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Abstract
In this paper, we aim to discuss the common fixed point of Proinov type mapping via
simulation function. The presented results not only generalize, but also unify the
corresponding results in this direction. We also consider an example to indicate the
validity of the obtained results.
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1 Introduction and preliminaries
Fixed point theory is one of the dynamic research topics of the last decades due to its vast
application potential on several distinct disciplines; see e.g. [1–4]. Very recently, Proinov
[5] introduced new classes of auxiliary function to propose a new metric fixed point the-
orem that covers many existing fixed point theorems, mostly having appeared in the last
decades. Proinov [5] also showed that recently declared theorems are in fact equivalent to
the special cases of Skof ’s theorem [6]. Recently, Proinov type contractions have attracted
the attention of some authors; see e.g. [7–9] On the other hand, another interesting im-
provement was reported in 2015: simulation functions were proposed first by Khojasteh
et al. [10] to unify some well-known fixed point theorems. This approach has been con-
sidered and improved by several authors; see e.g. [11–20].

In this paper, we combine the notions of simulation functions and Proinov type con-
traction to get a more general framework to guarantee the existence of a fixed point. We
investigate the common fixed point of new types mapping under this construction in the
context of complete metric space.

We shall first recall the notations we shall use: R,R+,N for the reals, nonnegative real
numbers and natural numbers, R+

0 = R
+ ∪ {0} = [0,∞) and N0 = N ∪ {0} and � = {ϑ :

(0,∞) →R}.

Definition 1 (See [10]) A function η : R+
0 ×R

+
0 → R is called a simulation function if the

following conditions hold:
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(η1) η(t , s) < s – t for all t , s ∈R
+
0 ;

(η2) if {tm}, {sm} in (0,∞) are two sequences such that limm→∞ tm = limm→∞ sm > 0, then

lim sup
m→∞

η(tm, sm) < 0. (1.1)

For the set of all functions simulation functions η, we employ the symbol Z.

Theorem 2 ([5]) Let the metric space (X, d) and the mapping P : X → X such that

ϑ
(
d(Px , Py)

) ≤ ψ
(
d(x , y)

)
for all x , y ∈ X with d(Px , Py) > 0,

where ϑ ,ψ : (0,∞) →R are such that the following conditions hold:
(a) ψ(s) < ϑ(s), for any s > 0;
(b) infs>s0 ϑ(s) > –∞, for any s0 > 0;
(c) if the sequences {ϑ(am)} and {ψ(am)} are convergent with the same limit and

{ϑ(am)} is strictly decreasing, then am → 0 as m → ∞;
(d) lim sups→s0+ ψ(s) < lim infs→s0 ϑ(s) or lim sups→s0 ψ(s) < lim infs→s0+ ϑ(s) for any

s0 > 0;
(e) lim sups→0+ ψ(s) < lim infs→s0 ϑ(s) for any s0 > 0.

Then the mapping P possesses exactly one fixed point.

We mention here the following lemmas which will be useful in the sequel.

Lemma 3 ([21]) Let {xm} be a sequence in a metric space (X, d) such that limm→∞ d(xm,
xm+1) = 0. If the sequence {x2m} is not Cauchy then there exist e0 > 0 and the sequences {ml},
{pl} of positive integers such that ml is the smallest index for which ml > pl > l, d(x2pl , x2ml ) ≥
e0 and

lim
l→∞

d(x2pl , x2ml+1) = lim
l→∞

d(x2pl–1, x2ml+1)

= lim
l→∞

d(x2pl , x2ml ) = lim
l→∞

d(x2pl–1, x2ml ) = e0. (1.2)

Lemma 4 ([5]) For ϑ : (0,∞) →R the following conditions are equivalent:
(1) infs>e ϑ(s) > –∞ for every e > 0.
(2) lim infs>e+ ϑ(s) > –∞ for every e > 0.
(3) lim infm→∞ ϑ(am) = –∞ implies limm→∞ am = 0.

2 Main results
In what follows, we shall consider that P, Q : X → X and m, r1, r2 : X × X →R

+
0 are defined

as

m(x , y) = max

{
d(x , y), d(x , Px ), d(y , Qy),

d(x , Qy) + d(y , Px )
2

}
, x , y ∈ X; (2.1)

r1(x , y) = max

{
d(x , y), d(y ,Qy)(1+d(x ,Px ))

1+d(x ,y) ,
d(x ,Qy)+d(y ,Px )

2

}

, x , y ∈ X, (2.2)
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and

r2(x , y) = max

{
d(x , y),

d(x , Px )d(x , Qy) + d(y , Qy)d(y , Px )
max{d(x , Qy), d(y , Px )}

}
, (2.3)

for any x , y ∈ X such that max{d(x , Qy), d(y , Px )} �= 0.

Theorem 5 Let (X, d) be a complete metric space and two mappings P, Q : X → X. Assume
that there exists a function η ∈ Z such that

η
(
ϑ

(
d(Px , Qy)

)
,ψ

(
m(x , y)

)) ≥ 0, for any x , y ∈ X with d(Px , Qy) > 0, (2.4)

where ϑ ,ψ ∈ �. Then the mappings P, Q have a unique fixed point provided that the fol-
lowing conditions are satisfied:

(a1) ψ(s) < ϑ(s), for any s > 0;
(a2) infs>s0 ϑ(s) > –∞, for any s0 > 0;
(a3) if {am}, {bm} are two convergent sequences with limm→∞ am = limm→∞ bm > 0 then the

sequences {ϑ(am)}, {ϑ(bm)} are convergent and limm→∞ ϑ(am) = limm→∞ ϑ(bm) > 0.

Proof Let x0 ∈ X be an arbitrary, but fixed point and the sequence {xm} defined as follows:

x1 = Px0, x2 = Qx1, . . . , x2m+1 = Px2m, x2m+2 = Qx2m+1,

for each m ∈N0. First of all, let us remark that, if there exists m0 ∈N such that xm0 = xm0+1,
then xm0 is a fixed point of P (in the case that m0 is even) or Q (if m0 is odd). Moreover,
supposing, for example, that xm0 is a fixed point of the mapping P but is not a common
fixed point of P and Q (this means d(xm0 , Qxm0 ) > 0), we get d(Pxm0 , Qxm0 ) > 0 and

0 ≤ η
(
ϑ

(
d(Pxm0 , Qxm0 )

)
,ψ

(
m(xm0 , xm0 )

))

= η
(
ϑ

(
d(xm0 , Qxm0 )

)
,ψ

(
m(xm0 , xm0 )

))

< ψ
(
m(xm0 , xm0 )

)
– ϑ

(
d(xm0 , Qxm0 )

)
;

since

m(xm0 , xm0 ) = max

{
d(xm0 , xm0 ), d(xm0 , Pxm0 ), d(xm0 , Qxm0 ),

d(xm0 ,Qxm0 )+d(xm0 ,Pxm0 )
2

}

= d(xm0 , Qxm0 )

and taking (a1) into account we deduce that

0 ≤ ψ
(
m(xm0 , xm0 )

)
– ϑ

(
d(xm0 , Qxm0 )

)
< ϑ

(
m(xm0 , xm0 )

)
– ϑ

(
d(xm0 , Qxm0 )

)

= ϑ
(
d(xm0 , Qxm0 )

)
– ϑ

(
d(xm0 , Qxm0 )

)
= 0,

which is a contradiction. Therefore, without loss of generality, we can suppose that xm �=
xm+1 for any m ∈ N0. Thus, supposing that m = 2i, we have d(Px2i, Qx2i+1) > 0 and from
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(2.4) and (η1), we have

0 ≤ η
(
ϑ

(
d(Px2i, Qx2i+1)

)
,ψ

(
m(x2i, x2i+1)

))

< ψ
(
m(x2i, x2i+1)

)
– ϑ

(
d(Px2i, Qx2i+1)

)
(2.5)

and using (a1) we deduce

ϑ
(
d(x2i+1, x2i+2)

)
= ϑ

(
d(Px2i, Qx2i+1)

)
< ψ

(
m(x2i, x2i+1)

)
< ϑ

(
m(x2i, x2i+1)

)

= ϑ

(

max

{
d(x2i, x2i+1), d(x2i, Px2i), d(x2i+1, Qx2i+1),

d(x2i ,Qx2i+1)+d(x2i+1,Px2i)
2

})

= ϑ

(

max

{
d(x2i, x2i+1), d(x2i+1, x2i+2),

d(x2i ,x2i+2)+d(x2i+1,x2i+1)
2

})

= ϑ
(
max

{
d(x2i, x2i+1), d(x2i+1, x2i+2)

})
. (2.6)

In the case that there exists i0 ∈ N such that d(x2i0 , x2i0+1) ≤ d(x2i0+1, x2i0+2), the inequality
(2.6) leads to ϑ(d(x2i0+1, x2i0+2)) < ϑ(d(x2i0+1, x2i0+2)), which is a contradiction. Accordingly,

m(x2i, x2i+1) = max
{

d(x2i, x2i+1), d(x2i+1, x2i+2)
}

= d(x2i, x2i+1) (2.7)

and then, for any even natural number m, the sequence {d(xm, xm+1)} is non-increasing and
positive. Of course, using the same argument, there follows a similar conclusion when m
is an odd natural number. Therefore, we can find D ≥ 0 such that limm→∞ d(xm, xm+1) =
limm→∞ m(xm, xm+1) = D. Assuming that D > 0 by (2.6) we have

ϑ
(
d(xm+1, xm+2)

)
< ψ

(
m(xm, xm+1)

)
< ϑ

(
d(xm, xm+1)

)
, (2.8)

which shows us that the sequence {ϑ(d(xm, xm+1))} is decreasing and moreover, taking (a2)
into account, it is bounded below. Thus, letting m → ∞ in (2.8), it follows that the se-
quences {ϑ(d(xm, xm+1))} and {ψ(m(xm, xm+1))} are convergent to the same limit. Therefore,
by (η2) we get

lim sup
m→∞

η
(
ϑ

(
d(xm, xm+1)

)
,ψ

(
m(xm, xm+1)

))
< 0. (2.9)

On the other hand, taking (η1) into account, (2.4) implies

η
(
ϑ

(
d(xm, xm+1)

)
,ψ

(
m(xm, xm+1)

)) ≥ 0

and

lim sup
m→∞

η
(
ϑ

(
d(xm, xm+1)

)
,ψ

(
m(xm, xm+1)

)) ≥ 0,

which contradicts (2.9). Thus,

D = lim
m→∞ d(xm, xm+1) = 0. (2.10)
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Next, we claim that the sequence {xm} is Cauchy. Reasoning by contradiction, if {x2m} is not
Cauchy, by Lemma 3, we can find e0 > 0 and the sequences {ml}, {pl} of positive integers
such that the equalities (1.2) hold, where ml is smallest index for which ml > pl > l, for all
l ≥ 1. Replacing in (2.1) x by x2ml and y by x2pl–1 we have

m(x2ml , x2pl–1) = max

{
d(x2ml , x2pl–1), d(x2ml , Px2ml ), d(x2pl–1, Qx2pl–1),

d(x2ml ,Qx2pl–1)+d(x2pl–1,Px2ml )
2

}

= max

{
d(x2ml , x2pl–1), d(x2ml , x2ml+1), d(x2pl–1, x2pl ),

d(x2ml ,x2pl )+d(x2pl–1,x2ml+1)
2

}

and taking into account (2.1) and (2.10) it follows that

lim
m→∞ m(x2ml , x2pl–1) = e0. (2.11)

So, limm→∞ d(x2ml+1, x2pl ) = e0 = limm→∞ m(x2ml , x2pl–1) and by (a3) we get

lim
m→∞ϑ

(
d(x2ml+1, x2pl )

)
= lim

m→∞ϑ
(
m(x2ml , x2pl–1)

)
. (2.12)

Since by (2.4) we have

0 ≤ η
(
ϑ

(
d(Px2ml , Qx2pl–1)

)
,ψ

(
m(x2ml , x2pl–1)

))
, (2.13)

or, taking (η1) and (a1) into account,

ϑ
(
d(x2ml+1, x2pl )

)
= ϑ

(
d(Px2ml , Qx2pl–1)

)
< ψ

(
m(x2ml , x2pl–1)

)
< ϑ

(
m(x2ml , x2pl–1)

)
.

Using (2.12) we get limm→∞ ϑ(d(x2ml+1, x2pl )) = limm→∞ ψ(m(x2ml , x2pl–1)) > 0. Thus, by
(η2) we have

lim sup
m→∞

η
(
ϑ

(
d(x2ml+1, x2pl )

)
,ψ

(
m(x2ml , x2pl–1)

))
< 0, (2.14)

which leads to a contradiction, since by (2.13), we have

0 ≤ lim sup
m→∞

η
(
ϑ

(
d(x2ml+1, x2pl )

)
,ψ

(
m(x2ml , x2pl–1)

))
.

Thereupon, {xm} is a Cauchy sequence. Moreover, since X is a complete metric space, we
can find x∗ ∈ X such that

lim
m→∞ d(xm, x∗) = 0 (2.15)

and we claim that this is a common fixed point of the mappings Q and P. From the point of
view of a previous remark, it is enough to prove that x∗ is a fixed point of Q (or P). Indeed,
supposing d(x∗, Qx∗) > 0, we see that d(Px2m, Qx∗) = d(x2m+1, Qx∗) → d(x∗, Qx∗) as m → ∞
and then d(Px2m, Qx∗) > 0 for infinitely many values of m ∈ N. Hence, from (2.4) we have

0 ≤ η(ϑ
(
d(Px2m, Qx∗),ψ

(
m(x2m, x∗)

))
< ψ

(
m(x2m, x∗)

)
– ϑ

(
d(x2m+1, Qx∗)

)
,
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or

ϑ
(
d(Px2m, Qx∗)

)
< ψ

(
m(x2m, x∗)

)
< ϑ

(
m(x2m, x∗)

)
, (2.16)

where

m(x2m, x∗) = max

{
d(x2m, x∗), d(x2m, Px2m), d(x∗, Qx∗),

d(x2m, Qx∗) + d(x∗, Px2m)
2

}

= max

{
d(x2m, x∗), d(x2m, x2m+1), d(x∗, Qx∗),

d(x2m, Qx∗) + d(x∗, x2m+1)
2

}
.

Thus,

lim
m→∞ d(Px2m, Qx∗) = lim

m→∞ m(x2m, x∗) = d(x∗, Qx∗) > 0,

and in view of (a4), limm→∞ ϑ(d(Px2m, Qx∗)) = limm→∞ ϑ(m(x2m, x∗)) > 0. Therefore, letting
m → ∞ in (2.16), we get limm→∞ ϑ(d(Px2m, Qx∗)) = limm→∞ ψ(m(x2m, x∗)) > 0 and using
(η1) and (η2) we obtain

0 ≤ lim sup
m→∞

η
(
ϑ

(
d(Px2m, Qx∗)

)
,ψ

(
m(x2m, x∗)

))
< 0,

a contradiction. Thereupon, d(x∗, Qx∗) = 0, which means that x∗ is a fixed point of Q and
then a common fixed point of P and Q.

Finally, we have to show the uniqueness of this point. If on the contrary, there exists
another point y∗ ∈ X, different by x∗, such that Qy∗ = Py∗, since d(Px∗, Qy∗) > 0, we have

0 ≤ η
(
ϑ

(
d(Px∗, Qy∗)

)
,ψ

(
m(x∗, y∗)

))

which in view of (η1) becomes

ϑ
(
d(x∗, y∗)

)
= ϑ

(
d(Px∗, Qy∗)

)
< ψ

(
m(Px∗, Qy∗)

)
< ϑ

(
m(x∗, y∗)

)

= ϑ

(

max

{
d(x∗, y∗), d(x∗, Px∗), d(y∗, Qy∗),

d(x∗ ,Qy∗)+d(y∗ ,Px∗)
2

})

= ϑ
(
d(x∗, y∗)

)
,

which is obviously a contradiction. �

Corollary 6 Let (X, d) be a complete metric space and a mapping P : X → X. Assume that
there exists a function η ∈ Z such that

η

(
ϑ

(
d(Px , Py)

)
,

ψ

(
max

{
d(x , y), d(x , Px ), d(y , Py),

d(x , Py) + d(y , Px )
2

}))
≥ 0, (2.17)

for any x , y ∈ X with d(Px , Py) > 0, where ϑ ,ψ ∈ �. Then the mapping P has a unique fixed
point provided that the following conditions are satisfied:
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(a1) ψ(s) < ϑ(s), for any s > 0;
(a2) infs>s0 ϑ(s) > –∞, for any s0 > 0;
(a3) if {am}, {bm} are two convergent sequences with limm→∞ am = limm→∞ bm > 0 then the

sequences {ϑ(am)}, {ϑ(bm)} are convergent and limm→∞ ϑ(am) = limm→∞ ϑ(bm) > 0.

Proof Put Q = P in Theorem 5. �

Theorem 7 Let (X, d) be a complete metric space, two mappings P, Q : X → X and a func-
tion η ∈ Z such that

η
(
ϑ

(
d(Px , Qy)

)
,ψ

(
r1(x , y)

)) ≥ 0, for any x , y ∈ X with d(Px , Qy) > 0, (2.18)

where ϑ ,ψ ∈ �. Suppose that
(a1) ψ(s) < ϑ(s), for any s > 0;
(a2) infs>s0 ϑ(s) > –∞, for any s0 > 0;
(a3) if {am}, {bm} are convergent sequences with with limm→∞ am = limm→∞ bm > 0 then

the sequences {ϑ(am)}, {ϑ(bm)}, are convergent and limm→∞ ϑ(am) = limm→∞ ϑ(bm).
Then the mappings P, Q have a unique fixed point.

Proof Let x0 ∈ X be an arbitrary point and the sequence {xm} in X, defined as follows:

x1 = Px0, x2 = Qx1, . . . , x2m–1 = Px2m–2, x2m = Qx2m–1 (2.19)

for every m ∈N. In what follows, we shall suppose that xm �= xm+1 for any m ∈ N (using the
same arguments as in the previous proof ).

Let om = d(xm, xm+1) > 0, m ∈ N. First of all, we claim that om+1 < om, for all m ∈ N. For
this purpose, we shall distinguish two situations:

(1) If m = 2i, i ∈N we have

r1(x2i, x2i+1) = max

{
d(x2i, x2i+1), d(x2i+1,Qx2i+1)(1+d(x2i ,Px2i))

1+d(x2i ,x2i+1) ,
d(x2i ,Qx2i+1)+d(x2i+1,Px2i)

2

}

= max

{
d(x2i, x2i+1), d(x2i+1,x2i+2)(1+d(x2i ,x2i+1))

1+d(x2i ,x2i+1) ,
d(x2i ,x2i+2)+d(x2i+1,x2i+1)

2

}

= max
{

d(x2i, x2i+1), d(x2i+1, x2i+2)
}

.

Since om > 0 for any m ∈ N, we see that d(Px2i, Qx2i+1) = d(x2i+1, x2i+2) > 0 and by (2.18) we
have

0 ≤ η
(
ϑ

(
d(Px2i, Qx2i+1)

)
,ψ

(
r1(x2i, x2i+1)

))

= η
(
ϑ

(
d(x2i+1, x2i+2)

)
,ψ

(
max

{
d(x2i, x2i+1), d(x2i+1, x2i+2)

}))
.

Moreover, from (η1) and (a1) it follows

ϑ
(
d(x2i+1, x2i+2)

)
< ψ

(
max

{
d(x2i, x2i+1), d(x2i+1, x2i+2)

})

< ϑ
(
max

{
d(x2i, x2i+1), d(x2i+1, x2i+2)

})
. (2.20)
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If max{d(x2i0 , x2i0+1), d(x2i0+1, x2i0+2)} = d(x2i0+1, x2i0+2) for some i0 ∈N, the inequality (2.20)
leads to a contradiction. Therefore, o2i = d(x2i, x2i+1) > d(x2i+1, x2i+2) = o2i+1 for any i ∈ N.

(2) If m = 2i – 1, i ∈N,

r1(x2i, x2i–1) = max

{
d(x2i, x2i–1), d(x2i–1,Qx2i–1)(1+d(x2i ,Px2i))

1+d(x2i ,x2i–1) ,
d(x2i ,Qx2i–1)+d(x2i–1,Px2i)

2

}

= max

{
d(x2i, x2i–1), d(x2i–1,x2i–2)(1+d(x2i ,x2i–1))

1+d(x2i ,x2i–1) ,
d(x2i ,x2i)+d(x2i–1,x2i+1)

2

}

= max
{

d(x2i, x2i–1), d(x2i+1, x2i)
}

and using the same arguments it follows that o2i–1 = d(x2i–1, x2i) > d(x2i, x2i+1) = o2i, for any
i ∈ N. Therefore, we conclude that the sequence {om} is convergent with the limit D ≥ 0
(being decreasing and bounded below by 0). Moreover, from (2.20) together with (η1) and
we get

ϑ(o2i+1) < ψ(o2i) < ϑ(o2i). (2.21)

From our considerations, we conclude that the sequence {ϑ(o2i)} is convergent (being de-
creasing and taking (a2) into account). Thereupon, by (2.21), the sequence {ψ(o2i)}) is con-
vergent and has the same limit as {ϑ(o2i)}). If we suppose that D > 0, on the one hand, by
(η1) we have

lim
i→∞η

(
ϑ(o2i+1),ψ(o2i)

) ≥ 0.

On the other hand, taking (η2) into account we get

lim
i→∞η

(
ϑ(o2i+1),ψ(o2i)

)
< 0.

This is a contradiction. Therefore D = 0, so,

lim
m→∞ d(xm, xm+1) = 0. (2.22)

We shall prove that {xm} is a Cauchy sequence. Arguing by contradiction, if {x2m} is not
Cauchy, by Lemma 3, we can find two sequences {ml}, {pl} of positive integers and e0 such
that ml is smallest index for which ml > pl > l and (1.2) hold. Letting x = x2ml , respectively,
y = x2pl–1 in (2.2) we have

r1(x2ml , x2pl–1) = max

⎧
⎨

⎩
d(x2ml , x2pl–1), d(x2pl–1,Qx2pl–1)(1+d(x2ml ,Px2ml ))

1+d(x2ml ,x2pl–1) ,
d(x2ml ,Qx2pl–1)+d(x2pl–1,Px2pl )

2

⎫
⎬

⎭

= max

⎧
⎨

⎩
d(x2ml , x2pl–1), d(x2pl–1,x2pl )(1+d(x2ml ,x2ml+1))

1+d(x2ml ,x2pl–1) ,
d(x2ml ,x2pl )+d(x2pl–1,x2ml+1)

2

⎫
⎬

⎭
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and then limm→∞ r1(x2ml , x2pl–1) = limm→∞ d(x2ml , x2pl–1) = limm→∞ d(x2ml+1, x2pl ) = e0 > 0.
Moreover, by (a3),

lim
m→∞ϑ

(
d(x2ml+1, x2pl )

)
= lim

m→∞ϑ
(
r1(x2ml+1, x2pl )

)
. (2.23)

Plugging this into (2.18), we have

0 ≤ η
(
ϑ

(
d(Px2ml , Qxpl–1)

)
,ψ

(
r1(x2ml , x2pl–1)

))
, (2.24)

or, taking (η1) and (a1) into account

ϑ
(
d(x2ml+1, x2pl )

)
= ϑ

(
d(Px2ml , Qxpl–1)

)
< ψ

(
r1(x2ml , x2pl–1)

)
< ϑ

(
r1(x2ml , x2pl–1)

)
.

Thus, by (2.23), we get

lim
l→∞

ψ
(
r1(x2ml+1, x2pl )

)
= lim

l→∞
ϑ

(
d(x2ml+1, x2pl )

)
> 0,

which implies, by (η2),

lim sup
l→∞

η
(
ϑ

(
d(x2ml+1, x2pl )

)
,ψ

(
r1(x2ml+1, x2pl )

))
< 0.

On the other hand, letting l → ∞ in (2.24), we have

lim sup
l→∞

η
(
ϑ

(
d(x2ml+1, x2pl )

)
,ψ

(
r1(x2ml+1, x2pl )

)) ≥ 0,

which contradicts the previous inequality. Therefore, the sequence {xm} is Cauchy, and
by the completeness of the space X it is a convergent sequence. Let x∗ ∈ X such that
limm→∞ xm = x∗. We claim that x∗ is a common fixed point of P and Q. First of all, we prove
that x∗ is a fixed point of Q. If for infinitely many values of m, d(Px2m, Qx∗) = d(x2m+1, Qx∗) =
0, then

d(x∗, Qx∗) ≤ d(x∗, Px2m) + d(Px2m, Qx∗) = d(x∗, x2m+1) → 0, as m → ∞

and d(x∗, Qx∗) = 0, so that Qx∗ = x∗.
If d(Px2m, Qx∗) > 0 for any m ∈N, by (2.18) we have

0 ≤ η
(
ϑ

(
d(Px2m, Qx∗)

)
,ψ

(
r1(x2m, x∗)

))
< ψ

(
r1(x2m, x∗)

)
– ϑ

(
d(Px2m, Qx∗)

)
(2.25)

or, equivalently

ϑ
(
d(Px2m, Qx∗)

)
< ψ

(
r1(x2m, x∗)

)
< ϑ

(
r1(x2m, x∗)

)
.
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Since limm→∞ d(Px2m, Qx∗) = d(x∗, Qx∗) and

lim
m→∞ r1(x2m, x∗) = lim

m→∞ max

{
d(x2m, x∗), d(x∗ ,Qx∗)(1+d(x2m ,Px2m))

1+d(x2m ,x∗) ,
d(x2m ,Qx∗)+d(x∗ ,Px2m)

2

}

= lim
m→∞ max

{
d(x2m, x∗), d(x∗ ,Qx∗)(1+d(x2m ,Qx2m))

1+d(x2m ,x∗) ,
d(x2m ,Qx∗)+d(x∗ ,x2m+1)

2

}

= d(x∗, Qx∗),

we see that limm→∞ d(Px2m, Qx∗) = limm→∞ r1(x2m, x∗). Therefore, by (a3) it follows that
limm→∞ ϑ(d(Px2m, Qx∗) = limm→∞ ψ(r1(x2m, x∗)) and taking (η2) into account,

lim sup
m→∞

η
(
ϑ

(
d(Px2m, Qx∗)

)
,ψ

(
r1(x2m, x∗)

))
< 0. (2.26)

But, letting m → ∞ in (2.25),

lim sup
m→∞

η
(
ϑ

(
d(Px2m, Qx∗)

)
,ψ

(
r1(x2m, x∗)

)) ≥ 0.

This is a contradiction; consequently, d(x∗, Qx∗) = 0 and x∗ is a fixed point of Q and we
assume, by “reductio ad absurdum”, that x∗ is not a fixed point of P. Then d(Qx∗, Px∗) > 0
and (2.18) gives us

0 ≤ η
(
ϑ

(
d(Qx∗, Px∗)

)
,ψ

(
r1(x∗, x∗)

))
< ψ

(
r1(x∗, x∗)

)
– ϑ

(
d(Px∗, x∗)

)
,

which is equivalent with

ϑ
(
d(x∗, Px∗)

)
< ψ

(
r1(x∗, x∗)

)
= ψ

(

max

{
d(x∗, x∗), (1+d(Qx∗ ,x∗))d(x∗ ,Px∗)

1+d(x∗ ,x∗) ,
d(x∗ ,Qx∗)+d(x∗ ,Px∗)

2

})

= ψ
(
d(x∗, Px∗)

)
< ϑ

(
d(x∗, Px∗)

)
, (2.27)

which is a contradiction. Therefore, by (a4) it follows that d(Px∗, x∗) = 0 and then x∗ is a
common fixed point of P and Q.

As a last step in our proof, we shall prove the uniqueness of the common fixed point.
Indeed, if there exists another point, for example y∗ such that Qy∗ = y∗ = Py∗ and y∗ �= x∗,
then, since d(Px∗, Qy∗) = d(x∗, y∗) > 0, from (2.18) we have

0 ≤ η(ϑ
(
d(Px∗, Qy∗)

)
,ψ

(
r1(x∗, y∗)

)
< ψ

(
r1(x∗, y∗)

)
– ϑ

(
d(x∗, y∗)

)

< ϑ
(
r1(x∗, y∗)

)
– ϑ

(
d(x∗, y∗)

)
= ϑ

(
d(x∗, y∗)

)
– ϑ

(
d(x∗, y∗)

)
,

which is a contradiction. Thereupon, x∗ = y∗, so the fixed point of the mappings Q and P
is unique. �

Example 8 Let the set X = {a1, a2, a3, a4} and d : X × X → [0, +∞) be defined as follows:

d(a1, a2) = d(a2, a1) = 2, d(a1, a3) = d(a3, a1) = 3, d(a1, a4) = d(a4, a1) = 5;
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d(a2, a3) = d(a3, a2) = 5, d(a3, a4) = d(a4, a3) = 8, d(a2, a4) = d(a4, a2) = 3;

d(a1, a1) = d(a2, a2) = d(a3, a3) = d(a4, a4) = 0.

Let Q, P : X → X be two mappings where

Pa1 = Pa2 = Pa4 = a1, Pa3 = a2;

Qa1 = Qa2 = Qa3 = a1, Qa4 = a2,

and we choose the functions η ∈ Z and ϑ ,ψ ∈ �, with

η(t , s) = 0.88s – t , ϑ(s) = s , ψ(s) = 0.91s .

Of course, we can easily see that, with these choices, the assumptions (a1)–(a3) of Theo-
rem 7 are obviously satisfied. Thus, we shall check that (2.18) holds for any x , y ∈ X, such
that d(Px , Qy) > 0. We discuss then the following situations:

• x = a1, y = a4,

d(Pa1, Qa4) = d(a1, a2) = 2,

r1(a1, a4) = max

{
d(a1, a4),

(1 + d(a1, Pa1))d(a4, Qa4)
1 + d(a1, a4)

,
d(a1, Qa4) + d(a4, Pa1)

2

}

= max

{
d(a1, a4),

(1 + d(a1, a1))d(a4, a2)
1 + d(a1, a4)

,
d(a1, a2) + d(a4, a1)

2

}

= max

{
5,

5
6

,
7
2

}
= 5

and

η
(
ϑ

(
d(Pa1, Qa4)

)
,ψ

(
r1(a1, a4)

))
= 0.88 · 0.91 · 5 – 2 = 2.004 > 0.

• x = a2, y = a4,

d(Pa2, Qa4) = d(a1, a2) = 2,

r1(a2, a4) = max

{
d(a2, a4),

(1 + d(a2, Pa2))d(a4, Qa4)
1 + d(a2, a4)

,
d(a2, Qa4) + d(a4, Pa2)

2

}

= max

{
d(a2, a4),

(1 + d(a2, a1))d(a4, a2)
1 + d(a2, a4)

,
d(a1, a2) + d(a4, a1)

2

}

= max

{
3,

9
4

,
7
2

}
=

7
2

and

η
(
ϑ

(
d(Pa2, Qa4)

)
,ψ

(
r1(a2, a4)

))
= 0.88 · 0, 91 · 3.5 – 2 = 0.8 > 0.

• x = a3, y = a1,

d(Pa3, Qa1) = d(a2, a1) = 2,



Alqahtani et al. Advances in Difference Equations        (2021) 2021:328 Page 12 of 17

r1(a3, a1) = max

{
d(a3, a1),

(1 + d(a3, Pa3))d(a1, Qa1)
1 + d(a3, a1)

,
d(a3, Qa1) + d(a1, Pa3)

2

}

= max

{
d(a3, a1),

(1 + d(a3, a2))d(a1, a1)
1 + d(a2, a4)

,
d(a3, a1) + d(a1, a1)

2

}

= max

{
3, 0,

3
2

}
= 3

and

η
(
ϑ

(
d(Pa3, Qa1)

)
,ψ

(
r1(a3, a1)

))
= 0.88 · 0, 91 · 3 – 2 = 0.4024 > 0.

• x = a3, y = a2,

d(Pa3, Qa2) = d(a2, a1) = 2,

r1(a3, a2) = max

{
d(a3, a2),

(1 + d(a3, Pa3))d(a2, Qa2)
1 + d(a3, a2)

,
d(a3, Qa2) + d(a2, Pa3)

2

}

= max

{
d(a3, a2),

(1 + d(a3, a2))d(a1, a1)
1 + d(a2, a4)

,
d(a3, a1) + d(a1, a1)

2

}

= max

{
5, 0,

3
2

}
= 5

and

η
(
ϑ

(
d(Pa3, Qa2)

)
,ψ

(
r1(a3, a2)

))
= 0.88 · 0, 91 · 5 – 2 = 2.004 > 0.

• x = a3, y = a3,

d(Pa3, Qa3) = d(a2, a1) = 2,

r1(a3, a3) = max

{
d(a3, a3),

(1 + d(a3, Pa3))d(a3, Qa3)
1 + d(a3, a3)

,
d(a3, Qa3) + d(a3, Pa3)

2

}

= max

{
d(a3, a3),

(1 + d(a3, a2))d(a3, a1)
1 + d(a3, a3)

,
d(a3, a1) + d(a3, a1)

2

}

= max

{
0, 18,

6
2

}
= 18

and

η
(
ϑ

(
d(Pa3, Qa3)

)
,ψ

(
r1(a3, a3)

))
= 0.88 · 0, 91 · 18 – 2 = 12.41 > 0.

• x = a4, y = a4,

d(Pa4, Qa4) = d(a1, a2) = 2,
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r1(a4, a4) = max

{
d(a4, a4),

(1 + d(a4, Pa4))d(a4, Qa4)
1 + d(a4, a4)

,
d(a4, Qa4) + d(a4, Pa4)

2

}

= max

{
d(a4, a4),

(1 + d(a4, a1))d(a4, a2)
1 + d(a4, a4)

,
d(a4, a2) + d(a4, a1)

2

}

= max{0, 18, 4} = 18

and

η
(
ϑ

(
d(Pa4, Qa4)

)
,ψ

(
r1(a4, a4)

))
= 0.88 · 0.91 · 18 – 2 = 12.41 > 0.

Therefore, all the assumptions of Theorem 7 are satisfied; a1 is the unique common fixed
point of the mappings P and Q.

Corollary 9 Let (X, d) be a complete metric space, a mapping P : X → X and a function
η ∈ Z such that

η

(
ϑ

(
d(Px , Py)

)
,

ψ

(
max

{
d(x , y),

d(y , Py)(1 + d(x , Px ))
1 + d(x , y)

,
d(x , Py) + d(y , Px )

2

}))
≥ 0, (2.28)

for any x , y ∈ X with d(Px , Py) > 0, where ϑ ,ψ ∈ �. Suppose that
(a1) ψ(s) < ϑ(s), for any s > 0;
(a2) infs>s0 ϑ(s) > –∞, for any s0 > 0;
(a3) if {am}, {bm} are convergent sequences with with limm→∞ am = limm→∞ bm > 0 then

the sequences {ϑ(am)}, {ϑ(bm)}, are convergent and limm→∞ ϑ(am) = limm→∞ ϑ(bm).
Then the mapping P possesses a unique fixed point.

Proof Put Q = P in Theorem 7. �

Theorem 10 Let (X, d) be a complete metric space, two mappings P, Q : X → X, the func-
tions ϑ ,ψ ∈ � and a function such that

η
(
ϑ

(
d(Px , Qy)

)
,ψ

(
r2(x , y)

)) ≥ 0, for any x , y ∈ X with d(Px , Qy) > 0, (2.29)

when max{d(x , Qy), d(y , Px )} �= 0 and d(Px , Qy) = 0 when max{d(x , Qy), d(y , Px )} = 0. Sup-
pose that

(a1) ψ(s) < ϑ(s), for any s > 0;
(a2) infs>s0 ϑ(s) > –∞, for any s0 > 0;
(a3) if {am}, {bm} are convergent sequences with with limm→∞ am = limm→∞ bm > 0 then

the sequences {ϑ(am)}, {ϑ(bm)}, are convergent and limm→∞ ϑ(am) = limm→∞ ϑ(bm);
(a4) if {ϑ(am)} is a strictly decreasing sequence and {ϑ(am)}, {ψ(am)} are convergent with

the same limit then limm→∞ am = 0;
(a5) lim sups→0+ ψ(s) < lim infs→e0 ϑ(s), for any e0 > 0.

Then the mappings P, Q have a unique fixed point.
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Proof First of al, by (2.29) and taking (η1) into account, we have

0 ≤ η
(
ϑ

(
d(Px , Qy)

)
,ψ

(
r2(x , y)

))
< ψ

(
r2(x , y)

)
– ϑ

(
d(Px , Qy)

)
,

which can be rewritten as

ϑ
(
d(Px , Qy)

)
< ψ

(
r2(x , y)

)
. (2.30)

Let {xm} be the sequence defined by (2.19). Since xm �= xm+1 for any m ∈N0 (we have already
shown this in the proof of Theorem 5), letting m = 2i, we have

r2(x2i, x2i+1)

= max

{
d(x2i, x2i+1),

d(x2i, Px2i)d(x2i, Qx2i+1) + d(x2i+1, Qx2i+1)d(x2i+1, Px2i)
max{d(x2i, Qx2i+1), d(x2i+1, Px2i)}

}

= max

{
d(x2i, x2i+1),

d(x2i, x2i+1)d(x2i, x2i+2) + d(x2i+1, x2i+2)d(x2i+1, x2i+1)
max{d(x2i, x2i+2), d(x2i+1, x2i+1)}

}

= d(x2i, x2i+1), (2.31)

and letting m = 2i – 1,

r2(x2i, x2i–1)

= max

{
d(x2i, x2i–1),

d(x2i, Px2i)d(x2i, Qx2i–1) + d(x2i–1, Qx2i–1)d(x2i+1, Px2i)
max{d(x2i, Qx2i–1), d(x2i–1, Px2i)}

}

= max

{
d(x2i, x2i–1),

d(x2i, x2i+1)d(x2i, x2i) + d(x2i–1, x2i)d(x2i–1, x2i+1)
max{d(x2i, x2i), d(x2i–1, x2i+1)}

}

= d(x2i, x2i–1). (2.32)

Thus, from (2.30) and keeping (a1) in mind we get

ϑ(d(x2i+1, x2i+2) = ϑ(d(Px2i, Qx2i+1) < ψ
(
r2(x2i, x2i+1)

)
= ψ

(
d(x2i, x2i+1)

)
< ϑ(d(x2i, x2i+1),

and similarly

ϑ(d(x2i+1, x2i) = ϑ(d(Px2i, Qx2i–1) < ψ
(
r2(x2i, x2i–1)

)
= ψ

(
d(x2i, x2i–1)

)
< ϑ(d(x2i, x2i–1).

Denoting d(xm+1, xm) by om, we get

ϑ(o2i) ≤ ψ(o2i–1) < ϑ(o2i–1),

ϑ(o2i+1) ≤ ψ(o2i) < ϑ(o2i)

and we conclude that

ϑ(om+1) < ψ(om) < ϑ(om) (2.33)
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for any m ∈N. Consequently, the sequence {ϑ(om)} is convergent, being strictly decreasing
and bounded below(from (a2) and Lemma 4). Thus, letting m → ∞ in (2.33) we see that
{ψ(om)} is convergent with the same limit as {ϑ(om)}. Thereupon, by (a4),

lim
m→∞ om = lim

m→∞ d(xm, xm+1) = 0.

We claim that the sequence {xm} is Cauchy, reasoning by contradiction. Indeed, if we sup-
pose that {x2m} is not Cauchy, by Lemma 3, we can find e0 > 0 and the sequences {ml}, {pl}
of positive integers such that the equalities (1.2) hold, where ml is the smallest index for
which ml > pl > l, for all l ≥ 1. We have

r2(x2ml , x2pl–1) = max

{
d(x2ml , x2pl–1),

d(x2ml ,Px2ml )d(x2ml ,Qx2pl–1)+d(x2pl–1,Qx2pl–1)d(x2pl–1,Px2ml )
max{d(x2ml ,Qx2pl–1),d(x2pl–1,Px2ml )}

}

= max

{
d(x2ml , x2pl–1),

d(x2ml ,x2ml+1)d(x2ml ,x2pl )+d(x2pl–1,x2pl )d(x2pl–1,x2ml+1)
max{d(x2ml ,x2pl ),d(x2pl–1,x2ml+1)}

}

,

and setting ul = d(x2ml+1, x2pl ) and vl = r2(x2ml , x2pl–1) it follows that liml→∞ ul = liml→∞ vl =
e0. Moreover, by (a3), liml→∞ ϑ(ul) = liml→∞ ϑ(vl). Consequently, by (2.33), liml→∞ ϑ(ul) =
liml→∞ ψ(vl) and using (η2),

lim sup
l→∞

η
(
ϑ(ul),ψ(vl)

)
< 0, (2.34)

which is a contradiction, since by (2.29)

0 ≤ lim sup
l→∞

η(ϑ
(
d(Px2ml , Qx2pl–1),ψ

(
r2(x2ml , x2pl–1)

))
= lim sup

l→∞
η
(
ϑ(ul),ψ(vl)

)
.

In this way we proved that {xm} is a Cauchy sequence on a complete metric space, so there
exists x∗ ∈ X such that limm→∞ xm = x∗.

We shall show that x∗ is a common fixed point of P and Q. First of all, we remark that, if
d(Px∗, Qx2m–1) = 0 for infinitely many values of m, then

d(Px∗, x∗) ≤ d(Px∗, x2m) + d(x2m, x∗)

= d(Px∗, Qx2m–1) + d(x2m, x∗) → d(Px∗, x∗) as m → ∞.

That means that Px∗ = x∗.
Therefore, we can suppose that d(Px∗, Qx2m–1) > 0 for infinitely many values of m, by

(2.29) we have

0 ≤ η
(
ϑ

(
d(Px∗, Qx2m–1)

)
,ψ

(
r2(x∗, x2m–1)

))
< ψ

(
r2(x∗, x2m–1)

)
– ϑ

(
d(Px∗, Qx2m–1)

)
,

or equivalently, by (a1)

ϑ
(
d(Px∗, x2m)

)
= ϑ

(
d(Px∗, Qx2m–1)

)
< ψ

(
r2(x∗, x2m–1)

)
< ϑ

(
r2(x∗, x2m–1)

)
, (2.35)
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where

r2(x∗, x2m–1)

= max

{
d(x∗, x2m–1),

d(x∗, Px∗)d(x∗, Qx2m–1) + d(x2m–1, Qx2m–1)d(x2m–1, Px∗)
max{d(x∗, Qx2m–1), d(x2m–1, Px∗)}

}

= max

{
d(x∗, x2m–1),

d(x∗, Px∗)d(x∗, x2m) + d(x2m–1, x2m)d(x2m–1, Px∗)
max{d(x∗, x2m), d(x2m–1, Px∗)}

}
→ 0,

as m → ∞. Let limm→∞ d(Px∗, x2m) = d(Px∗, x∗) = e . If we suppose that e > 0, from (2.35)
and (a5) we have

lim inf
s→e

ϑ(s) ≤ lim inf
m→∞ ϑ

(
d(Px∗, x2m)

) ≤ lim inf
m→∞ ψ

(
r2(x∗, x2m–1)

)

≤ lim sup
s→0

ψ(s) < lim inf
s→e

ϑ(s),

which is a contradiction. Therefore, d(Px∗, x∗) = 0.
Similarly, choosing x = x2m and y = x∗ in (2.29), we can show that d(x∗, Qx∗) = 0 and we

conclude that Px∗ = x∗ = Qx∗.
To prove the uniqueness of the common fixed point, we will assume that, on the con-

trary, there exists another point y∗ ∈ X such that Py∗ = y∗ = Qy∗ and x∗ �= y∗. Since d(x∗, y∗) =
d(Px∗, Qy∗) > 0, we have

0 ≤ η
(
ϑ

(
d(Px∗, Qy∗)

)
,ψ

(
r2(x∗, y∗)

))
< ψ

(
r2(x∗, y∗)

)
– ϑ

(
d(Px∗, Qy∗)

)

< ϑ
(
r2(x∗, y∗)

)
– ϑ

(
d(x∗, y∗)

)

= ϑ
(
d(x∗, y∗)

)
– ϑ

(
d(x∗, y∗)

)
,

which is a contradiction. Hence x∗ = y∗. �

Corollary 11 Let (X, d) be a complete metric space, a mapping P : X → X, the functions
ϑ ,ψ ∈ � and a function η ∈ Z such that

η(ϑ
(
d(Px , Py)

)
,ψ

(
max

{
d(x .y),

d(x , Px )d(x , Py) + d(y , Py)d(y , Px )
max{d(x , Py), d(y , Px )}

})
≥ 0, (2.36)

for any x , y ∈ X with d(Px , Py) > 0, when max{d(x , Py), d(y , Px )} �= 0 and d(Px , Py) = 0 when
max{d(x , Py), d(y , Px )} = 0. Suppose that

(a1) ψ(s) < ϑ(s), for any s > 0;
(a2) infs>s0 ϑ(s) > –∞, for any s0 > 0;
(a3) if {am}, {bm} are convergent sequences with with limm→∞ am = limm→∞ bm > 0 then

the sequences {ϑ(am)}, {ϑ(bm)}, are convergent and limm→∞ ϑ(am) = limm→∞ ϑ(bm);
(a4) if {ϑ(am)} is a strictly decreasing sequence and {ϑ(am)}, {ψ(am)} are convergent with

the same limit then limm→∞ am = 0;
(a5) lim sups→0+ ψ(s) < lim infs→e0 ϑ(s), for any e0 > 0.

Then the mapping P has exactly one fixed point.

Proof Put Q = P in Theorem 10. �
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