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Abstract
In this paper we study fractional initial value problems with Caputo–Fabrizio
derivative which involves nonsingular kernel. First we apply α-�-contraction and
α-type F-contraction mappings to study the existence and uniqueness of solutions
for such problems. Finally, we use some contraction mappings in complete F-metric
spaces for this purpose.
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1 Introduction
Fractional calculus is a part of mathematical analysis that studies the performance of
derivative and integral operations on non-integer orders. In the past years, early work in
fractional calculus was limited to mathematics. But, in the last few years, extensive studies
on the applications of fractional operators in the other disciplines have been conducted.
Recently, this field had found many applications in various directions such as applied
mathematics, electrochemistry, tracer in fluid flows, fractional-order multi-poles in elec-
tromagnetism, finance, signal processing, bio-engineering, viscoelasticity, fluid mechan-
ics, and fluid dynamics [10, 24]. These wide applications have led researchers to provide
different definitions of fractional derivatives. The main difference between these defini-
tions is related to possessing different kernels. Two famous fractional derivatives, namely
the Riemann–Liouville and the Caputo derivatives, have received a lot of attention and so
differential and integral equations containing these derivatives by several methods con-
taining numerical and analytical methods ([22, 29, 30], but these definitions included a sin-
gular kernel. Thus, recently Caputo and Fabrizio provided a definition with a nonsingular
kernel which the properties of this new definition can be found in [25]. Various methods
have been used by researchers to solve differential equations including Caputo–Fabrizio
fractional derivative and multi-singular point-wise defined equations (see [16, 18, 32] and
the references therein). One of the efficient methods in investigating the existence and
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uniqueness of the solutions of differential equations is using of fixed point theory and
for this reason there is a long history of presenting various fixed point theorems (see [1–
7, 9, 11, 13, 17, 19, 22, 26–28, 34]).

In 2012, Samet et al. [33] proposed the concept of α-ψ contractive mappings and inves-
tigated the existence of fixed points for such mappings, then some researchers improved
them to large classes of the contractive type mappings (see [8, 12, 14, 15, 20, 22, 23]).

Wardowski et al. [35] proposed and investigated the F-contraction, then Abbas et al.
[17, 21] further generalized the concept of F-contraction and proved some fixed point
results.

Wasfi Shatanawi and Erdal Karapınar in [34] introduced FS–contractions in the sense
of Wardowski and Seghal and FJ –contractions in the sense of Wardowski and Jachymski.
Then they ensured some existence and uniqueness fixed point results. Throughout the
article J denote [0, 1].

In this work, we consider the following differential equation with Caputo–Fabrizio
derivatives via fixed point theorems:

(CF
0 Dς

�
)
(p) = f

(
p, �(p)

)
, p ∈ J, 0 < ς < 1, (1)

�(0) = �0,

where Dς is the Caputo–Fabrizio derivative of order ς and f is continuous with
f (0, �(0)) = 0.

In what we will have below it is supposed that (M, d) be a complete b-metric space
and p1 is its constant, also the elements of � are increasing and continuous functions
� : [0,∞) → [0,∞) satisfying �(qx) ≤ q�(x) ≤ qx, q > 1; moreover, � denotes the family of
nondecreasing functions such that, for p1 ≥ 1, we have � : [0,∞) → [0, 1

p12 ).

Definition 1.1 ([5]) Let ψ : M → M and suppose that there exists α : M × M → [0,∞)
with

α(x, y)�
(
p1

3d(ψx,ψy)
) ≤ �

(
�
(
d(x, y)

))
�
(
d(x, y)

)
, (2)

for x, y ∈ M, � ∈ � and � ∈ �. Then ψ is called a generalized α-�-Geraghty contraction
mapping.

Definition 1.2 ([33]) Let for ψ : M → M where M �= ∅ and α : M × M → [0,∞) we have

α(x, y) ≥ 1 	⇒ α(ψx,ψy) ≥ 1, ∀x, y ∈ M. (3)

Then ψ is called an α-admissible mapping.

Now, we have the following fixed point theorem.

Theorem 1.3 ([5]) Let ψ : M → M be a generalized α-�-Geraghty and
(n1) ψ is α-admissible;
(n2) there exist j0 ∈ M with α(j0,ψj0) ≥ 1;
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(n3) {jn} ⊆ M, limn→∞ jn = u where u ∈ M and α(jn, jn+1) ≥ 1
implies α(jn, j ) ≥ 1.

Then there exists a fixed point for the mapping ψ .

Definition 1.4 Let 0 < ς < 1, j ∈ C1[0, b), b > 0. The Caputo–Fabrizio derivative for j of
order ς is defined by

CF Dς j (p) =
M(ς )(2 – ς )

2(1 – ς )

∫ p

0
exp

(
–

ς

1 – ς
(p – x)

)
j ′(x) dx, s ≥ 0 (4)

where M(ς ) is a normalization constant depending on ς with M(0) = M(1) = 1. Note that
(CF Dς )(j ) = 0 if and only if j is a constant.

Definition 1.5 Let 0 < ς < 1. The Caputo–Fabrizio integral for a function j of order ς is
defined by

CF Iς (j )(p) =
2(1 – ς )

M(ς )(2 – ς )
j (p) +

2ς

(2 – ς )M(ς )

∫ p

0
j (x) dx, p ≥ 0. (5)

Take as d : M × M → [0,∞) given by

d(�,℘) =
∥∥(� – ℘)2∥∥∞ = sup

p∈J

(
�(p) – ℘(p)

)2,

where p1 = 2 is the constant of (M, d) and M = C(J, R).
In this paper we consider

(CF
0 Dς

�
)
(p) = f

(
p, �(p)

)
, p ∈ J, 0 < ς < 1, (6)

�(0) = �0,

where Dς is the Caputo–Fabrizio derivative of order ς , also it is supposed that f : J×M →
M satisfies in f (0, �(0)) = 0 and is continuous.

It is easy to prove the following lemma.

Lemma 1.6 If 0 < ς < 1, then

(CF Iς

b
CF Dς

�
)
(p) = �(p) – �(b). (7)

2 Main results
In this section, for existence and uniqueness of a solution for the problem be defined in (6)
firs we apply an α-�-contraction, then we continue by using an α-type F-contraction and
another contraction in complete F-metric space to examine the existence and uniqueness
of solutions of the mentioned problem.

Theorem 2.1 Suppose
(n1) there exist j : R2 → R such that

∣∣f
(
p, �(p)

)
– f

(
p,℘(p)

)∣∣ ≤ (2 – ς )M(ς )
4
√

2

√
�
(
�
(∣∣�(p) – x(p)

∣∣2))
�
(∣∣�(p) – ℘(p)

∣∣2)
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for p ∈ J, � ∈ � and �,℘ ∈ C(J, R) with j (�,℘) ≥ 0;
(n2) there exist �1 ∈ C(J) with j (�1(p),��1(p)) ≥ 0, p ∈ J, where � : C(J) → C(J) is de-

fined by

(��)(p) = �0 + CF
0 Iς f

(
p, �(p)

)
;

(n3) for p ∈ J and �,℘ ∈ C(J), j (�(p),℘(p)) ≥ 0 implies j (��(p),�℘(p)) ≥ 0;
(n4) {�n} ⊆ C(J), �n → � where � ∈ C(J) and j (�n, �n+1) ≥ 0 implies j (�n, �) ≥ 0, for

n ∈ N.
Then there exist at least one solution for the problem (6).

Proof Applying the Caputo–Fabrizio integral and using Proposition 1.6, from (6) we have

�(p) = �0 + CF
0 Iς f

(
p, �(p)

)
= ��(p).

We prove that � has a fixed point. Thus,

∣
∣��(p) – �℘(p)

∣
∣2

=
∣
∣CF
0 Ik[f

(
p, �(p)

)
– f

(
p,℘(p)

)]∣∣2

≤
{∣
∣∣
∣

2(1 – ς )
(2 – ς )M(ς )

[
f
(
p, �(p)

)
– f

(
p,℘(p)

)]

+
2ς

(2 – ς )M(ς )

∫ p

0

[
f
(
p, �(p)

)
– f

(
p,℘(p)

)]
dp

∣
∣∣
∣

}2

≤
{

2(1 – ς )
(2 – ς )M(ς )

∣∣f
(
p, �(p)

)
– f

(
p,℘(p)

)∣∣

+
2ς

(2 – ς )M(ς )

∫ p

0

∣∣f
(
p, �(p)

)
– f

(
p,℘(p)

)∣∣dp
}2

≤
{

(2 – ς )M(ς )
4
√

2
.

2
(2 – ς )M(ς )

}2{
(1 – ς )

√
�
(
�
(∣∣�(p) – ℘(p)

∣∣2))
�
(∣∣�(p) – ℘(p)

∣∣2)

+ς

∫ p

0

√
�
(
�
(∣∣�(p) – ℘(p)

∣∣2))
�
(∣∣�(p) – θ (p)

∣∣2)dp
}2

=
{(

(1 – ς )
2
√

2
+

ς

2
√

2

)(√

�
(
�
(

sup
p∈J

∣
∣�(p) – ℘(p)

∣
∣2

))
�
(

sup
p∈J

∣
∣�(p) – ℘(p)

∣
∣2

))}2

≤
{

1
2
√

2

√

�
(
�
(

sup
p∈J

∣
∣�(p) – ℘(p)

∣
∣2

))
�
(

sup
p∈J

∣
∣�(p) – ℘(p)

∣
∣2

)}2

=
{

1
2
√

2

√
�
(
�
(
d(�,℘)

))
�
(
d(�,℘)

)
}2

=
1
8
�
(
�
(
d(�,℘)

))
�
(
d(�,℘)

)
.

Hence for �,℘ ∈ C(J), p ∈ J with j (�(p),℘(p)) ≥ 0, we have

8
∥
∥(�� – �℘)2∥∥∞ ≤ �

(
�
(
d(�,℘)

))
�
(
d(�,℘)

)
.
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Put α : C(J) × C(J) → [0,∞) by

α(�,℘) =

⎧
⎨

⎩
1 j (�(p),℘(p)) ≥ 0, p ∈ J,

0 else,

and

α(�,℘)�
(
8d(��,�℘)

) ≤ 8d(��,�℘)

≤ �
(
�
(
d(�,℘)

))
�
(
d(�,℘)

)
.

So, � is an α-�-contraction. To show that � is α-admissible, we have from (n3)

α(�,℘) ≥ 1 ⇒ j
(
�(p),℘(p)

) ≥ 0 ⇒ j
(�(�),�(℘)

) ≥ 0

⇒ α
(�(�),�(℘)

) ≥ 1,

for �,℘ ∈ C(J). By (n2), we have �0 ∈ C(J) such that α(�0,��0) ≥ 1. From (n4) and Theo-
rem 1.3, there exists �

∗ ∈ C(J) such that �
∗ = ��

∗. �

Now to define an α-type F-contraction mapping, letF be the family of strictly increasing
functions F : R+ → R such that there exists k ∈ (0, 1) for which limα→0+ αkF(α) = 0 and
also limn→∞ F(αn) = –∞ if and only if limn→∞ αn = 0 for each sequence {αn}n∈N of positive
numbers.

Definition 2.2 Suppose that there exist y > 0, F ∈ F and α : M ×M → {–∞}∪ (0,∞) such
that for �,℘ ∈ M we have d(ψ�,ψ℘) > 0 and

y + α(�,℘)F
(
d(ψ�,ψ℘)

) ≤ F
(
d(�,℘)

)
.

Then ψ : M → M is called an α-type F-contraction on M where (M, d) is a metric space.

We present the following theorem.

Theorem 2.3 ([17]) Let (M, d) be a metric space and ψ : M → M be an α-type F-
contraction such that:

(n1) there exist �0 ∈ M with α(�0,ψ�0) ≥ 1,
(n2) ψ is α-admissible,
(n3) if {�n} ⊆ M with α(�n, �n+1) ≥ 1 and �n → �, then α(�n, �) ≥ 1, n ∈ N,
(n4) F is continuous.

Then ψ has a fixed point �
∗ ∈ M and for �0 ∈ M the sequence {ψn

�0}n∈N is convergent
to �

∗.

If we consider the metric

d(�,℘) = sup
t∈J

{∣∣�(t) – ℘(t)
∣
∣},

then we can prove the following theorem in X = C(J, R).
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Theorem 2.4 There exist j : R2 → R such that
(H1) |f (p, �(p)) – f (p,℘(p))| ≤ (2–ς )M(ς )

2 e–y|�(p) – ℘(p)| for p ∈ J and �,℘ ∈ R;
(H2) ∃ �1 ∈ C(J) such that j (�1(p),��1(p)) ≥ 0 for p ∈ J, where � : C(J) → C(J) defined

by the following

��(p) = �0 + CF
0 Iς f

(
p, �(p)

)
;

(H3) for p ∈ J and �,℘ ∈ C(J), j (�(p),℘(p)) ≥ 0 implies j (��(p),�℘(p)) ≥ 0:
(H4) {�n} ⊆ C(J), limn→∞ �n = � where � ∈ C(J) and j (�n, �n+1) ≥ 0 implies j (�n, �) ≥ 0,

for n ∈ N.
Then there exists at least one fixed point for � which is the solution of problem (6).

Proof We show that � has a fixed point. Thus,

∣
∣��(p) – �℘(p)

∣
∣
∣
∣��(p) – �℘(p) + 1

∣
∣

=
∣∣CF I

[
f
(
p, �(p)

)
– f

(
p,℘(p)

)]∣∣∣∣CF I
[
f
(
p, �(p)

)
– f

(
p,℘(p)

)]
+ 1

∣∣

≤
(

2(1 – ς )
(2 – ς )M(ς )

∣∣f
(
p, �(p)

)
– f

(
p,℘(p)

)∣∣

+
2ς

(2 – ς )M(ς )

∫ p

0

∣∣f
(
p, �(p)

)
– f

(
p,℘(p)

)∣∣dp
)

×
(

2(1 – ς )
(2 – ς )M(ς )

∣
∣f

(
p, �(p)

)
– f

(
p,℘(p)

)∣∣

+
2ς

(2 – ς )M(ς )

∫ p

0

∣
∣f

(
p, �(p)

)
– f

(
p,℘(p)

)∣∣dp + 1
)

≤
(

2(1 – ς )
(2 – ς )M(ς )

.
(2 – ς )M(ς )

2
e–y∣∣�(p) – ℘(p)

∣∣

+
2ς

(2 – ς )M(ς )
.
(2 – ς )M(ς )

2

∫ p

0
e–y∣∣�(p) – ℘(p)

∣∣dp
)

×
(

2(1 – ς )
(2 – ς )M(ς )

.
(2 – ς )M(ς )

2
e–y∣∣�(p) – ℘(p)

∣∣

+
2ς

(2 – ς )M(ς )
.
(2 – ς )M(ς )

2

∫ p

0
e–y∣∣�(p) – ℘(p)

∣
∣dp + 1

)

≤
(

e–ysup
p∈J

∣∣�(p) – ℘(p)
∣∣
)(

e–ysup
p∈J

∣∣�(p) – ℘(p)
∣∣ + 1

)

=
(
e–yd(�,℘)

)(
e–yd(�,℘) + 1

)

=
(
e–yd(�,℘)

)2 +
(
e–yd(�,℘)

)

= e–y[e–y(d(�,℘)
)2 + d(�,℘)

]

≤ e–y[(d(�,℘)
)2 + d(�,℘)

]
.

Hence for �,℘ ∈ C(J), p ∈ J with j (�(p),℘(p)) ≥ 0, we have

(
d
(��(p),�℘(p)

))2 + d
(��(p),�℘(p)

)

≤ e–y[(d(�,℘)
)2 + d(�,℘)

]
.
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So

Ln
[(

d
(��(p),�℘(p)

))2 + d
(��(p),�℘(p)

)]

≤ Ln e–y + Ln
[(

d(�,℘)
)2 + d(�,℘)

]
,

therefore

y + Ln
[(

d
(��(p),�℘(p)

))2 + d
(��(p),�℘(p)

)]

≤ Ln
[(

d(�,℘)
)2 + d(�,℘)

]
.

Now, suppose F : [0,∞) → R is defined by F(u) = Ln(u2 + u), u > 0, then it is straightfor-
ward to show that F ∈ F.

Set α : C(J) × C(J) → {–∞} ∪ [0,∞) by

α(�,℘) =

⎧
⎨

⎩
1 j (�(p),℘(p)) ≥ 0, for all p ∈ J,

–∞ else,

then we have y + α(�,℘)F(d(��,�℘)) ≤ F(d(�,℘)) for �,℘ ∈ M with d(��,�℘) > 0.
Therefore we conclude that � satisfies all conditions of definition of α-type F-contraction.
By (H3),

α(�,℘) ≥ 1 ⇒ j
(
�(p),℘(p)

) ≥ 0 ⇒ j
(�(�),�(℘)

) ≥ 0

⇒ α
(�(�),�(℘)

) ≥ 1, �,℘ ∈ C(J),

which shows that � is α-admissible. From (H2) we have �0 ∈ C(J) such that α(�0,��0) ≥ 1.
According to (H4) and Theorem 2.3, we can obtain �

∗ ∈ C(J) where �
∗ = ��

∗ which is a
fixed point of � and therefore a solution of the problem. �

Now to use in the next definition let us define F involved the functions ψ : (0,∞) → R
such that:

(F1) 0 < p < t implies ψ(p) ≤ ψ(t);
(F2) sn → 0 if and only if ψ(sn) → –∞,

where {sn} ⊂ (0, +∞).

Definition 2.5 ([20]) Let ψ ∈ F, a ∈ [0, +∞) and d : M × M → [0, +∞) with the following
conditions:

(d1) (�,℘) ∈ M × M, d(�,℘) = 0 ⇔ � = ℘ ;
(d2) d(�,℘) = d(℘, �), for (�,℘) ∈ M × M;
(d3) If (�,℘) ∈ M × M, (ui)N

i=1 ⊂ M such that (u1, uN ) = (�,℘), N ∈ N, N ≥ 2 we have

d(�,℘) > 0 implies ψ
(
d(�,℘)

) ≤ ψ

(N–1∑

i=1

d(ui, ui+1)

)

+ a.

Then d is called an F-metric on M, and the pair (M, d) is said to be a F-metric space.
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If we have the following condition for a sequence {�n}

lim
n→∞ d(�n, �) = 0,

then we say {�n} is convergent to � with respect to F-metric d. Similar to the common
definitions {�n} is F-Cauchy in (M, d) if

lim
n,m→+∞ d(�n, �m) = 0.

Similarly the F-completeness of (M, d) can be defined.
Essential are the next definition and also the next fixed point theorem: let � be the set

of � : [0,∞) → [0,∞) such that
(�1) � is nondecreasing;
(�2)

∑∞
n=1 �n(p) < ∞ for p ∈ R+, where �n is the nth iterate of �.

Definition 2.6 ([31]) Suppose that ψ : M → M and α : M × M → [0,∞), if for p ∈ M

α(p,ψp) ≥ 1 ⇒ α
(
ψp,ψ2p

) ≥ 1. (8)

Then ψ is said to be an α-orbital admissible.

Theorem 2.7 ([13]) Suppose (M, d) be a F-complete metric space and ψ : M → M such
that

α(�,℘)d(ψ�,ψ℘) ≤ �
(
d(�,℘)

)
,

for �,℘ ∈ M, where � ∈ �. Also assume
(n1) ψ is α-orbital admissible;
(n2) there exists �0 ∈ M with α(�0,ψ�0) ≥ 1;
(n3) ψ ∈ F verifying (d3) is continuous and for a continuous function � we have ψ(u) >

ψ(�(u)) + a, 0 < u < ∞, such that a is the same appeared in (d3).
Then there exists a fixed point for f .

Now let us define the F-metric d : M × M → [0,∞) given by

d(�,℘) =

⎧
⎨

⎩
e|�–℘| if � �= ℘,

0 if � = ℘,

where M = C(J, N) and continues function ψ on (0,∞) by ψ(p) = – 1
p for p > 0. Since – 1

u >
1

�(u) > 1, it is obvious that ψ(u) > ψ(�(u)) + a, u > 0, in the sense that � has the following
conditions:

�(u) <
u

u + 1
,

e�(p) ≤ �
(
ep), p ∈ {0, 1, 2, 3, . . .}.

Now we are ready to present the following theorem.
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Theorem 2.8 Assume
(n1) there exists j : R2 → R with

∣∣f
(
p, �(p)

)
– f

(
p,℘(p)

)∣∣ ≤ (2 – ς )M(κ)
2

�
(∣∣�(p) – ℘(p)

∣∣),

where s ∈ J and �,℘ ∈ R such that j (�,℘) ≥ 0;
(n2) there exists �1 ∈ C(J) with j (�1(p),��1(p)) ≥ 0 where p ∈ J and � : C(J) → C(J) is

defined by

(��)(p) = �0 + CF
0 Iς f

(
p, �(p)

)
; (9)

(n3) for p ∈ J and � ∈ C(J), j (�(p),��(p)) ≥ 0 implies j (��(p),�2
�(p)) ≥ 0.

Then there exists at least one fixed point for � which is the solution of (6).

Proof We have

∣∣��(p) – �℘(p)
∣∣ =

∣∣CF
0I

[
f
(
p, �(p)

)
– f

(
p,℘(p)

)]∣∣

≤
∣∣
∣∣

2(1 – ς )
(2 – ς )M(ς )

.
(2 – ς )M(ς )

2
�
∣
∣�(p) – ℘(p)

∣
∣

+
2ς

(2 – ς )M(ς )
.
(2 – ς )M(ς )

2

∫ p

0
�
∣
∣�(p) – x(p)

∣
∣dp

∣∣
∣∣

≤ (1 – ς + ς )(sup
p∈J

∣
∣�(p) – ℘(p)

∣
∣

≤ �
(∣∣�(p) – ℘(p)

∣
∣).

Hence for �,℘ ∈ C(J), p ∈ J with j (�(p),℘(p)) ≥ 0, we have

d(��,�℘) = e|��(p)–�℘(p)| ≤ e�(|�(p)–℘(p)|) ≤ �
(
e|�(p)–℘(p)|) = �

(
d(�,℘)

)
.

Put α : C(J) × C(J) → [0,∞) by

α(�,℘) =

⎧
⎨

⎩
1 j (�(p),℘(p)) ≥ 0, p ∈ J,

0 else.

Therefore α(�,℘)d(��,�℘)) ≤ d(��,�℘)) ≤ �(d(�,℘)), �,℘ ∈ M with d(��,�℘) > 0.
From (n3),

α(�,��) ≥ 1 ⇒ j
(
�(p),��(p)

) ≥ 0 ⇒ j
(�(�),�2(�)

) ≥ 0

⇒ α
(�(�),�2(�)

) ≥ 1,

for � ∈ C(J). Therefore, we conclude that � is orbital α-admissible. From (n2), we can
choose �1 ∈ C(J) such that α(�1,��1) ≥ 1. Also from (n3) and Theorem 2.7, we get ℘∗ ∈
C(J) with �

∗ = ��
∗. Hence, we obtain �

∗ as a solution of the problem and this completes
the proof. �
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Now, for a positive integer n we denote by hn the nth iterate of h, so that y = h0y and
hn+1y = h(hny) for y ∈ X and n ∈ N. The triplet (X, d, h) represent a metric space (X, d)
with a self-mapping h on it. We shall use (X∗, d, h) to indicate the corresponding metric
space is complete. Also on (X, d, h) an orbit of y0 ∈ X is the set

O(y0) =
{

hny0 : n = 0, 1, 2, . . .
}

,

and ρ(y0) denote to the diameter of the set O(y0). Note that for any subset B of X, ρ(B) =
sup{d(u, y) : u, y ∈ B} is the diameter of B. We shall use the triplet (X0∗, d, h) if for some
y ∈ X, every Cauchy sequence from O(y) converges in X. In this case, the corresponding
space is called orbitally complete.

Corollary 2.9 For (X, d∗, h) with p : X → N, we suppose there exists τ > 0 such that for
v, w ∈ X

d
(
hp(y)y, hp(y)w

) ≤ e–τ d(y, w). (10)

Assume there exists y0 ∈ X such that 0 < ρ < ∞. Moreover, (X, d) is h-orbitally complete.
Then h has a unique fixed point.

Theorem 2.10 On account of (6), we assume that

∣
∣h

(
p, �(p)

)
– h

(
p,℘(p)

)∣∣ ≤ (2 – ς )M(ς )
2

e–y∣∣
√∣

∣�(p)
∣
∣ –

√∣
∣℘(p)

∣
∣
∣
∣

and

∣
∣h

(
p, �(p)

)∣∣ +
∣
∣h

(
p,℘(p)

)∣∣ ≤ (2 – ς )M(ς )
2

e–y∣∣
√∣

∣�(p)
∣
∣ +

√∣
∣℘(p)

∣
∣
∣
∣,

for p ∈ J, then the problem (6) possesses a unique solution.

Proof We consider d : M × M → [0,∞) given by d(�,℘) = supp∈J |�(p) – ℘(p)| and, apply-
ing the Caputo–Fabrizio integral to both sides of (6), we get

(��)(p) = �0 + CF
0 Iς h

(
p, �(p)

)
.

We demonstrate that (6) has a unique solution. We get

∣∣��(p) – �℘(p)
∣∣ =

∣∣CF I
[
h
(
p, �(p)

)
– h

(
p,℘(p)

)]∣∣

≤ 2(1 – ς )
(2 – ς )M(ς )

∣∣h
(
p, �(p)

)
– h

(
p,℘(p)

)∣∣

+
2ς

(2 – ς )M(ς )

∫ p

0

∣∣h
(
p, �(p)

)
– h

(
p,℘(p)

)∣∣dp

≤ 2(1 – ς )
(2 – ς )M(ς )

.
(2 – ς )M(ς )

2
e–y∣∣

√∣
∣�(p)

∣
∣ –

√∣
∣℘(p)

∣
∣
∣
∣

+
2ς

(2 – ς )M(ς )
.
(2 – ς )M(ς )

2
e–y

∫ p

0

∣
∣
√∣

∣�(p)
∣
∣ –

√∣
∣℘(p)

∣
∣
∣
∣dp
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≤ e–y sup
∣∣
√∣∣�(p)

∣∣ –
√∣∣℘(p)

∣∣∣∣,

also

∣∣��(p)
∣∣ +

∣∣�℘(p)
∣∣ =

∣∣CF I
[
h
(
p, �(p)

)]∣∣ +
∣∣CF I

[
h
(
p,℘(p)

)]∣∣

≤ CF I
[∣∣h

(
p, �(p)

)∣∣ +
∣∣h

(
p,℘(p)

)∣∣]

≤ 2(1 – ς )
(2 – ς )M(ς )

.
(2 – ς )M(ς )

2
e–y∣∣

√∣∣�(p)
∣∣ +

√∣∣℘(p)
∣∣∣∣

+
2ς

(2 – ς )M(ς )
.
(2 – ς )M(ς )

2
e–y

∫ p

0

∣∣
√∣∣�(p)

∣∣ +
√∣∣℘(p)

∣∣∣∣dp

≤ e–y sup
∣∣
√∣∣�(p)

∣∣ +
√∣∣℘(p)

∣∣∣∣ ≤ sup
∣∣
√∣∣�(p)

∣∣ +
√∣∣℘(p)

∣∣∣∣.

On the other hand

sup
(∣∣��(p)

∣∣ +
∣∣�℘(p)

∣∣) ≤ sup
∣∣
√∣∣�(p)

∣∣ +
√∣∣℘(p)

∣∣∣∣,

also we have

d
(�2

�,�2℘
)

= sup
(∣∣�2

�(p) – �2℘(p)
∣∣)

= sup
(∣∣��(p) – �℘(p)

∣∣) × sup
(∣∣��(p) + �℘(p)

∣∣)

≤ sup
(∣∣��(p) – �℘(p)

∣∣) × sup
(∣∣��(p)

∣∣ +
∣∣�℘(p)

∣∣)

≤ e–y sup
√∣∣�(p)

∣∣ –
√∣∣℘(p)

∣∣ × sup
√∣∣�(p)

∣∣ +
√∣∣℘(p)

∣∣

= e–y sup
∣∣∣∣�(p)

∣∣ –
∣∣℘(p)

∣∣∣∣

≤ e–y sup
∣∣�(p) – ℘(p)

∣∣

= e–yd(�,℘).

Hence condition (10) holds with p : X → N such that p(�) = 2, � ∈ X. Accordingly all ax-
ioms of Corollary 2.9 are verified and consequently � possesses a unique fixed point. So
(6) possesses a unique solution. �
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