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1 Introduction

Fractional calculus has become a well-established branch of mathematical analysis. It has
many applications in engineering and science. Much work has appeared studying vari-
ous models involving fractional di erential boundary value problems and providing so-
lutions to those models using analytical methods or numerical methods. We highlight
some recent work involving fractional di erential equations. Agarwal et all] investi-

gated existence and unigueness results on time scales for fractional nonlocal thermistor
problems in the conformable sense. Sunarto et a2] [developed a numerical method us-

ing a quarter-sweep and PAOR to solve a one-dimensional time-fractional mathemati-

cal physics model. Rezapour et aB][showed the existence and uniqueness of solutions

for a general multi-term fractional BVP involving the generalized -RL operators. Then

they suggested two numerical algorithms, namely, the Dafterdar-Gejji and Jafari method
(DGJIM) and the Adomian decomposition method (ADM) in which a series of approxi-

mate solutions converge to the exact ones. Agarwal et dl| fliscussed the existence and
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unigueness of solutions for a nonlocal problem with integral transmitting condition for
mixed parabolic-hyperbolic type equations with Caputo fractional derivative. Agarwal et
al. [5] provided a detailed description of impulsive fractional di erential equations using
Lyapunov functions and overviewed results for the stability in Caputoss sense. Khan et al.
[6] focused on the existence and uniqueness of solutions and Hyers...Ulam stability for
ABC-fractional DEs withp-Laplacian operator. Khan et al.q] studied the stability and
numerical simulation of a fractional order plant-nectar-pollinator model. Khan et al8]
proved the existence and Hyers...Ulam stability of solutions to a class of hybrid fractional
di erential equations with p-Laplacian operator.

The problem of existence of non-constant periodic solutions for fractional order models
has became one of the most interesting topics to conduct research on. This is particularly
due to the di erences between systems of integers order and systems of fractional ordersin
terms of the existence of non-constant periodic solutions. In much work, such &s.14],
the authors have shown that non-constant periodic solutions of fractional order systems
do not exist contrary to the case where the order of the system is an integer. Therefore,
the concept of an asymptotically periodic solution for fractional di erential equations or
inclusions is introduced and discussed in much work. For example, ih2] 15..17], the
authors considered semilinear di erential equations of order (0, 1) generated by &5-
semigroup, while the papersl8..20] addressed semilinear di erential equations of order

(0,1) generated by sectorial operators. Moreover, the asymptotically periodic solu-
tions for delayed fractional di erential equations with almost sectorial operator of order
(0, 1) are examined inZ1]. Rogovchenko et al.32] studied the asymptotic properties
of solutions for a certain classes of second order nonlinear di erential equations. Very re-
cently, Wang et al. 23] discussed the asymptotic behavior of solutions to time-fractional
neutral functional di erential equations of order (0, 1).

For more information regarding this subject, we refer the reader t&4, 25)].

It is worth noting that the problems discussed in all cited work above do not contain
impulse e ects, whether itis instantaneous or non-instantaneous, and the nonlinear term
is a single-valued function.

Let (1,2),E be a Banach space; be a natural number, >0,7=[0, ),

0=s0< 1 51< 2<-< 4y 8= < 1= + 1 1= +s1<---,
with lim; = S Sme=sit ,and .= o+ ;i N={1,2,3,.}andA:D(A) E
Ebe asectorial operator of typéM, , ,u},whereM >0, (0,5)andp R.Moreover,
let F:Jx E  2F..{ }, beamultivalued functiong; : [ ;,s]1x ES E;i N,xo D(A)
andx; E.
Motivated by the above cited work, we prove two results concerning the existence of

S-asymptotically -periodic mild solutions to the following non-instantaneous impulsive
semilinear di erential inclusion:

CDS,‘, x( ) Ax( )+F( ,x( )), a.e. (Si, ,'+1],i N { 0},
x( )= ox( ), i N,

x( ) =g( .x( ;). (i N,

x(0)=x0,  x(0)=x,

)
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where“D, x( ) is the Caputo derivative of the functionx at the point  and with lower
limit at s; [26]. In the “rst result, we apply a “xed point theorem for contraction multival-

ued functions, and, in the second result, we use a compactness criterion in the space of
bounded piecewise continuous functions de“ned on the unbounded intervaE [0, ).

Our work generalizes much recent work such ag$..20] to the case where there are im-
pulse e ects, and the right-hand side is a multivalued function.

To the best of our knowledge, there is no work o5-asymptotic -periodic behavior
of solutions to fractional non-instantaneous impulsive di erential inclusions with order

(1, 2) and generated by sectorial operators, and this fact is the main goal in the present
paper.

To clarify the advantage of this study, we mention that two methods have been provided
to demonstrate the existence of-asymptotic -periodic solutions for semilinear frac-
tional di erential inclusions in the presence of non-instantaneous impulse e ects, and in
which the nonlinear part is a multivalued function, and the linear part is a sectorial oper-
ator. Moreover, the technique presented in this paper can be used to generalize the work
in[12, 15..21, 23..25] to the case where the linear part is a sectorial operator, the nonlin-
ear part is a multivalued function, and there is impulse e ects. In addition, Problent)(
can be investigated on time scales using the arguments 1, [and using the arguments
in [3, 6, 8], one can examine the asymptotic periodic solutions for Problert)(when the
Caputo derivative is replaced by the -Caputo derivative, -RL derivative, Atangana...
Baleanu derivative op-Laplacian operator. Also, the technique used in this paper can be
applied to study the asymptotic periodic solutions for many fractional di erential equa-
tions or inclusions generated by sectorial operators or almost sectorial operators.

For more information related to fractional di erential equations and inclusions with
non-instantaneous impulse e ects, we refer the reader t@7..31]. See B2..35] for more
information about semilinear di erential equations and inclusions with sectorial opera-
tors.

It is worth noting that Refs. [36..44] contain very important and interesting topics in
mathematics as well as their applications such as di erential equations, fractional calculus
and ABC-fuzzy-Volterra integro-di erential equation.

The paper is organized as follows. Sectighincludes de“nitions and basic informa-
tion that we need to prove our results. In Sec8, we provide two existence results -
asymptotic -periodic solutions for Problem (). In Sect.4, we give three examples to
illustrate our theoretical results.

2 Preliminaries and notations
Letjo=[0,61]andj;=( ;, «1],i N.Itis known that the vector spaces

PC(J,E):={x:] E,xisboundedx|, C(E)}
and

SAP PC(J,E):= [x:] E,xisboundedal, C(iE), lim [x( + )..x( )||:o}
are Banach spaces endowed with the norm

x = malx”x( )||
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Definition 1 ([45]) Let M >0, (0,3),andp  R. Aclosed linear operatoid : D(A)
E  Ewith dense domain is called sectorial of typgVt, , ,u}if:
(i) /'S +u R( ,A) exists, where R( ,A)isthe -resolvent operator of A
defined by

R( ,A)=( I..A)"
and
S +pu={pu+ : ClArg(... )|< }.

(i)

M
- H

, /'S +U.

I’ A

Remark 1 ([45], Remark 2.1) IfA is a sectorial operator of typgM, , ,u}, thenitis the
in“nitesimal generator of a -resolvent family of operatordT ( ): 0} in E de“ned by

1
T():T/e R( ,A)d , )
l
where s a suitable pathand /S +p for

Definition 2 ([45], De“nition 3.1) Let A be a sectorial operator of typgM, , ,u} and
f LY[0,b],E). Acontinuous functionx : [0,s]  Eis called a mild solution to the Cauchy
problem:

Dy, x( )=Ax( ) +f( ), [0,4],
x(0) =xo, x (0) =x,
x()=S()xo+K()x1+/ T( ...)()d , [0,5],
0
where
S ( ):zii/e “R(,A)d
K ( )Z%/e “R(LA)d
andT ( )is given by @).

The following lemma provides estimatesonS () , K () and T () .
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Lemma 1 ([45], Theorems 3.3, 3.4)Let A be a sectorial operator of type {M, , ,U}.Sup-
pose LW <0.Then L=L(M, , )>O0such that

L L( +1)
S —_ —_— d
SOl o IKOL s an )
L W1
I O) T >0.
Remark 2 ([19], Remark 3) In view of 6), we get:
(i)
Is O L >0. (4)
(if)
L
K L+ —
KOl L+
=L+L, ifo< <1,
L+ L if 1
[ul
L(l +max{1 i}) >0 )
ul ) '
(iii) As in (ii), we derive
L W1
T -
ITOl T
Lmax{l,ﬁ}, > 0. (6)

Based on De"nition2, we can give the de“nition of ars-asymptotically -periodic mild
solution for Problem (1).

Definition 3 A function x SAP PC(J,E) is called anS-asymptotically -periodic mild
solution for Problem (1) if it has the form

S (Jwo+ K ()n
+ T (.. )Y(0)d, [0, 4],

g (), (osidi N,

S .s)gsix( )N +HK (Los)g(six( ;)
oI T (si- ) ()d
+T (... )()d, [siy walii N,

x( )=

wheref( ) F( ,x( )),a.e.for >0.

3 Existence of S-asymptotically w-periodic mild solutions for Problem ( 1)
In order to give the “rst result, we need the following lemma which is due talf)].
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Lemma 2 Let (X,d) be a metric space and G be a contraction multivalued function from
X to the family of non-empty closed subsets of X. Then G has a fixed point.

For notations about multivalued functions we refer the reader ta@].

Theorem 1 Suppose the following assumptions are satisfied.
(HA) A:D(A) E is a sectorial operator of type {M, , ,U}, where M >0, ©0,3),

and L R.
(HF) F:Jx E  Pu(E) is a multivalued function such that
(i) Foranyz E, the multivalued function F(:,2) is strongly measurable.

(i) Foranyx PC(J,E), the set

S,lc(_,x(_» Z={ :] E, islocally integrableand () F( ,x()),

a.e. ]}

is not empty.

(i) There is a continuous function L1:] (0, ) such that

h(F( ,z1),F( ,22)) Li( ) z1..22 , J:z1,z2  E, (7)

where h is the Hausdor(f distance.
(iv) There is a continuous function Ly :] (0, ) such that

W(F( + ,2),F( .,2) La( ) 1+x, J.z E. (8)

(v) The function ():= F( ,0) =sup, p o) z iscontinuous, bounded on ]
and satisfies the relation

hm/ ——— ()d =0. (9

o 1+[pC ...)

(Hg;) Foranyi N,g;:[ ;s]x ES  Esuch that, forany x  E, the function gi( ,x)
is differentiable at s; and

(i)

lim Hgﬁm( + ,2)..g( ,z)||:O, z E. (10)

L

(ii) There is N > Osuch that foranyi N

”gz( ,Zj_)..gl’( ,Zz)” N Z1..22 , ], 21,22 E. (11)

(iii) There is N> Osuch that foranyi N

||gi(si,z1)..gi(si,zz)H N 21 ..22 , z1,z2 E. (12)
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(iv) Thereis 1> O0such that
supsup|gi( .2)| 1(z +1), =z E. (13)
i N T
(v) Thereis »>Qwith
sup|lgi(si2)|  2(z +1), =z E. (14)
iN

Then Problem (1) has an S-asymptotically -periodic mild solution provided that the
following conditions are verified.

) ( ) 1 B
hm/O WLl( )d =0, (15)
) ( ) 1 B
11m/O WLZ( )d =0, (16)
and
L(Z +N.+<1+max{1,ﬁ}>/\f)<l, a7

L
where =sup ; [ %Ll( )d .

Proof Due to (HF)(ii), one can de“ne a multivalued function on SAP PC(J,E) in the
following manner: an elemeny (x) if and only if

S (Jxo+ K ()x1

+T (... )()d, [0, 41,
o )= & .x( ;) (aosidi N, 18)
S ( s)gilsix( ) +K (.osi)gisix( )

.. Osi T (si... )f()d

+ T (. )()d, [siy wa]i N,

wheref Sﬁ(_ )"

Obviously,y PC(J;,E). We clarify that, ifx SAP PC(J,E),then (x)isaclosed subset
of SAP PC(J,E). We do this in the following steps.

Step 1. We demonstrate that, i (%), we have

lim Hy( + ) ( )|| =0. (29)
Sincex SAP PC(J,E),
lim Hx( + ). )H =0. (20)

Now, we consider two cases.

Page 7 of 31
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(i) If ( ;»s;]forsomei N,then + [ i+ ,sit 1= i+m»si+m], @and hence, using
(21) and (18), it yields

lgeem( + o2 i) & ox( )]
lgim( + 2 i) - Gien (2( i)
+ giem (2 i55)) & x( )]
lgim( + 2 i) - Gion (2( i)
*Nx( i) -2 - (21)

(i) If [s:, i+1] forsomei N,then + [si+ , i1t 1= [Sitm, i+ms1]. USINg (@)
and arguing as in21), it follows that

IS ( + kit Ngemlsit 2 i) S € sdgilsox( )]
=[S C csdllgim(si+ 2 isn)) - gi(six( )]
Llgim(si+ x( i55n) - &ilsix( )] (22)

Moreover, in view of @) and (14), we arrive at

1K (+ it Nt x( i) K osdgi(six( )]
=K C e (siemx( i) - K s)gi (s 7)) ]
[ C s e (sivmx( i550)) i (six( 1))
2 5(x +1)|K ( ..s)

L( ..Sl'+1)

Next,

/ T(+ ..)()d .../T(...)f()d H
0 0
:H/ T( ..)( + )d /0 T( ...)f()d H
0
[T Collirc + ol
[T CanllfC+ )l d
0
=L +D. (24)
Let [...,0]be"“xed. SinceF( + ,0)iscompact,thereiy . F( + ,0)suchthat

IFC + )ovs | =d(f( + )F( + ,0)
h(E( + x( + )),F( + ,0)). (25)
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From (7), (HF)(v) and 5), we get

FC+ ) A(F( + x( + )).E( + ,0)+ v
Li + ) + )|+ (+)
x L+ )+ (+ ) (26)

SinceL; and are continuous ory, there are two positive numbers 1, » such that
sup }Ll(t)| 1, and sup| ( )| 2. (27)
t [0, ] t [0, ]
Then, from (3), (26) and 27), we have

0
11:H/ T( .. )+ )d H

0 L1
(vevonf 1+(|u|()...) 4
(1x + 2)L/0 ¢ ...) -t
Il LI )
_(1x+ L 1+ + )
B TR T TTY

d

(28)

Next, let [0, ] be “xed. From the fact that F( + ,x( )) is compact, there are
z+,z F(,x( + ))suchthatd(f( + )z+)=d(f( + )F(,x( + ))) and
dalf( ),z )=4d(f( ,F( ,x( + )))). Then, by (2), (13) and (25), we arrive at

lFC+ ) fO)
IfFC+ )z |+ 24 2z +|z .f()
aff( + )LE( + () + z+ ..z
+d(f( F( + ,x())
REQ( + )x(( + ))F(x( + )
+2||F( x( + )| +h(F( 2 + ). F( .x()))
Ly( )1 +x( + )| +2|F( ,0)| +2n(F( ,x( + )),F( ,0)
+Li()x( + ) ox())
Ly( )1+ x )+2 ()+3Ly( ) x . (29)

By 3) and (29), we arrive at

12:/0 17 (. OIIFC+ ).sOld

3 /o Toquie -y 04
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ZL/O Tl .y 4
A
SL(1+ )/0 %Lz( Y | (30)

By arguing as in 24), (28) and (30), one can show

’ 0

/W T (si+ ... )f()d .../OSiT(si... ¥()d H

(12 + 2)L1 T+|ul(si+ )
n
I 1+|uls;

+3L x /Si Mh( )d
0

4G - )
Si (Si ) o A
v [ ey O
Si (Si ) 1
Sinces; when , we can derive 19) from (9), (10), (15), (16), (20), (21)...23),

(28), (30) and @1).
Then, due to 1)...24), (28), (30) and @31), we arrive at (9).
Step 2. In this step, we show that, ¥ SAP PC(J,E) andy (%), theny is bounded.
(i) Let [0, 1]. Then, using @)...6), we get

||y( )|| L xg +L x1 (l+max{1,ﬁ}>

+Lmax{l,ﬁ}/o IFO)ld - (32)

On the hand, from (7), (9) and (27), we derive

POL TECHO) - [£C.0+A(EC.0L.E( ()
(+L()x 1+ 2%, (33)

Then, by 32) and (33), we conclude that

sup [y()| L% +L x (1+max{1,i})
(0. 4] N

+Lmax{1,ﬁ}[ 1+ 2 x )] . (34)
(i) Let ( #si];i N.Inview of (18) and (19), it follows that
le:( =Dl 2(x +2) (35)

and

lgi(sie( )| 2( 2 +1). (36)



Alsheekhhussain et aRdvances in Di erence Equations  (2021) 2021:330

(iii) Let [si» #+1];¢ N.Inview of @), (5), (35) and (36), we have

sup ||S ( .osdgi(six( 7))+ K (s)g(siax( )]

[si, i+1]

L +1)+Lmax{1,ﬁ} 2 x +1).

Furthermore, using 8) and (33), we arrive at

Hfo T( . )()d H
()t
L/o Lol VOl
()t
Lfo Tl .y 4
(..)
' “/o Trm oy 4

From (9), (15) and (38), there is >0 with

/OT( QY H

sup
J

and

sup
i N

/OSiT (si... Y()d H

As aresult of 34), (35), (37), (39) and @0), we conclude thaty is bounded on/.

Page 11 of 31

(37)

(38)

(39)

(40)

Hence, is a multivalued function from SAP PC(/,E) to the non-empty subsets of

SAP PC(J,E).

Step 3. The values of are closed.

To show this, letx SAP PC(J,E) andy, ®), n
Then we havef, S}J-;(-,x(-)) such that

S (Jwo+K ()

+ T (.. W()d, [0, 4],

g x( ), (ssli N,

S ( s)gi(six( )+ K (..s)g;(si,%( ;7))
ST (s Yl )d
+fo T( ... )()d, [siy il

yu( )=

Let bea“xed pointin[0, 1] and putj =[0, ]. Then

OL ECAO)] 1EC. 0 + L))
O+L()x, ).

1, with y,

N.

yin SAP PC(J,E).

(41)

(42)



Alsheekhhussain et aRdvances in Di erence Equations  (2021) 2021:330 Page 12 of 31

This relation with the fact that and L; are continuous guarantee that the familyf, :

n 1} is bounded inL?(J ,E), and hence, by Mazures lemma, there is a sequengg,{ 1
of convex combinations off, with z,  f strongly in L?(J ,E). Hence, we can suppose,
without loss of generality, thatz,( ) f( ), a.e. ] .Moreover, from 6) and @42), we
get

7 ¢ .00
1

Lmax{l,lu—l}( ()+Li()) x . ] .

Therefore, by the Lebesgue dominated convergence theorem and the continuity'of ...
), we obtain

nlim/O T( ...)z,()d

=/ T( ...)()d .
0
Consequently,
Jim y, () =S (Jxo+ K ( )x1+/0 T(..)y()d, [0, 4]. (43)

Similarly, one can show that, forany [s;, +1];i N, we have

nlim a()=S ( --Si)gi(si,x( l)) +K ( ..sl-)gi(s,»,x( l))

A eyOd + [ TCyOd )
0 0
Remark that (F)(iv) implies thatf( ) F( ,x( )),a.e. J. So, from @3) and (44), we
arrive at
S ( )xo+[<( )xl
+T (.. )0()d, [0, 4,
()= & x( 7)), (ssdi N,
S s)gilsix( ) +HK (s)g(six( )
ol T (s Y()d
+f0 T(..)y0)d, [sis iv1],i N
Theny ().

Step 4. is acontraction.
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Letus,u, SAP PC(,E)andy:  (u1). Thenwe havefi Sp ., such that

S (Jxo+K ()n

+ T (A, [0, 4],
()= g yua( ), (ssli N, )
Co( -.si)gilsiyua( ;) +K ( ..si)g(sivua( ;)

oI T (si - MA( ) d

T (A, [si, w+1],i N

Consider the multivalued function :J 2% de“ned by

()={z E:i|z.ACQ)| La()|ua( ) ..u2( )], 26. T}

We clarify that the values of are non-empty. Let /. From (5), we get

B(F( ua( ). F( u2( ) La( )||ua( ) .u2( ).

So, thereisz  F( ,uz( )) such that

1AC) .z | A(F( (). F( u2())) Lo )|ua( ) .22 )]

which leadsto ()= ; J. Moreover, theset ()= () F( ,u2()); J is not
empty. Because the functiong, L, u1, up are measurable, Proposition 3.4 irdf] or
(Corollary 1.3.1(a) in §8]) guarantees that the multivalued map () is measurable.
Notice thattheset ( ); Jisclosed. Consequently, the values ofare non-empty and
compact, and hence, there exists a measurable selecfiofor ~ with

1AC) O LaO) () ca2( )|, a6 T (46)

We de“ney,:J E as follows:

S ( )x0+Kq( )xl

+ T (... )e()d, [0, 1],
J/z( ): gl( ,MZ( i“))v ( l’,S,’],i N, (47)
Co( -osi)gilsiua( 7))+ K (0 osi)gi(siua( ;)

o T (sie Yo )d

+f0 T(..)()d, [siy +1],i N.

Obviously,y» (u1). Now, we estimate the quantity y; ..y» . To do this, we consider
three cases.

Casel. [0, 1]. Inview of (3), (15), (47), (46) and @47), we have
|y ) - 920)|

[T ¢ OlAO-£O]
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L Uy .. U2 /O‘ WL:[( )d

L ouy..up . (48)

Case2. ( ;s]. Using (11), we get

”3’1( ) -y2( )”
= e (7)) &l ua( )]
N||u1( l) ..Mg( l) || N uqi..u> . (49)

Case3. [s;, i+1),i N.From @) and (49), we derive

||S ( ..si)gi(Si,Ml( ,)) S ( --St)gi(St-MZ( z))”
Llg(sima( ) - @soa( )] LN wr .z - (50)

By (4) and (12), we arrive at

1K € .s)gi(sivua( ;) K s)g(siua( )]
IK (s |g(sivual ;7)) g (sivua( )]

L(l+max{1,ﬁ})/\/' Ui ..Uy . (52)

Moreover, as in é8), one can show that
H/ T( ..)a()d / T( ..)()d H
0 0
L Uy ..U (52)
and
H/iT (si--- )a( )d ...fiT (si--- Y2()d H
0 0
L uy..u . (53)

Now, by 48)...53), we conclude that

1
V1. Y2 u.v L(Z +N.+(l+max{1,m})./\f>. (54)
As a consequence ofl(y), Eq. 64) becomes

()92 < u.w, (55)

where =L(2 +N.+(1 +max{1,ﬁ})/\/) < 1. By interchange o the role of; and y, in

the above discussion, we conclude that is a contraction. So, applying Lemma, shows

Page 14 of 31
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that has a“xed point which is anS-asymptotically -periodic mild solution to Problem
). O

Remark 3 Ifthere is noimpulse e ect, thenN = A/ = 0, and hence inequalityX7) becomes
2L <1.

Now, we present another result concerning the existence$asymptotically -periodic
solutions for Problem ().

We need the following “xed point theorem for multivalued functions and a compactness
criterion in PC(J,E).

Lemma 3 ([49], Corollary 3.3.1) Let W be a closed convex subset of a Banach space X and
N:E  Py(W) be a closed multifunction which is -condensing on every bounded subset
of W, where is a non-singular measure of noncompactness defined on subsets of W, then
the set of fixed points for N is non-empty.

Lemma 4 ([50], Lemma 1.2) Let D PC(J,E). Assume that
(i) Lim u( ) =0, uniformly foru D.
(ii) The set Dy, is equicontinuous for every i N, where

Dy={y CU.E):y ®)=y@).t Ji=@tily (&)=y(£).y D}

(ili) Foranyi N,andany ], theset{y (t):y Dy} isrelatively compact in E.
Then D is relatively compact in PC(J ,E).

Theorem 2 Assume that (HA) and the following conditions are verified:
(HF) F:Jx E  Pg(E) such that:
(i) Foreveryx E, the multivalued functiontS  F(t,x) is measurable.
(i) Foralmostt ], the multivalued function x S F(t,x) is upper
semicontinuous.
(iii) Foramyx PC(]J,E), the set

Stewy =1 T E, islocally integrableand () F( ,x()),
a.e. ]}

is not empty.
(iv) There exists a continuous function ] (0, ) with

|F¢t2)||  ©O@Q+ z) (42 JxE.

(Hg) Foranyi N,g;:[,s]%ES E(i N)isuniformlycontinuouson bounded sets
and for any z  E, the function gi( ,2) is continuously differentiable at s; such
that (10), (11), (14) and the following conditions are satisfied:

(i) There is a bounded continuous functionh ] ] with lim h()=0
and

”gl( 1Z)|| h ( )( z +1)l (l, ,Z) N x [tl':si] x E. (56)
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(ii) Foranyt ], the function.z  g(t,z) is compact.
Then Problem (1) has an S-asymptotically -periodic mild solution provided that the
families {S (¢) :t>0}, {K (t):¢t>0} and {T (t):t> 0} are compact,

) ( ) a1 B
hm/0 W( (+ )+ @®)=0, (57)
1
SUI])/O (t)d <m, (58)
and
+L +L zmax{l,ﬁ}<%, (59)

where =sup, ; h (t) ,and 3 is as defined in (14).

Proof Due to (HF) (iii), we can consider a multioperator on SAP PC(J,E) de“ned as
in (18).

In the following steps we show that satis“es the assumptions of Lemma.

Step 1. In this step, we demonstrate that, ik SAP PC(J,E), y (x), then
lim y( + ).9() =0.

Notice that condition (Hg;) (i) implies (Hg;)(ii), so Egs. 21)...23) are satis“ed. Now, let
f S}ﬂ(_’x(_» and  [s1, #1];i>1. Asin 4), we have

H/O T(+ ..)()d /O T( .. )()d H
/___OT( O+ )|d

+/O T O+ ).fO)d |

=L +D. (60)
From the continuity of , thereis such thatsup, o | (?) , and hence
wp OO @+ %), (61)

Then, using @), (HF) (iv) and (61), we get

0 .1
L (1+ x) L/lflpl%d

_@+ x) L 1+l + )
1 1+[u]

(62)
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Also, in view of @) and (HF) (iv), we arrive at

I 1T ¢ OH|IFC+ )..rO)|4
0

W1
2L(1+ x )/O %( (+ )+ (@)d . (63)

Then, by 60), (62) and (63), it follows that

/0+ T(+ ..)()d /0 T( ..)()d H

@+ x) L 1+KIC+ )
[kl 1+[p

.1
e x) [ (e @) (64)

Similarly,

/f T (si+ ...)()d .../()SiT(si...)f( )d H

@+ x) L L+lulsi+ )
i 1+ uls,

Si (51' ) 1
+2L(1+ x )/O W( (+)+ @®)d. (65)
Then, from (21)...23), (57), (64) and (65), we derivelim y( + )..9() =0.
Step2. PuD ={u SAP PC(J,E): u }, where

_Lwo +L(x + J@+max{l g+ +L +3 66
- Lo.[+L +L pmax{l,;h}+ 3] ' )

Due to Eq. £9), is well de“ned. In this step, we show that, ik D andy (%), then

y .
() Let [0, 1]. Then from (4)...6) and (HF) (iv), we get

1

lyO)| L% +L x (1+max{1,m}>

1 1
+(1+ x )Lmax{l,m}/o ®d

1 1+ x
L xg +L x; [1+max{l,— +
[ 4

L X0 L X1 1 X 1, . (6;)
ma — —

(i) Let ( 1,8, forsomei N. In view of (56), we have

la( >Nl €+, (68)
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where =sup, ; & () . Moreover, from (15), it follows that
suple (six( )] 2 + D). (69)
Next, let  [s;, w1]- Inview of (4), (5) and (69), we arrive at

”S ( --Si)gi(si'x( z)) K ( "Si)gi(si’x( z))”
<L +L 2max{1,ﬁ})( +1). (70)

Furthermore, by 6) and (HF) (iv), and 68), we obtain

frcovon]

Lmax{l,ﬁ}(1+ x )/0 ®d

(1+ x )Lmax{l,ﬁ}sup/o td <%l. (71)

J
Similarly, we obtain

/SiT(si... ¥()d H %1. (72)
0

sup
i N

As aresult of 67), (68), (70)- (72), we arrive at

1+

L +L 1+ 1 1 +
su1])||y( )H X0 X1 < max{ ,HD o

+ +1)+<L +L zmax{l,ﬁ})( +1)

+1

4

1
L xg +L x <1+max{1,m}>+

1 1
+L +L omax{1l,— ¢+ =
i) 2

[ Erik
+ +L +L omax{1l,— ¢+ =
ul) 2

Therefore, our aim in this step is achieved.

Now, as a result of Steps 1 and 2, is a multivalued function fromD  SAP PC(J,E)
to the non-empty subsets oD .

Step 3. isclosed (its graph is closed) ob .
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Let (x,), 1, Wu)n 1 betwosequencesi® withx, «x,y7, yandy, (x.), n 1.
Then we havef, S}E(, () Such that

S ( o+ K ()x1
LT 0d . o

g xa( 7)), (asdii N,

S ( s)gi(sixn( ;) +K (0 ..8)g;(si,%u( ;7))
ST (s Vol )
+ T (. )()d, [siy #1l,i N

yu( )=

Let bea“xedpointin[0, ;Jand/ =[O0, ]. Inview of (HF) (iv), we have

@] @@+ ) aes [0 ] (73)
Using similar arguments to Step 3 in the proof of Theorerh, one can show, by(3), that

f. fweaklyinL?(J ,E) and there is a sequence of convex combinations) of (f,) such
thatz, f,a.et J,and

nlim/O T( ...)z()d :/0 T(..)()d; [0, 1]. (74)
Now, due to the continuity ofg;( ,-),g;(s;,),S ( ..s;) andK ( ..s;), we arrive at
Tim gi( () =@( (1) (75)
and

Tim S ( 508 (sixn( 7))+ K (si)g (sixn( 7))

=S ( ..s,')gi(s,»,x( lf'))+K( ..si)gi(si,x( l)) (76)

Page 19 of 31

Noting that (z,) is a subsequence of,f), and hence by74)...76), there is a subsequence

of (y,) that converge to

S (wo+K ()x
T (. )()d, [0, 4],

g x( ), (osidi N,

S sogilsax( N+HK (sdg(six( )
ol T (si Y )d
T (. )()d, [siv walii N

y @)=

Because, y, we arrive aty =y . Moreover, HF) (i) ensuresthatf( ) F( ,x( )),a.e.
J. Soy ().
Step 4. lim y( ) =0uniformlyonD .
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Letx D andy (x). According to the de*nition of , there isf S}(_'x(,)) such that
y is given by (8). We consider two cases:
Casel. (s],i N.By(66),we get

lyOl = e (NI € +D7 O] (77)
Case2. [si #il,i N.Inviewof @), (15), (56) and (HF) (iv), we “nd

O =ls € -sdei(six( )]
K sdg(six( )]

+ /(;iT(si...)f( )d ”

+ /0 T( ..)()d ”

CD ey O

e [ D2

+I(L+ )/ 1i(|fl|'(”,).. ; R "~

It follows from (77) (78) and (57) that lim y(') =0uniformlyonD .
Step5.LetD= (D ). Inthis step, we claim that the seD;; is equicontinuous for every
i N,where

DU_z:{y C(Z,E)y():)’( )!t ]z ]l z+l]y(t) J’( )y D}

Lety Dy. Thenwe haver D andf S}(_'x(_» such that

S (Jwo+K ()x
+T(...)()d, [0, 4,

& x( ), (osidii N,

S s)gilsix( N+HK (s)dg(six( )
o' T (sio ) ()d
+T(..)()d, [siy #1lii N,

y()=

andy () =y( ;).
Casel.lety, » Jo=[0, 1]Jwith 1< ». We have

ly (2) -9 (D] = Iy 2)--9(1)]
IS (2)..S ()] %0 +|K (2)..K ()| »

/ZT(Z... )f(s)ds.../ YT ) )ds
0 0

+
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IS (2) .S (D) %0 +[|K (2)..K ()] x

[ O]

+/1”T(2... )T (1) FO)| d
0
= Q1+ Q2+ Qs (79)

From the compactness of the familiegS ( ): >0tand{K ( ): >0}, we get
iilelz lim1||5 (2)-S ()] %0 +|K (2)..K ()] 1 =0, (80)

and from the continuity of , we arrive at

lim @, = ;iml/ IT Cao)|IFO) 4
1+ )Lmax{l,lpil} iimlflz ()d =0. (81)

Moreover, since the family{7 ( ): >0} is compact, we get

lim Qs = ;imlfo NT (o) ()P @
(1+ ) lim /1||T(2...)...T(1...)|| ()d
2 1Jo

= 0. (82)

Equations {9)...82) lead tolim, , y (2)..y (1) =0.
Case 2. Lety, 2 (48] N)with ;1< ,. From the fact thatg; is uniformly continu-
ous on bounded sets,

;imlHy (2).9 (1] = ;imlHy( 2) 9( 1)
lim [l 22( 1)) &(x( )]

;iml sup Hg,'( 2:2) .. gi( 1,z)|| =0. (83)
Case 3. Letq, > (Si, i+l] (i N) with 1< .

lim ly (2.9 ()] = lim [5(2) ..o 2]
gimlnS (2..8) .8 C1-.5)]|g(sx( )]

+ ;im1 K(2..5)..K(1 --Si)”gz’(si'x( z))”

+ lim
2 1

. (84)

/ZT(Z... )f(s)ds.../lT(l... ) (s)ds
0 0
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Again, from the compactness of the familie§s ( ): >0tand{K ( ): >0}, we have
tim [S (2250 -5 (1.0 L )]
= ;iman (2..8)..K (1 ..si)” Hgi(si,x( l))”
=0. (85)

Furthermore, by repeating the arguments employed in Case 1, one can show that

;imlH/OZT(z... )f(s)ds.../olT(l... ) (s)ds|| = 0. (86)

Equations g4) and @6) ensure thatlim , , y ( 2)..y (1) . Therefore,T; is equicon-
tinuous foranyi N.

Step 6. Our goal in this step is showing that, for any N and any  J;, the setZ :=
{y( ):y D= (D )}isrelatively compactinE.

Casel.Let Jp=][0, 1].If =0, thenz'={xg}is compact. Let (0, 1]. be a “xed
point. We have

Z'=p()y (D))

- {s (Yo + K ( )x1+fo T( .. )Y()d f Stagpx D }

Now, forany (O, ), let

7t ::{s ( Yo+ K ( )x1+/0 ST (W) f Skagpx D }

Noticethat f() (1+ ) (),forany [0, ...],anyn 1.Because is continuous
on [0, ], the set{f,( ):n 1} is bounded, and hence, by the compactnessBf( ... );

[0, ...], the setZ{ is relatively compact inE. Moreover, for anyx D and any
f SIJ-:(-,x(-))' we get from @), (HF) (iv) and the continuity of ,

nn%H/O T( ..)()d /0 T L )()d H

Lmax{l,ﬁ}(l+ )lincl)/m ()d

=0.

Then there exist relatively compact sets that can be arbitrarily approximated to the set
Zt. Then itis relatively compact inE.

Case 2. Let [s;, ;];i N be a"xed point. Since the sefx( ;) :x D } is bounded,
then by (Hg;) (i), theset{y( ):y ).« D }={g( ,x( ;)):x D }isrelatively com-
pactinE.

Case3.Let [ ;s+1];i Nbea“xedpoint. Asin Case 2, the ségi( ,x( ;)):x D}
is relatively compact inE, and hence, by the compactness §f( ..s;), we conclude that
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{S ( ..s)g(six( ;) :x D }isrelatively compact inE. Also, due to the compactness of
K (2);t>0,these{K ( ..s)g(si,x( ;)):x D }isrelatively compactinE. Furthermore,
using the same arguments as in Case 1, one can show that the §gt<" ( ... )f( )d :
o Skagp® DYand{[g'T (s;... ¥()d :f Sk.x D }arerelatively compact.
As a result of this discussion, we conclude that, for any N and any: J;, the setzZ* =
{():y (D )} is relatively compact inE.

Now, according to Lemmad, Steps 4, 5 and 6 imply the sef = (D ) is relatively com-
pactin SAP PC(J,E).

Now, as a result of Steps 1...6, we conclude thats closed and completely continuous
from D to the family on non-empty convex compact ob . Applying Lemma3, hasa
“xed point which is an S-asymptotically -periodic mild solution to Problem (1). 0

Remark 4 Foranyt O, we have

2 .
t 1 MIeEBL ifo<[u| 1,
1+|pfe 2 if |u| > 1

To

(87)

To clarify this, we consider the following cases:
Casel.LetO4u| 1.Then

t t i 1wy ifo ¢ 1,
1+|uj¢t tec- 12 .
ul mo A e L
So,
t"'l 2

T+ule  ul@+o’

Case 2. Letu| > 1. In this case, we have

¢ L1 t A 1 %; ifo ¢ 1,
...1_ 1 1 2 . .
1+|pe ItT_W 12 ife>1,
which yields

t 1

2
_ — t O.
1+|ujt 1+t

Then (87) holds.
4 Examples
Examplel Let :%,m:4, =2 ,J=][0, ),si:if;i {0} N,and Lr:(2i...l)l—;i N.
Observe that, fori N, si, =sipa=(i+4)5 =s;+2 ,and 44=(2(+4)...13= ;+2 .

Let ={s=(s1,52):s2+s5 1},andE=L?( ). De"ne anoperatorA:D(A) E Eby

Aw) = u..u, (88)
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with D(A) = H?( ) H( ). Itis known that (see L9]) A is a sectorial operator of type
{M, , ,u}with p=...1and =3. LetZ be a non-empty, compact and convex subset of
E, =sup, , z .Consider the multivalued functionF :Jx E  2¢ de“ned by

F( ,u):={v 4,z Z}, (89)
whereforanyz Zany(,u) JXE, v ,.: R;v ,.(s) = “(:;f)”@ z ; >0.SinceZ
is a non-empty, convex and compact subset, the valuegadlso are. Moreover,

1 1
]w(ﬁm—?§(+n 2z —= O J, (90)

h(E( ,u),F( ) (/IV uz(8) ¥ ,v,z(S)|2dS)2v z 2
= Tl/ [sinu(s) .. sin v(S)|2dx)%

— / |u(s) .. (s)| dx)?

= u.v, (91)
and

W(F( +2 ,u),F( ,u)) </|V +2 uz(s) v ,u,z(s)|2ds>2, z Z

2
1

dx)2

_ sinu(s) + 1 sinu(s) + 1
- +1+2 7 +1

1

1 ] 9 3
(7172 ) +1)</2 | s1nu(s)+1| ds)

2 ( +1)
(+1+2)( +1)

(u +1)=Lo( ) u +1). (92)

Dueto (91) and 92), Egs. {) and (8) are veri‘ed with Ly( ) = — andLy( ) = %;
[0, ).

Next, in view of 87), and sincelu| = 1, it follows that

(..)-1 2
T+ o) 1+ .7

0, [0, 1]
Therefore,
— d
| wemic oy HO
1 1
2 —d
/01+ e+
[t
o +2|1+ .. +1

In[1+ |
(+2)°
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which yieldslim fo 1+Iu|( Ll( )d =0. Similarly,lim fo 1+Iu|( ()d =0.
Hence, @) and (15) are veri‘ed. Moreover

- )
—sug)/o T+ ) Li()d 4. (93)

Now, again from 87), one has

.1

lim / WLZ( )d

. 1 2
( +1)hm/0 I+ .. (( F1+2 ) +1)>d
. 1 1 1 1
( +1)11m/0 |:1+ e 17714 0 +1+42 ]d
. 1 1 1
=( +1)hm|: +2/0 [1+ ¥ +1]d

1 / 1 1
. + d
+2+2 Jo [1+ ... +1+2

_ . 2In]1+ |
—( +l) lll'l'lf2
. 1
.. (+1) lim W[1n|1+ [+In]1+2 + |..In2 +1)]
=0, (94)

which means that (.6) holds.
Furthermore, foranyi N, de“neg;:[t;,s;]x E  Eby

u(s)sini

&( ,u)(s) = (,u) [us]xEs (95)

where is a positive real number. Obviously for any  E, % (g( ,u))(s) = (cosi )u(s);
t J.Notice that, for anyu E,

lim || gem( +2 ,u) g 1)

-

L

u(s)sinG+m)( +2 ) u(s)sin(i )’2 )%
; ds

i+m

2
lim — u =0.
i i

Then (10) is satis“ed. Moreover, for any;,u, E,
||gi( V1) --gi( ,Mz)”

:7</|u1(s)sini .. u(s)sini |2afs>2

Uy .. U2 (96)
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and

1

— 2 . 2 5 )2
|g;(siv 1) .. g (51, 12) | = / |ua(s)(cosi ) ..up(s)(cosi )| ds

Uy ...u2) . (97)

From (96) and (97), it follows that (11) and (12) hold with N = A = . In addition,

le )= ( [

and

u(s)sini |?
i

ds)2 7 u ( u +1) (98)

lgi(s:,2)|| = (/‘ u(s)cosisi‘za’s)2 u (u +1). (99)

By (98) and (99), we arrive at (L3) and (14) are veri“ed where ;1= ;=
Now, all the assumptions of Theoreni are satis“ed, so the problem

‘D, x(,s) Ax( ,9)+F( ,x()), ae. (si wli N {Ohs ,
x(8) =g wx(58), i Ns o

x(8)=gi( x( ;9)), (si]i Nysoo

x(0,s) = x0(s), x (0)=x1(s); s ,

x( ,8)=0, J,s .

has anS-asymptotically 2 -periodic mild solution,x:J  L?( ), provided that
1
8 +3 < 3 (100)

whereA, F, g; are given by 88), (90) and (94). By choosing and su ciently small, we
can arrive at (00).

Example 2 LetA, ,E,m, =2 ,],s;, ;i NbeasinExampld, Z be a non-empty
convex compact subset &, the families{S (¢) :¢> 0}, {K (¢) :t>0} and{T (¢) :¢t> 0} are
compact [19). De“ne a multivalued functionF:J x E  Pu(E) by

F( ,u)= (”—-F?Z (101)
1+ )2
where >0and =Sup{ z :z Z}. Clearly for everyx E, F( ,x) is strongly
measurableF( ,-) is upper semicontinuous and, forany PC(J,E), the functionf( )=
ﬁzo; zo Zis locally integrable andf( ) F( ,u( )); J. Moreover, in view of
(101, foranyy Eandany J,
u +1
G 2= O@e ), (102)

1+ )2
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where

)= m ; (103)

We show that 67) and (68) are veri“ed. In view of 87), and by arguing as in44), one
has

i [, i oy (200 O

. 1 1 1
= 11m/|: < T+ 3>:|d
o L1+ .. \( +1+2)2 ( +1)
. 1 1 1
hm/O [1+ ( v1+2 +1)}d
_ 11

Then (57) holds. Furthermore,

sup/O ()d =sup 2_:2 . (104)

Next, let K : D(K) =E E be a linear bounded compact operator and for any N,
de‘neg;:[ ;,s;]x E Eby

_ (Ku)(s)
& ,u)s)= i+ (105)
Notice that
_ - Ku)(s)
g(si,u)(s) = drs)2 : (106)

In view of (105) and (106), we get

lim gen( +2 u)..gi( )
) u(s) u(s) ? 1
K ihm(/'(”_z Y+ 12 ) ds)

1 1|,
(+2 )1+ +2) i1+ )‘_ ’

2 \3
ds>

LU K Uy ..Uz ,

K u lim

1

lgi( ) ..gi( w2
_ ( / (Ku1)(s)  (Kuz)(s)
ia+ ) i@+ )
K|
i+ ) ™
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Ki
et (529
K u
1+

2 \3
ds>

=h()u,

and
_ (] &)
el = ([ | ooy
K u
i(1+s:)?

2 \3
ds>

K (u +1).

Then (10), (11), (14) and (56) are veri‘ed with N =A'= K andh ( )={—; Jand
= 2= K . Notice that, by the compactness oK, the function g;( ,-);i N is com-
pact, and hence all assumptions of Theorethare satis“ed. So, by applying Theorerg,
Problem (1), whereA as be in exampleX) and F, g; are given by {02 and (105), has an

S-asymptotically 2 -periodic mild solution provided that 2 < ;- = %2 and k < %4.

Example 3 LetA, ,E,m, =2 ,], ,s;, i NbeasinExample, Z a non-empty
convex compact subset of and xg, x; two “xed elements ofE. Forany (,s) (/, )and
anyx:J E,we denotex( )(s) by x( ,s). Consider the impulsive semilinear di erential

inclusion:
Dy, x( ,s)  x( ,8)..x( ,5)+ Cfgzcl(+’s))2,
a.e. (S,', i+1],i N {O},S ,
+ _ x( ;8)sind .
x(i,s)—xm, i N;s , (107)
x( ,S): i;lol‘ ’ ( iSi]ai le ’
x(0,8) =x0(s),  x(0)=mxls); s
x( ,s)=0, J.s
LetF:Jx E 2 be de“ned by
F( = S84 5 (108)
' 4001+ )
Obviously,F veri“es (i) and (ii) of (HF). Moreover,
F(,0 1 . 109
” (’ )” 40(1+)_ ()1 ], ( )
h(E( ,u),F( ,v)) Wl-l-) u..v, (110)
and
h(F( +2 F !
(FC+2 u)FCw) a5ty 1)
1
ao(+1eay v Y (111)
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It shows that (7) and (8) are satis“ed withLi( ) = ﬁ andLy( )= m;
[0, ).De"ne
u(s) sin i
&( ,u)s) T (u) [asi]xEs . (112)

Using the same arguments as in Example one can demonstrate thatd) and (10)...16)
are obtained withN = A= ;= ;=24 and L. Notice that L = 3. So,L(2 +N. +
a+ max{l,ﬁ})./\/) < 1 By applying Theoreml, Problem (L07) has anS-asymptotically
2 -periodic mild solution.

Conclusion Two existence results ofs-asymptotically -periodic of mild solutions to
non-instantaneous impulsive semilinear di erential inclusions of order 1 << 2 and gen-
erated by sectorial operators are given This work generalizes much recent work such as
[18..20] to the case when there are impulse e ects and the right-hand side is a multivalued
function. Moreover, our technique can be used to develop the work ihZ, 15..17, 21, 23...
25] to the case when the linear part is a sectorial operator, the nonlinear part is a multi-
valued function and we have impulse e ects. There are many directions for future work,
for example:

1— With the help of technique in [1], we study the existence of solutions for Problem (1)
on a time scales.

2— Investigation an existence theorem for a nonlinear singular-delay-fractional differen-
tial equation considered in [42, 43], when it contains a sectorial operator as a linear
term and the nonlinear term becomes a multivalued function instead of single-valued
function.

3— With the help of technique in [3], discuss the numerical solutions for Problem (1) on
a closed bounded interval.

4— Study the S-asymptotically periodic solutions to Problem (1) when the sectorial op-
erator is replaced by almost sectorial.

5— Study the S-asymptotically periodic solutions to Problem (1) when it involves p-
Laplacian operator , as well as when the Caputo derivative is replaced by the -
Caputo or -Riemann-Liouville derivative. For contributions on BVP involving the

-Riemann-Liouville derivative, see [3] and for references on BVP containing the

p-Laplacian operator , see [6, 8].
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