (r1(as,a1))) = 0.88-0,91 -3 -2 = 0.4024 > 0.
¢ X=a3, y=ay,

d(Pa3, Qay) = d(az,a1) = 2,

(1 +d(as, Paz))d(as, Qay) d(as, Qay) + d(az, Pa3) }
ri(as,az) = maxqd(as, az),

1 +d(a3,a2) ’ 2
(1+d(a3,a))d(a;,a1) d(az,a;)+d(as,ay)

= max d(a37 aZ)’ 1+ d(az, a4) ’ ) }

g
=max45,0,—¢ =5
2
and
(9 (d(Pas, Qap)), ¥ (r1(as, az))) = 0.88-0,91 -5 -2 = 2.004 > 0.

¢ X=4as,y=as,

d(Pas, Qaz) = d(az,a;) = 2,

(1 + d(as3, Paz))d(az, Qaz) d(as, Qaz) + d(az, Pa3) }
ri(as,as) = max, d(as, az), )

1+ d(a3, a3) 2
(1+d(as,az))d(as,a1) d(as,a;)+d(as,a;)
=max d(a3>a3)’ ’
1+ d(a3,a3) 2

2

)
=max,0,18, - =18
and
n((d(Pas, Qas)), v (r1(as,as))) = 0.88-0,91 - 18 =2 = 12.41 > 0.

d &:a41y:a4x

d(Pa‘b Qa4) = d(alvaZ) = 2)

Page 12 of 17
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’

~ { (1 +d(ay, Pas))d(as, Qas) d(as, Qay) + d(as, Pag) }
r1(as,as) = max{d(as, as),

1+ d(a4, 34) 2
(1+d(ag,a1))d(ag, az) d(ag, az) + d(ag, ap)
=max d(a41 a4): )
1+ d(a4,a4) 2

=max{0, 18,4} =18
and
(0 (d(Pas, Qas)), ¥ (r1(as,as))) = 0.88-0.91 - 18 — 2 = 12.41 > 0.

Therefore, all the assumptions of Theorem 7 are satisfied; a; is the unique common fixed

point of the mappings P and Q.

Corollary 9 Let (X,d) be a complete metric space, a mapping P: X — X and a function
n € Z such that

n <z9(d(P;¢, Py)),

(2.28)

1ﬁ<max{d(7(,y), d(y, Py)(1 + d(x, Px)) d(x, Py) +d(y, Px) })) >0,

1+d(x,y) ’ 2

for any x,y € X with d(Px, Py) > 0, where ¥, € O. Suppose that
(m) ¥(s)<v(s), foranys>0;
(a2) infy,g U(s) > —00, for any s > 0;
(a3) if {am}, {bw} are convergent sequences with with lim,,_, o a,, = lim,,_, o, by, > 0 then
the sequences {0 (am)}, {0 (b))}, are convergent and limy,—, oo ¥ (a,) = liMyy—s 00 O (byr).

Then the mapping P possesses a unique fixed point.
Proof Put Q=P in Theorem 7. d

Theorem 10 Let (X,d) be a complete metric space, two mappings P, Q : X — X, the func-
tions ¥,y € © and a function such that

(9 (d(Px, Qy), ¥ (ra(x,9))) = 0, for any x,y € X with d(Px, Qy) >0, (2.29)

when max{d(x, Qy),d(y, Px)} # 0 and d(Px, Qy) = 0 when max{d(x, Qy),d(y, Px)} = 0. Sup-
pose that
(m) Y(s)<v(s), foranys>0;
(a2) infs,g U (s) > —00, for any s > 0;
(a3) if {am}, {bm} are convergent sequences with with limy,_, oo @y, = liMy,— 00 by, > 0 then
the sequences {0 (am,)}, {0 (b))}, are convergent and limy,—, oo 0 (ay,) = limy,— o0 ¥ (byy,);
(as) if {0 (a)} is a strictly decreasing sequence and {(a,)}, {¥ (a,)} are convergent with
the same limit then lim,,,_, o d;, = 0;
(a5) limsup,_,, ¥(s) < liminfs_, ,, 9 (s), for any ¢ > 0.
Then the mappings P, Q have a unique fixed point.
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Proof Eirst of al, by (2.29) and taking (n;) into account, we have
0 < n(?(d(Px, Qy)), ¥ (r2(x ) < ¥ (2, ) — P (d(Px, Qy)),
which can be rewritten as
?(d(Px, Qy)) < ¥ (r2(x, ). (2.30)

Let {x4} be the sequence defined by (2.19). Since x, # %41 for any m € Ny (we have already
shown this in the proof of Theorem 5), letting m = 2i, we have

ro(%0ir 2is1)

d(x2i, Proi)d (22, Qaziv1) + d(2is1, Qaois1)d (2141, Pa2i) }

= d i» X2i+1)»
max{ (s ot1) max{d(es Qi) d(ont, P}

(A2> 22+1)A (245 22i42) + (R0 15 W2i42) (X215 A2041) }

= max d(?(l X2, )
2] i+ ? l l

= d(x2i x2i41)5 (2.31)
and letting m =2i -1,

ro (%2> %2i-1)

d(x2i Proi)d(x2i, Qawi-1) + d(x2i-1, Qaai—1)d(x2i+1, Pxos) }
max{d (12, Quzi-1), d(%2i-1, Pxai)}
(726> x2i+1) A (225 12:) + A(226-15 22) A (R24- 15 A2i41) }
max{d(xz, i), d(2i-1, 12i+1)}

=max { d(xei 1i-1)

- max s ),
= d(xi 1i-1)- (2.32)
Thus, from (2.30) and keeping (a;) in mind we get
?(d(qie1s 22ir2) = H(A(Pr2is Q1) < ¥ (123 22141)) = ¥ (d (e 22041)) < (A 20201)s
and similarly
?(d(2ie1s 220) = 9 (d(Paai» Qaaic1) < ¥ (r2is 42i-1)) = ¥ (d(i» 22i-1)) < 9 (d(2is A2i-1)-
Denoting d(%+1, xm) by 0., we get

B (02:) < Y (02i-1) < ¥(02i-1),

B (02i1) < ¥ (02:) < ¥ (02:)
and we conclude that

P (0ms1) < Y (0m) < ¥ (0/) (2.33)

Page 14 of 17
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for any m € N. Consequently, the sequence {%(0,,)} is convergent, being strictly decreasing
and bounded below(from (a;) and Lemma 4). Thus, letting m — oo in (2.33) we see that

{v(0,)} is convergent with the same limit as {1(0,,)}. Thereupon, by (as),

lim o,, = lim d(x, A1) = 0.
We claim that the sequence {x,} is Cauchy, reasoning by contradiction. Indeed, if we sup-
pose that {12,,} is not Cauchy, by Lemma 3, we can find ¢y > 0 and the sequences {m}, {p;}
of positive integers such that the equalities (1.2) hold, where 1 is the smallest index for

which n1; > p; > [, for all [ > 1. We have

d(7(2mp 7\'2191—1)’
12 (Remy» Xopy-1) = MAX Y Aoy Prom)dCm; Quopy-1)+d(p;-1,Qup;-1)d(op,-1,Prom,)
max{d(ﬂml,QQp[—l)vd(Qpl—l»P?le)}

d(’@ml; 7(2171—1);
= max d(@mlsmmﬁl)d(ﬂmlr7(2p1)"‘d(?Qpl—lympl)d(@pl—l:@mﬁl) ’
max{d(mm,,mpl )rd(mpl—lﬂampl)}

and setting u; = d(xom;+1, Aop;) and vy = 12 (o A2p-1) it follows that limy_, oo #; = limy_, oo v; =
. Moreover, by (a3), lim;_, o 9 (¢1) = lim;_, 5 ¥ (v;). Consequently, by (2.33), lim;_, oo ¥ (1) =
lim;_, o ¥ (v;) and using (1),

lim sup n(ﬂ(ul), 1[/(1/1)) <0, (2.34)

l—o00

which is a contradiction, since by (2.29)

0 < limsup (9 (d(Prom;» Quap-1), ¥ (12 (emy» 22p-1))) = 11511 sup (& (), ¥ (v1)).

l—00

In this way we proved that {x,,} is a Cauchy sequence on a complete metric space, so there
exists x, € X such that lim,,,_, o0 Xy = A

We shall show that x, is a common fixed point of P and Q. First of all, we remark that, if
d(Pxx, Qazim—1) = 0 for infinitely many values of m, then

d(Px., %) < d(Pier 22m) + d(x2ms %)
= d(Px, Quam-1) + d(dom, %) = d(Px, 1) as m — oo.
That means that Px. = x,.

Therefore, we can suppose that d(Px., Qxom-1) > 0 for infinitely many values of m, by
(2.29) we have

0= 7)(73 (d(Pszr QXZm—l))r W(rz(?@; 7(2m—1))) < W(r2(7@<v 7(2m—1)) - 19(d(P7fa<: Q@m—l)):

or equivalently, by (a;)

B (d(Px, 2om)) = O (AP, Q1)) < ¥ (2 (e 2m-1)) < ¥ (r2 (30 X2m-1))5 (2.35)
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where

12 (%r Xom-1)

d(x Pa)d(x Quam-1) + d(x2m-1, Quzm-1)d(2m-1, Px) }

} max{d(’c*”‘”“)’ max{d(, Qm1), dCom 1, Prs))

d(x Pa)d(x x2m) + d(2m-15 ©2m)d(2m-1, P) }
— 0,

- max{d(’“*”‘z’”‘”’ max{d(, o), A1, P1))

as m — o00. Let lim,,;,_, oo d(Pay, 2) = (P, 1) = e. If we suppose that e > 0, from (2.35)
and (as5) we have

liminf ¢ (s) < liminf? (d(P;(*, 9(2,,,)) < liminfr (rg(x*, ;Qm_l))

< limsup ¥ (s) < liminf 9 (s),
s—0 s—e

which is a contradiction. Therefore, d(Px, x..) = 0.

Similarly, choosing x = x, and y = x. in (2.29), we can show that d(x,, Qx.) = 0 and we
conclude that Px, = 1. = Qxs.

To prove the uniqueness of the common fixed point, we will assume that, on the con-
trary, there exists another point y, € X such that Py, = 4, = Qu, and x. # . Since d(x, 1) =
d(Px., Qus) > 0, we have

0 < n(9(d(Px, Qu)), ¥ (r2(ae 1)) ) < ¥ (r2(x 1)) — ¥ (d (P, Qu)
<0 (ra 1)) — 9 (d(x 1))
= l?(d(?(,*;y*)) - ﬂ(d(@’ y*))’

which is a contradiction. Hence x; = y;. O

Corollary 11 Let (X,d) be a complete metric space, a mapping P : X — X, the functions
U, ¥ € © and a function n € Z such that

n( (d(Px, Py)), ¥ <max{d(?c.y), d(x, Px)d(x, Py) + d(y, Py)d(y, P) }) >0, (2.36)

max{d(x, Py),d(y, Px)}

forany x,y € X with d(Px, Py) > 0, when max{d(x, Py),d(y, Px)} # 0 and d(Px, Py) = 0 when
max{d(x, Py),d(y, Px)} = 0. Suppose that
(m) Y(s) <v(s), foranys>0;
(m) inf,.,, ¥ (s) > —o0, for any s > 0;
(a3) if {am}, {bm} are convergent sequences with with 1im,,—, oo p = 1iMy,— o0 by, > 0 then
the sequences {0 (am)}, {0 (b))}, are convergent and limyy,—, oo ¥ (a) = liMyy—s 00 O (bin);
(aa) if {V(am)} is a strictly decreasing sequence and {9 (am)}, {V(a,)} are convergent with
the same limit then lim,,_, o a,, = 0;
(as) limsup,_,,, ¥(s) < liminfs_, ,, 9 (s), for any ¢ > 0.
Then the mapping P has exactly one fixed point.

Proof Put Q = P in Theorem 10. O
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