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Abstract

In this paper, we prove two results concerning the existence ofS-asymptotically
� -periodic solutions for non-instantaneous impulsive semilinear di�erential
inclusions of order 1 <� < 2 and generated by sectorial operators. In the “rst result,
we apply a “xed point theorem for contraction multivalued functions. In the second
result, we use a compactness criterion in the space of bounded piecewise continuous
functions de“ned on the unbounded intervalJ= [0,� ). We adopt the fractional
derivative in the sense of the Caputo derivative. We provide three examples
illustrating how the results can be applied.
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1 Introduction
Fractional calculus has become a well-established branch of mathematical analysis. It has

many applications in engineering and science. Much work has appeared studying vari-

ous models involving fractional di�erential boundary value problems and providing so-

lutions to those models using analytical methods or numerical methods. We highlight

some recent work involving fractional di�erential equations. Agarwal et al. [1] investi-

gated existence and uniqueness results on time scales for fractional nonlocal thermistor

problems in the conformable sense. Sunarto et al. [2] developed a numerical method us-

ing a quarter-sweep and PAOR to solve a one-dimensional time-fractional mathemati-

cal physics model. Rezapour et al. [3] showed the existence and uniqueness of solutions

for a general multi-term fractional BVP involving the generalized� -RL operators. Then

they suggested two numerical algorithms, namely, the Dafterdar-Gejji and Jafari method

(DGJIM) and the Adomian decomposition method (ADM) in which a series of approxi-

mate solutions converge to the exact ones. Agarwal et al. [4] discussed the existence and
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uniqueness of solutions for a nonlocal problem with integral transmitting condition for

mixed parabolic-hyperbolic type equations with Caputo fractional derivative. Agarwal et

al. [5] provided a detailed description of impulsive fractional di�erential equations using

Lyapunov functions and overviewed results for the stability in Caputo•s sense. Khan et al.

[6] focused on the existence and uniqueness of solutions and Hyers…Ulam stability for

ABC-fractional DEs withp-Laplacian operator. Khan et al. [7] studied the stability and

numerical simulation of a fractional order plant-nectar-pollinator model. Khan et al. [8]

proved the existence and Hyers…Ulam stability of solutions to a class of hybrid fractional

di�erential equations with p-Laplacian operator.

The problem of existence of non-constant periodic solutions for fractional order models

has became one of the most interesting topics to conduct research on. This is particularly

due to the di�erences between systems of integers order and systems of fractional orders in

terms of the existence of non-constant periodic solutions. In much work, such as [9…14],

the authors have shown that non-constant periodic solutions of fractional order systems

do not exist contrary to the case where the order of the system is an integer. Therefore,

the concept of an asymptotically periodic solution for fractional di�erential equations or

inclusions is introduced and discussed in much work. For example, in [12, 15…17], the

authors considered semilinear di�erential equations of order� � (0, 1) generated by aC0-

semigroup, while the papers [18…20] addressed semilinear di�erential equations of order

� � (0, 1) generated by sectorial operators. Moreover, the asymptotically periodic solu-

tions for delayed fractional di�erential equations with almost sectorial operator of order

� � (0, 1) are examined in [21]. Rogovchenko et al. [22] studied the asymptotic properties

of solutions for a certain classes of second order nonlinear di�erential equations. Very re-

cently, Wang et al. [23] discussed the asymptotic behavior of solutions to time-fractional

neutral functional di�erential equations of order� � (0, 1).

For more information regarding this subject, we refer the reader to [24, 25].

It is worth noting that the problems discussed in all cited work above do not contain

impulse e�ects, whether it is instantaneous or non-instantaneous, and the nonlinear term

is a single-valued function.

Let � � (1, 2),E be a Banach space,m be a natural number,� > 0, J = [0,� ),

0 = s0 < � 1 � s1 < � 2 < · · · < � m � sm = � < � m+1 = � + � 1 � sm+1 = � + s1 < · · · ,

with limi�� � i = � , sm+i = si + � , and� m+i = � i + � ; i � N = {1,2,3, . . .} andA : D(A) � E �

E be a sectorial operator of type{M, � , � ,µ }, whereM > 0,� � (0, �
2 ) andµ � R. Moreover,

let F : J × E � 2E …{� }, be a multivalued function,gi : [� i,si] × E Š� E; i � N, x0 � D(A)

andx1 � E.

Motivated by the above cited work, we prove two results concerning the existence of

S-asymptotically� -periodic mild solutions to the following non-instantaneous impulsive

semilinear di�erential inclusion:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cD�
si,�

x(� ) � Ax(� ) + F(� ,x(� )), a.e.� � (si, � i+1], i � N � { 0},

x(� +
i ) = gi(� i,x(� …

i )), i � N,

x(� ) = gi(� ,x(� …
i )), � � (� isi], i � N,

x(0) = x0, x�(0) = x1,

(1)



Alsheekhhussain et al.Advances in Di�erence Equations       (2021) 2021:330 Page 3 of 31

where cD�
si,�

x(� ) is the Caputo derivative of the functionx at the point � and with lower
limit at si [26]. In the “rst result, we apply a “xed point theorem for contraction multival-
ued functions, and, in the second result, we use a compactness criterion in the space of
bounded piecewise continuous functions de“ned on the unbounded intervalJ = [0,� ).
Our work generalizes much recent work such as [18…20] to the case where there are im-
pulse e�ects, and the right-hand side is a multivalued function.

To the best of our knowledge, there is no work onS-asymptotic � -periodic behavior
of solutions to fractional non-instantaneous impulsive di�erential inclusions with order
� � (1, 2) and generated by sectorial operators, and this fact is the main goal in the present
paper.

To clarify the advantage of this study, we mention that two methods have been provided
to demonstrate the existence ofS-asymptotic � -periodic solutions for semilinear frac-
tional di�erential inclusions in the presence of non-instantaneous impulse e�ects, and in
which the nonlinear part is a multivalued function, and the linear part is a sectorial oper-
ator. Moreover, the technique presented in this paper can be used to generalize the work
in [12, 15…21, 23…25] to the case where the linear part is a sectorial operator, the nonlin-
ear part is a multivalued function, and there is impulse e�ects. In addition, Problem (1)
can be investigated on time scales using the arguments in [1], and using the arguments
in [3, 6, 8], one can examine the asymptotic periodic solutions for Problem (1) when the
Caputo derivative is replaced by the� -Caputo derivative,� -RL derivative, Atangana…
Baleanu derivative orp-Laplacian operator. Also, the technique used in this paper can be
applied to study the asymptotic periodic solutions for many fractional di�erential equa-
tions or inclusions generated by sectorial operators or almost sectorial operators.

For more information related to fractional di�erential equations and inclusions with
non-instantaneous impulse e�ects, we refer the reader to [27…31]. See [32…35] for more
information about semilinear di�erential equations and inclusions with sectorial opera-
tors.

It is worth noting that Refs. [36…44] contain very important and interesting topics in
mathematics as well as their applications such as di�erential equations, fractional calculus
and ABC-fuzzy-Volterra integro-di�erential equation.

The paper is organized as follows. Section2 includes de“nitions and basic informa-
tion that we need to prove our results. In Sect.3, we provide two existence results ofS-
asymptotic � -periodic solutions for Problem (1). In Sect.4, we give three examples to
illustrate our theoretical results.

2 Preliminaries and notations
Let J0 = [0,t1] and Ji = (� i, � i+1], i � N. It is known that the vector spaces

PC(J,E) :=
{

x : J � E,x is bounded,x|Ji � C(Ji,E)
}

and

SAP� PC(J,E) :=
{

x : J � E,x is bounded,x|Ji � C(Ji,E), lim
� ��

∥
∥x(� + � ) …x(� )

∥
∥ = 0

}

are Banach spaces endowed with the norm

	 x	 := max
� � J

∥
∥x(� )

∥
∥.
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Definition 1 ([45]) Let M > 0, � � (0, �
2 ), andµ � R. A closed linear operatorA : D(A) �

E � E with dense domain is called sectorial of type{M, � , � ,µ } if:

(i) 	 � /� S� + µ 
 	 R(	 � ,A)	 exists, where R(	 � ,A) is the � -resolvent operator of A
defined by

R
(
	 � ,A

)
:=

(
	 � I …A

)…1

and

S� + µ =
{
µ + 	 � : 	 � C,

∣
∣Arg

(
…	 � )∣

∣ < �
}
.

(ii)

∥
∥R

(
	 � ,A

)∥
∥ �

M
|	 � …µ |

, 	 � /� S� + µ .

Remark 1 ([45], Remark 2.1) IfA is a sectorial operator of type{M, � , � ,µ }, then it is the

in“nitesimal generator of a� -resolvent family of operators{T� (� ) : � � 0} in E de“ned by

T� (� ) =
1

2� i

∫



e	� R

(
	 � ,A

)
d	 , (2)

where
 is a suitable path and	 � /� S� + µ for 	 � 
 .

Definition 2 ([45], De“nition 3.1) Let A be a sectorial operator of type{M, � , � ,µ } and

f � L1([0,b], E). A continuous functionu : [0,b] � E is called a mild solution to the Cauchy

problem:

⎧
⎨

⎩

cD�
0,� x(� ) = Ax(� ) + f (� ), � � [0,b],

x(0) = x0, x�(0) = x,

if

x(� ) = S� (� )x0 + K� (� )x1 +
∫ �

0
T� (� …� )f (� ) d� , � � [0,b],

where

S� (� ) =
1

2� i

∫



e	� 	 � …1R

(
	 � ,A

)
d	 ,

K� (� ) =
1

2� i

∫



e	� 	 � …2R

(
	 � ,A

)
d	 ,

andT� (� ) is given by (2).

The following lemma provides estimates on	 S� (� )	 , 	 K� (� )	 and 	 T� (� )	 .
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Lemma 1 ([45], Theorems 3.3, 3.4)Let A be a sectorial operator of type {M, � , � ,µ }. Sup-
pose µ < 0.Then L = L(M, � , � ) > 0 such that

∥
∥S� (� )

∥
∥ �

L
1 + |µ |� �

,
∥
∥K� (� )

∥
∥ �

L(� + 1)
1 + |µ |� �

, and

∥
∥T� (� )

∥
∥ �

L� � …1

1 + |µ |� �
, � � > 0.

(3)

Remark 2 ([19], Remark 3) In view of (6), we get:

(i)

∥
∥S� (� )

∥
∥ � L, � � > 0. (4)

(ii)

∥
∥K� (� )

∥
∥ � L +

L�
1 + |µ |� �

�

⎧
⎨

⎩

L + L� , if 0 <� < 1,

L + L
|µ |� � …1, if � � 1

� L
(

1 + max

{

1,
1

|µ |

})

, � � > 0. (5)

(iii) As in (ii), we derive

∥
∥T� (� )

∥
∥ �

L� � …1

1 + |µ |� �

� L max

{

1,
1

|µ |

}

, � � > 0. (6)

Based on De“nition2, we can give the de“nition of anS-asymptotically� -periodic mild
solution for Problem (1).

Definition 3 A function x � SAP� PC(J,E) is called anS-asymptotically� -periodic mild
solution for Problem (1) if it has the form

x(� ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + K� (� )x1

+
∫ �

0 T� (� …� )f (� ) d� , � � [0,� 1],

gi(� ,x(� …
i )), � � (� i,si], i � N,

S� (� …si)gi(si,x(� …
i )) + K� (� …si)g �

i(si,x(� …
i ))

…
∫ si

0 T� (si …� )f (� ) d�

+
∫ �

0 T� (� …� )f (� ) d� , � � [si, � i+1], i � N,

wheref (� ) � F(� ,x(� )), a.e. for� > 0.

3 Existence of S-asymptotically ω-periodic mild solutions for Problem ( 1)
In order to give the “rst result, we need the following lemma which is due to [46].
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Lemma 2 Let (X,d) be a metric space and G be a contraction multivalued function from
X to the family of non-empty closed subsets of X. Then G has a fixed point.

For notations about multivalued functions we refer the reader to [47].

Theorem 1 Suppose the following assumptions are satisfied.

(HA) A : D(A) � E is a sectorial operator of type {M, � , � ,µ }, where M > 0, � � (0, �
2 ),

and µ � R.
(HF) F : J × E � Pck(E) is a multivalued function such that

(i) For any z � E, the multivalued function � � F(·,z) is strongly measurable.
(ii) For any x � PC(J,E), the set

S1
F(·,x(·)) :=

{
� : J � E, � is locally integrable and � (� ) � F

(
� ,x(� )

)
,

a.e. � � J
}

is not empty.
(iii) There is a continuous function L1 : J � (0,� ) such that

h
(
F(� ,z1),F(� ,z2)

)
	 � L1(� )	 z1 …z2	 , � � � J,z1,z2 � E, (7)

where h is the Hausdorff distance.
(iv) There is a continuous function L2 : J � (0,� ) such that

h
(
F(� + � ,z),F(� ,z)

)
	 � L2(� )	 1 + x	 , � � � J,z � E. (8)

(v) The function � (� ) := 	 F(� , 0)	 = supz� F(� ,0) 	 z	 is continuous, bounded on J
and satisfies the relation

lim
� ��

∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
� (� ) d� = 0. (9)

(Hgi) For any i � N, gi : [� i,si] × E Š� E such that, for any x � E, the function � 
� gi(� ,x)

is differentiable at si and
(i)

lim
� ��
i��

∥
∥gi+m(� + � ,z) …gi(� ,z)

∥
∥ = 0, � z � E. (10)

(ii) There is N > 0 such that for any i � N

∥
∥gi(� ,z1) …gi(� ,z2)

∥
∥ � N 	 z1 …z2	 , � � � J, � z1,z2 � E. (11)

(iii) There is N > 0 such that for any i � N

∥
∥g �

i(si,z1) …g �
i(si,z2)

∥
∥ � N 	 z1 …z2	 , � z1,z2 � E. (12)
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(iv) There is 
 1 > 0 such that

sup
i� N

sup
� � J

∥
∥gi(� ,z)

∥
∥ � 
 1

(
	 z	 + 1

)
, � z � E. (13)

(v) There is 
 2 > 0 with

sup
i� N

∥
∥g �

i(si,z)
∥
∥ � 
 2

(
	 z	 + 1

)
, � z � E. (14)

Then Problem (1) has an S-asymptotically � -periodic mild solution provided that the
following conditions are verified:

lim
� ��

∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L1(� ) d� = 0, (15)

lim
� ��

∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L2(� ) d� = 0, (16)

and

L
(

2� + N· +
(

1 + max

{

1,
1

|µ |

})

N
)

< 1, (17)

where � = sup� � J
∫ �

0
(� …� )� …1

1+|µ |(� …� )� L1(� ) d� .

Proof Due to (HF)(ii), one can de“ne a multivalued function� on SAP� PC(J,E) in the

following manner: an elementy � � (x) if and only if

y(� ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + K� (� )x1

+
∫ �

0 T� (� …� )f (� ) d� , � � [0,� 1],

gi(� ,x(� …
i )), � � (� i,si], i � N,

S� (� …si)gi(si,x(� …
i )) + K� (� …si)g �

i(si,x(� …
i ))

…
∫ si

0 T� (si …� )f (� ) d�

+
∫ �

0 T� (� …� )f (� ) d� , � � [si, � i+1], i � N,

(18)

wheref � S1
F(·,x(·)).

Obviously,y � PC(Ji,E). We clarify that, ifx � SAP� PC(J,E), then� (x) is a closed subset

of SAP� PC(J,E). We do this in the following steps.

Step 1. We demonstrate that, ify � � (x), we have

lim
� ��

∥
∥y(� + � ) …y(� )

∥
∥ = 0. (19)

Sincex � SAP� PC(J,E),

lim
� ��

∥
∥x(� + � ) …x(� )

∥
∥ = 0. (20)

Now, we consider two cases.
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(i) If � � (� i,si] for somei � N, then� + � � [� i + � ,si + � , ] = [� i+m,si+m], and hence, using

(21) and (18), it yields

∥
∥gi+m

(
� + � ,x

(
� …

i+m
))

…gi
(
� ,x

(
� …

i
))∥

∥

�
∥
∥gi+m

(
� + � ,x

(
� …

i+m
))

…gi+m
(
� ,x

(
� …

i+m
))∥

∥

+
∥
∥gi+m

(
� ,x

(
� …

i+m
))

…gi
(
� ,x

(
� …

i
))∥

∥

�
∥
∥gi+m

(
� + � ,x

(
� …

i+m
))

…gi+m
(
� ,x

(
� …

i+m
))∥

∥

+ N
∥
∥x

(
� …

i+m
)

…x
(
� …

i
)∥
∥. (21)

(ii) If � � [si, � i+1] for some i � N, then � + � � [si + � ,� i+1 + � ] = [si+m, � i+m+1]. Using (4)

and arguing as in (21), it follows that

∥
∥S�

(
� + � … (si + � )

)
gi+m

(
si + � ,x

(
� …

i+m
))

…S� (� …si)gi
(
si,x

(
� …

i
))∥

∥

=
∥
∥S� (� …si)

∥
∥
∥
∥gi+m

(
si + � ,x

(
� …

i+m
))

…gi
(
si,x

(
� …

i
))∥

∥

� L
∥
∥gi+m

(
si + � ,x

(
� …

i+m
))

…gi
(
si,x

(
� …

i
))∥

∥. (22)

Moreover, in view of (3) and (14), we arrive at

∥
∥K�

(
� + � … (si + � )

)
g �

i+m
(
si + � ,x

(
� …

i+m
))

…K� (� …si)g �
i
(
si,x

(
� …

i
))∥

∥

=
∥
∥K� (� …si)g �

i+m
(
si+m,x

(
� …

i+m
))

…K� (� …si)g �
i
(
si,x

(
� …

i
))∥

∥

�
∥
∥K� (� …si)

∥
∥
∥
∥g �

i+m
(
si+m,x

(
� …

i+m
))

…g �
i
(
si,x

(
� …

i
))∥

∥

� 2
 2
(
	 x	 + 1

)∥
∥K� (� …si)

∥
∥

� 2
 2
(
	 x	 + 1

) L(� …si + 1)
1 + |µ |(� …si)�

. (23)

Next,

∥
∥
∥
∥

∫ � +�

0
T� (� + � …� )f (� ) d� …

∫ �

0
T� (� …� )f (� ) d�

∥
∥
∥
∥

=

∥
∥
∥
∥

∫ �

…�
T� (� …� )f (� + � ) d� …

∫ �

0
T� (� …� )f (� ) d�

∥
∥
∥
∥

�
∫ 0

…�

∥
∥T� (� …� )

∥
∥
∥
∥f (� + � )

∥
∥d�

+
∫ �

0

∥
∥T� (� …� )

∥
∥
∥
∥f (� + � ) …f (� )

∥
∥d�

= I1 + I2. (24)

Let � � […� , 0] be “xed. SinceF(� + � , 0) is compact, there isv� +� � F(� + � , 0) such that

∥
∥f (� + � ) …v� +�

∥
∥ = d(f (� + � ),F(� + � , 0)

� h
(
F
(
� + � ,x(� + � )

)
,F(� + � , 0)

)
. (25)
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From (7), (HF)(v) and (25), we get

∥
∥f (� + � )

∥
∥ � h

(
F
(
� + � ,x(� + � )

)
,F(� + � , 0)

)
+ 	 v� +� 	

� L1(� + � )
∥
∥x(� + � )

∥
∥ + � (� + � )

� 	 x	 L1(� + � ) + � (� + � ). (26)

SinceL1 and � are continuous onJ , there are two positive numbers� 1, � 2 such that

sup
t� [0,� ]

∣
∣L1(t)

∣
∣ � � 1, and sup

t� [0,� ]

∣
∣� (� )

∣
∣ � � 2. (27)

Then, from (3), (26) and (27), we have

I1 =

∥
∥
∥
∥

∫ 0

…�
T� (� …� )f (� + � ) d�

∥
∥
∥
∥

�
(
� 1	 x	 + � 2

)
L

∫ 0

…�

(� …� )� …1

1 + |µ |(� …� )�
d�

�
(� 1	 x	 + � 2)L

|µ |

∫ 0

…�

|µ |(� …� )� …1

1 + |µ |(� …� )�
d�

=
(� 1	 x	 + � 2)L

� |µ |
ln

1 + |µ |(� + � )�

1 + |µ |� �
. (28)

Next, let � � [0,� ] be “xed. From the fact that F(� + � ,x(� )) is compact, there are

z� +� ,z� � F(� ,x(� + � )) such that d(f (� + � ),z� +� ) = d(f (� + � ),F(� ,x(� + � ))) and

d(f (� ),z� ) = d(f (� ,F(� ,x(� + � )))). Then, by (12), (13) and (25), we arrive at

∥
∥f (� + � ) …f (� )

∥
∥

�
∥
∥f (� + � ) …z� +�

∥
∥ + 	 z� +� …z� 	 +

∥
∥z� …f (� )

∥
∥

� d(f (� + � ),F
(
� + � ,x(� )

)
+ 	 z� +� …z� 	

+ d(f (� ,F
(
� + � ,x(� )

)

� h(F((� + � ),x
(
(� + � )

)
,F

(
� ,x(� + � )

)

+ 2
∥
∥F

(
� ,x(� + � )

)∥
∥ + h

(
F
(
� ,x(� + � )

)
,F

(
� ,x(� )

))

� L2(� )
∥
∥1 + x(� + � )

∥
∥ + 2

∥
∥F(� , 0)

∥
∥ + 2h

(
F
(
� ,x(� + � )

)
,F(� , 0)

)

+ L1(� )
∥
∥x(� + � ) …x(� )

∥
∥

� L2(� )
(
1 + 	 x	

)
+ 2� (� ) + 3L1(� )	 x	 . (29)

By (3) and (29), we arrive at

I2 =
∫ �

0

∥
∥T� (� …� )

∥
∥
∥
∥f (� + � ) …f (� )

∥
∥d�

� 3L	 x	
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L1(� ) d�
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+ 2L
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
� (� ) d�

+ L
(
1 + 	 x	

)
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L2(� ) d� . (30)

By arguing as in (24), (28) and (30), one can show

∥
∥
∥
∥

∫ si+�

0
T� (si + � …� )f (� ) d� …

∫ si

0
T� (si …� )f (� ) d�

∥
∥
∥
∥

�
(� 1	 x	 + � 2)L

� |µ |
ln

1 + |µ |(si + � )�

1 + |µ |s�
i

+ 3L	 x	
∫ si

0

(si …� )� …1

1 + |µ |(si …� )�
L1(� ) d�

+ 2L
∫ si

0

(si …� )� …1

1 + |µ |(si …� )�
� (� ) d�

+ L
(
1 + 	 x	

)
∫ si

0

(si …� )� …1

1 + |µ |(si …� )�
L2(� ) d� . (31)

Sincesi � � when � � � , we can derive (19) from (9), (10), (15), (16), (20), (21)…(23),
(28), (30) and (31).

Then, due to (21)…(24), (28), (30) and (31), we arrive at (19).
Step 2. In this step, we show that, ifx � SAP� PC(J,E) andy � � (x), then y is bounded.
(i) Let � � [0,� 1]. Then, using (4)…(6), we get

∥
∥y(� )

∥
∥ � L	 x0	 + L	 x1	

(

1 + max

{

1,
1

|µ |

})

+ L max

{

1,
1

|µ |

}∫ �

0

∥
∥f (� )

∥
∥d� . (32)

On the hand, from (7), (9) and (27), we derive

∥
∥f (� )

∥
∥ �

∥
∥F

(
� ,x(� )

)∥
∥ �

∥
∥F(� , 0)

∥
∥ + h

(
F(� , 0),F

(
� ,x(� )

))

� � (� ) + L1(� )	 x	 � � 1 + � 2	 x	 . (33)

Then, by (32) and (33), we conclude that

sup
� � [0,� 1]

∥
∥y(� )

∥
∥ � L	 x0	 + L	 x1	

(

1 + max

{

1,
1

|µ |

})

+ L max

{

1,
1

|µ |

}
[
� 1 + � 2	 x	 )

]
� . (34)

(ii) Let � � (� i,si]; i � N. In view of (18) and (19), it follows that

∥
∥gi

(
� ,x

(
� …

i
))∥

∥ � 
 1
(
	 x	 + 1

)
(35)

and

∥
∥g �

i
(
si,x

(
� …

i
))∥

∥ � 
 2
(
	 x	 + 1

)
. (36)
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(iii) Let � � [si, � i+1]; i � N. In view of (4), (5), (35) and (36), we have

sup
� � [si,� i+1]

∥
∥S� (� …si)gi

(
si,x

(
� …

i
))

+ K� (� …si)g �
i
(
si,x

(
� …

i
))∥

∥

� L
 1
(
	 x	 + 1

)
+ L max

{

1,
1

|µ |

}


 2
(
	 x	 + 1

)
. (37)

Furthermore, using (3) and (33), we arrive at

∥
∥
∥
∥

∫ �

0
T� (� …� )f (� ) d�

∥
∥
∥
∥

� L
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�

∥
∥f (� )

∥
∥d�

� L
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
� (� ) d�

+ 	 x	 L
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L1(� ) d� . (38)

From (9), (15) and (38), there is� > 0 with

sup
� � J

∥
∥
∥
∥

∫ �

0
T� (� …� )f (� ) d�

∥
∥
∥
∥ � � (39)

and

sup
i� N

∥
∥
∥
∥

∫ si

0
T� (si …� )f (� ) d�

∥
∥
∥
∥ � � . (40)

As a result of (34), (35), (37), (39) and (40), we conclude thaty is bounded onJ .
Hence, � is a multivalued function from SAP� PC(J,E) to the non-empty subsets of

SAP� PC(J,E).

Step 3. The values of� are closed.

To show this, letx � SAP� PC(J,E) andyn � � (x), � n � 1, with yn � y in SAP� PC(J,E).

Then we havefn � S1
F(·,x(·)) such that

yn(� ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + K� (� )x1

+
∫ �

0 T� (� …� )fn(� ) d� , � � [0,� 1],

gi(� ,x(� …
i )), � � (� i,si], i � N,

S� (� …si)gi(si,x(� …
i )) + K� (� …si)g �

i(si,x(� …
i ))

…
∫ si

0 T� (si …� )fn(� ) d�

+
∫ �

0 T� (� …� )fn(� ) d� , � � [si, � i+1], i � N.

(41)

Let � be a “xed point in [0,� 1] and put J� = [0,� ]. Then

∥
∥fn(� )

∥
∥ �

∥
∥F

(
� ,x(� )

)∥
∥ �

∥
∥F(� , 0)

∥
∥ + L1(� )

∥
∥x(� )

∥
∥

� � (� ) + L1(� )	 x	 , � � � J� . (42)
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This relation with the fact that � and L1 are continuous guarantee that the family{fn :

n � 1} is bounded inL2(J� ,E), and hence, by Mazur•s lemma, there is a sequence (zn)n� 1

of convex combinations offn with zn � f strongly in L2(J� ,E). Hence, we can suppose,

without loss of generality, thatzn(� ) � f (� ), a.e.� � J� . Moreover, from (6) and (42), we

get

∥
∥T� (� …� )fn(� )

∥
∥

� L max

{

1,
1

|µ |

}
(
� (� ) + L1(� )

)
	 x	 , � � � J� .

Therefore, by the Lebesgue dominated convergence theorem and the continuity ofT� (� …

� ), we obtain

lim
n��

∫ �

0
T� (� …� )zn(� ) d�

=
∫ �

0
T� (� …� )f (� ) d� .

Consequently,

lim
n��

yn(� ) = S� (� )x0 + K� (� )x1 +
∫ �

0
T� (� …� )f (� ) d� , � � [0,� 1]. (43)

Similarly, one can show that, for any� � [si, � i+1]; i � N, we have

lim
n��

yn(� ) = S� (� …si)gi
(
si,x

(
� …

i
))

+ K� (� …si)g �
i
(
si,x

(
� …

i
))

…
∫ si

0
T� (si …� )f (� ) d� +

∫ �

0
T� (� …� )f (� ) d� . (44)

Remark that (HF)(iv) implies that f (� ) � F(� ,x(� )), a.e.� � J . So, from (43) and (44), we

arrive at

y(� ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + K� (� )x1

+
∫ �

0 T� (� …� )f (� ) d� , � � [0,� 1],

gi(� ,x(� …
i )), � � (� i,si], i � N,

S� (� …si)gi(si,x(� …
i )) + K� (� …si)g �

i(si,x(� …
i ))

…
∫ si

0 T� (si …� )f (� ) d�

+
∫ �

0 T� (� …� )f (� ) d� , � � [si, � i+1], i � N.

Then y � � (x).

Step 4.� is a contraction.
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Let u1,u2 � SAP� PC(J,E) andy1 � � (u1). Then we havef1 � S1
F(·,u1(·)) such that

y1(� ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + K� (� )x1

+
∫ �

0 T� (� …� )f1(� ) d� , � � [0,� 1],

gi(� ,u1(� …
i )), � � (� i,si], i � N,

Cq(� …si)gi(si,u1(� …
i )) + K� (� …si)g �

i(si,u1(� …
i ))

…
∫ si

0 T� (si …� )f1(� ) d�

+
∫ �

0 T� (� …� )f1(� ) d� , � � [si, � i+1], i � N.

(45)

Consider the multivalued function� : J � 2E de“ned by

� (� ) =
{

z � E :
∥
∥z …f1(� )

∥
∥ � L1(� )

∥
∥u1(� ) …u2(� )

∥
∥, a.e.� � J

}
.

We clarify that the values of� are non-empty. Let� � J . From (5), we get

h
(
F
(
� ,u1(� )

)
,F

(
� ,u2(� )

))
� L1(� )

∥
∥u1(� ) …u2(� )

∥
∥.

So, there isz� � F(� ,u2(� )) such that

∥
∥f1(� ) …z�

∥
∥ � h

(
F
(
� ,u1(� )

)
,F

(
� ,u2(� )

))
� L1(� )

∥
∥u1(� ) …u2(� )

∥
∥,

which leads to� (� ) �= � ; � � J . Moreover, the set� (� ) = � (� ) � F(� ,u2(� )); � � J is not
empty. Because the functionsf1, L1, u1, u2 are measurable, Proposition 3.4 in [47] or
(Corollary 1.3.1(a) in [48]) guarantees that the multivalued map� � � (� ) is measurable.
Notice that the set� (� ); � � J is closed. Consequently, the values of� are non-empty and
compact, and hence, there exists a measurable selectionf2 for � with

∥
∥f1(� ) …f2(� )

∥
∥ � L1(� )

∥
∥u1(� ) …u2(� )

∥
∥, a.e.� � J. (46)

We de“ne y2 : J � E as follows:

y2(� ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + Kq(� )x1

+
∫ �

0 T� (� …� )f2(� ) d� , � � [0,� 1],

gi(� ,u2(� …
i )), � � (� i,si], i � N,

Cq(� …si)gi(si,u2(� …
i )) + K� (� …si)g �

i(si,u2(� …
i ))

…
∫ si

0 T� (si …� )f2(� ) d�

+
∫ �

0 T� (� …� )f2(� ) d� , � � [si, � i+1], i � N.

(47)

Obviously,y2 � � (u1). Now, we estimate the quantity	 y1 …y2	 . To do this, we consider
three cases.

Case 1.� � [0,� 1]. In view of (3), (15), (47), (46) and (47), we have

∥
∥y1(� ) …y2(� )

∥
∥

� 	
∫ �

0

∥
∥T� (� …� )

∥
∥
∥
∥f1(� ) …f2(� )

∥
∥d�



Alsheekhhussain et al.Advances in Di�erence Equations       (2021) 2021:330 Page 14 of 31

� L	 u1 …u2	
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L1(� ) d�

� � L	 u1 …u2	 . (48)

Case 2.� � (� i,si]. Using (11), we get

∥
∥y1(� ) …y2(� )

∥
∥

=
∥
∥gi

(
� ,u1

(
� …

i
))

…gi
(
� ,u2

(
� …

i
))∥

∥

� N
∥
∥u1

(
� …

i
)

…u2
(
� …

i
)∥
∥ � N 	 u1 …u2	 . (49)

Case 3.� � [si, � i+1], i � N. From (4) and (49), we derive

∥
∥S� (� …si)gi

(
si,u1

(
� …

i
))

…S� (� …si)gi
(
si,u2

(
� …

i
))∥

∥

� L
∥
∥gi

(
si,u1

(
� …

i
))

…gi
(
si,u2

(
� …

i
))∥

∥ � LN 	 u1 …u2	 . (50)

By (4) and (12), we arrive at

∥
∥K� (� …si)g �

i
(
si,u1

(
� …

i
))

…K� (� …si)g �
i
(
si,u2

(
� …

i
))∥

∥

�
∥
∥K� (� …si)

∥
∥
∥
∥g �

i
(
si,u1

(
� …

i
))

…g �
i
(
si,u2

(
� …

i
))∥

∥

� L
(

1 + max

{

1,
1

|µ |

})

N 	 u1 …u2	 . (51)

Moreover, as in (48), one can show that

∥
∥
∥
∥

∫ �

0
T� (� …� )f1(� ) d� …

∫ �

0
T� (� …� )f2(� ) d�

∥
∥
∥
∥

� L� 	 u1 …u2	 (52)

and

∥
∥
∥
∥

∫ si

0
T� (si …� )f1(� ) d� …

∫ si

0
T� (si …� )f2(� ) d�

∥
∥
∥
∥

� L� 	 u1 …u2	 . (53)

Now, by (48)…(53), we conclude that

	 y1 …y2	 � 	 u …v	 L
(

2� + N· +
(

1 + max

{

1,
1

|µ |

})

N
)

. (54)

As a consequence of (17), Eq. (54) becomes

∥
∥y1(� ) …y2(� )

∥
∥ < � 	 u …v	 , (55)

where � = L(2� + N· + (1 + max{1, 1
|µ | })N ) < 1. By interchange o the role ofy1 and y2 in

the above discussion, we conclude that� is a contraction. So, applying Lemma2, shows
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that � has a “xed point which is anS-asymptotically� -periodic mild solution to Problem
(1). �

Remark 3 If there is no impulse e�ect, thenN = N = 0, and hence inequality (17) becomes
2L� < 1.

Now, we present another result concerning the existence ofS-asymptotically� -periodic
solutions for Problem (1).

We need the following “xed point theorem for multivalued functions and a compactness
criterion in PC(J,E).

Lemma 3 ([49], Corollary 3.3.1) Let W be a closed convex subset of a Banach space X and
N : E � Pck(W ) be a closed multifunction which is � -condensing on every bounded subset
of W , where � is a non-singular measure of noncompactness defined on subsets of W , then
the set of fixed points for N is non-empty.

Lemma 4 ([50], Lemma 1.2) Let D � PC(J,E). Assume that
(i) Lim� �� 	 u(� )	 = 0, uniformly for u � D.

(ii) The set D|Ji is equicontinuous for every i � N, where

D|Ji =
{

y� � C(Ji,E) : y� (t) = y(t),t � Ji = (ti,ti+1], y� (ti) = y
(
t+
i
)
,y � D

}
.

(iii) For any i � N, and any � � J , the set {y� (t) : y� � D|Ji } is relatively compact in E.
Then D is relatively compact in PC(J,E).

Theorem 2 Assume that (HA) and the following conditions are verified:
(HF)� F : J × E � Pck(E) such that:

(i) For every x � E, the multivalued function t Š� F(t,x) is measurable.
(ii) For almost t � J , the multivalued function x Š� F(t,x) is upper

semicontinuous.
(iii) For any x � PC(J,E), the set

S1
F(·,x(·)) :=

{
� : J � E, � is locally integrable and � (� ) � F

(
� ,x(� )

)
,

a.e.� � J
}

is not empty.
(iv) There exists a continuous function � : J � (0,� ) with

∥
∥F(t,z)

∥
∥ � � (t)

(
1 + 	 z	

)
� (t,z) � J × E.

(Hgi)� For any i � N, gi : [� i,si] × E Š� E (i � N) is uniformly continuous on bounded sets
and for any z � E, the function � 
� gi(� ,z) is continuously differentiable at si such
that (10), (11), (14) and the following conditions are satisfied:

(i) There is a bounded continuous function h� : J � J with lim� �� h� (� ) = 0
and

∥
∥gi(� ,z)

∥
∥ � h� (� )

(
	 z	 + 1

)
, � (i, � ,z) � N × [ti,si] × E. (56)
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(ii) For any t � J , the function. z � gi(t,z) is compact.
Then Problem (1) has an S-asymptotically � -periodic mild solution provided that the

families {S� (t) : t > 0}, {K� (t) : t > 0} and {T� (t) : t > 0} are compact,

lim
� ��

∫ �

0

(� …� )� …1

1 + |µ |(� …� )�

(
� (� + � ) + � (t)

)
= 0, (57)

sup
� � J

∫ �

0
� (t) d� <

1

4L max{1, 1
|µ | }

, (58)

and

� + L� + L
 2 max

{

1,
1

|µ |

}

<
1
2

, (59)

where � = supt� J 	 h� (t)	 , and 
 2 is as defined in (14).

Proof Due to (HF)� (iii), we can consider a multioperator� on SAP� PC(J,E) de“ned as

in (18).

In the following steps we show that� satis“es the assumptions of Lemma3.

Step 1. In this step, we demonstrate that, ifx � SAP� PC(J,E), y � � (x), then

lim� �� 	 y(� + � ) …y(� )	 = 0.

Notice that condition (Hgi)� (i) implies (Hgi)(ii), so Eqs. (21)…(23) are satis“ed. Now, let

f � S1
F(·,x(·)) and � � [s1, � i+1]; i > 1. As in (24), we have

∥
∥
∥
∥

∫ � +�

0
T� (� + � …� )f (� ) d� …

∫ �

0
T� (� …� )f (� ) d�

∥
∥
∥
∥

�
∫ 0

…�
T� (� …� )

∥
∥f (� + � )

∥
∥d�

+
∫ �

0
T� (� …� )

∥
∥f (� + � ) …f (� ) d�

∥
∥

= I1 + I2. (60)

From the continuity of � , there is� such thatsupt� [0,� | � (t) � � , and hence

sup
� � […� ,0]

∥
∥f (� + � )

∥
∥ � �

(
1 + 	 x	

)
. (61)

Then, using (3), (HF)� (iv) and (61), we get

I1 �
(
1 + 	 x	

)
� L

∫ 0

…�

(� …� )� …1

1 + |µ |(� …� )�
d�

=
(1 + 	 x	 )� L

� |µ |
ln

1 + |µ |(� + � )�

1 + |µ |� �
. (62)
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Also, in view of (3) and (HF)� (iv), we arrive at

I2 �
∫ �

0

∥
∥T� (� …� )

∥
∥
∥
∥f (� + � ) …f (� )

∥
∥d�

� 2L
(
1 + 	 x	

)
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�

(
� (� + � ) + � (t)

)
d� . (63)

Then, by (60), (62) and (63), it follows that

∥
∥
∥
∥

∫ � +�

0
T� (� + � …� )f (� ) d� …

∫ �

0
T� (� …� )f (� ) d�

∥
∥
∥
∥

�
(1 + 	 x	 )� L

� |µ |
ln

1 + |µ |(� + � )�

1 + |µ |� �

+ 2L
(
1 + 	 x	

)
∫ �

0

(� …� )� …1

1 + |µ |(� …� )�

(
� (� + � ) + � (t)

)
d� . (64)

Similarly,

∥
∥
∥
∥

∫ si+�

0
T� (si + � …� )f (� ) d� …

∫ si

0
T� (si …� )f (� ) d�

∥
∥
∥
∥

�
(1 + 	 x	 )� L

� |µ |
ln

1 + |µ |(si + � )�

1 + |µ |s�
i

+ 2L
(
1 + 	 x	

)
∫ si

0

(si …� )� …1

1 + |µ |(si …� )�

(
� (� + � ) + � (t)

)
d� . (65)

Then, from (21)…(23), (57), (64) and (65), we derivelim� �� 	 y(� + � ) …y(� )	 = 0.

Step 2. PutD� = {u � SAP� PC(J,E) : 	 u	 � � }, where

� =
L	 x0	 + L(	 x1	 + 
 2)(1 + max{1, 1

|µ | }) + � + L� + 1
2

1 … [� + L� + L
 2 max{1, 1
|µ | } + 1

2]
. (66)

Due to Eq. (59), � is well de“ned. In this step, we show that, ifx � D� and y � � (x), then

	 y 	 � � .

(i) Let � � [0,� 1]. Then from (4)…(6) and (HF)� (iv), we get

∥
∥y(� )

∥
∥ � L	 x0	 + L	 x1	

(

1 + max

{

1,
1

|µ |

})

+
(
1 + 	 x	

)
L max

{

1,
1

|µ |

}∫ � 1

0
� (t) d�

� L	 x0	 + L	 x1	
(

1 + max

{

1,
1

|µ |

})

+
1 + 	 x	

4

� L	 x0	 + L	 x1	
(

1 + max

{

1,
1

|µ |

})

+
1 + �

4
. (67)

(ii) Let � � (� i,si], for somei � N. In view of (56), we have

∥
∥gi

(
� ,x

(
� …

i
))∥

∥ � � (� + 1), (68)
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where� = supt� J 	 h� (t)	 . Moreover, from (15), it follows that

sup
i� N

∥
∥g �

i
(
si,x

(
� …

i
))∥

∥ � 
 2(� + 1). (69)

Next, let � � [si, � i+1]. In view of (4), (5) and (69), we arrive at

∥
∥S� (� …si)gi

(
si,x

(
� …

i
))

+ K� (� …si)g �
i
(
si,x

(
� …

i
))∥

∥

�
(

L� + L
 2 max

{

1,
1

|µ |

})

(� + 1). (70)

Furthermore, by (6) and (HF)� (iv), and (58), we obtain

∥
∥
∥
∥

∫ �

0
T� (� …� )f (� ) d�

∥
∥
∥
∥

� L max

{

1,
1

|µ |

}
(
1 + 	 x	

)
∫ �

0
� (t) d�

�
(
1 + 	 x	

)
L max

{

1,
1

|µ |

}

sup
� � J

∫ �

0
� (t) d� <

� + 1
4

. (71)

Similarly, we obtain

sup
i� N

∥
∥
∥
∥

∫ si

0
T� (si …� )f (� ) d�

∥
∥
∥
∥ �

� + 1
4

. (72)

As a result of (67), (68), (70)- (72), we arrive at

sup
� � J

∥
∥y(� )

∥
∥ � L	 x0	 + L	 x1	

(

1 + max

{

1,
1

|µ |

})

+
1 + �

4

+ � (� + 1) +
(

L� + L
 2 max

{

1,
1

|µ |

})

(� + 1)

+
� + 1

4

� L	 x0	 + L	 x1	
(

1 + max

{

1,
1

|µ |

})

+ �

+ L� + L
 2 max

{

1,
1

|µ |

}

+
1
2

+ �
[

� + L� + L
 2 max

{

1,
1

|µ |

}

+
1
2

]

� � .

Therefore, our aim in this step is achieved.

Now, as a result of Steps 1 and 2,� is a multivalued function fromD� � SAP� PC(J,E)

to the non-empty subsets ofD� .

Step 3.� is closed (its graph is closed) onD� .
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Let (xn)n� 1, (yn)n� 1 be two sequences inD� with xn � x, yn � y andyn � � (xn), � n � 1.

Then we havefn � S1
F(·,xn(·)) such that

yn(� ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + K� (� )x1

+
∫ �

0 T� (� …� )fn(� ) d� , � � [0,� 1],

gi(� ,xn(� …
i )), � � (� i,si], i � N,

S� (� …si)gi(si,xn(� …
i )) + K� (� …si)g �

i(si,xn(� …
i ))

…
∫ si

0 T� (si …� )fn(� ) d�

+
∫ �

0 T� (� …� )fn(� ) d� , � � [si, � i+1], i � N.

Let � be a “xed point in [0,� 1] and J� = [0,� ]. In view of (HF)� (iv), we have

∥
∥fn(t)

∥
∥ � � (t)(1 + � ), a.e.t � [0,� ]. (73)

Using similar arguments to Step 3 in the proof of Theorem1, one can show, by (73), that

fn � f weakly inL2(J� ,E) and there is a sequence of convex combinations (zn) of (fn) such

that zn � f , a.e.t � J� , and

lim
n��

∫ �

0
T� (� …� )zn(� ) d� =

∫ �

0
T� (� …� )f (� ) d� ; � � [0,� 1]. (74)

Now, due to the continuity ofgi(� , ·), g �
i(si, ·), S� (� …si) andK� (� …si), we arrive at

lim
n��

gi
(
� ,xn

(
� …

i
))

= gi
(
� ,x

(
� …

i
))

(75)

and

lim
n��

S� (� …si)gi
(
si,xn

(
� …

i
))

+ K� (� …si)g �
i
(
si,xn

(
� …

i
))

= S� (� …si)gi
(
si,x

(
� …

i
))

+ K� (� …si)g �
i
(
si,x

(
� …

i
))

. (76)

Noting that (zn) is a subsequence of (fn), and hence by (74)…(76), there is a subsequence

of (yn) that converge to

y� (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + K� (� )x1

+
∫ �

0 T� (� …� )f (� ) d� , � � [0,� 1],

gi(� ,x(� …
i )), � � (� i,si], i � N,

S� (� …si)gi(si,x(� …
i )) + K� (� …si)g �

i(si,x(� …
i ))

…
∫ si

0 T� (si …� )f (� ) d�

+
∫ �

0 T� (� …� )f (� ) d� , � � [si, � i+1], i � N.

Becauseyn � y, we arrive aty = y� . Moreover, (HF)� (ii) ensures thatf (� ) � F(� ,x(� )), a.e.

� � J . So,y � � (x).

Step 4. lim� �� 	 y(� )	 = 0 uniformly on D� .
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Let x � D� and y � � (x). According to the de“nition of � , there isf � S1
F(·,x(·)) such that

y is given by (18). We consider two cases:

Case 1.� � (� i,si], i � N. By (56), we get

∥
∥y(� )

∥
∥ =

∥
∥gi

(
� ,x

(
� …

i
))∥

∥ � (� + 1)
∥
∥h� (� )

∥
∥. (77)

Case 2.� � [si, � i+1], i � N. In view of (3), (15), (56) and (HF)� (iv), we “nd

∥
∥y(� )

∥
∥ =

∥
∥S� (� …si)gi

(
si,x

(
� …

i
))∥

∥

+
∥
∥K� (� …si)g �

i
(
si,x

(
� …

i
))∥

∥

+

∥
∥
∥
∥

∫ si

0
T� (si …� )f (� ) d�

∥
∥
∥
∥

+

∥
∥
∥
∥

∫ �

0
T� (� …� )f (� ) d�

∥
∥
∥
∥

� (� + 1)�
L

1 + |µ |(� …si)�
+ (� + 1)
 2

L(� …si + 1)
1 + |µ |(� …si)�

+ L(1 + � )
∫ si

0

L(si …� )� …1

1 + |µ |(si …� )�
� (� ) d�

+ L(1 + � )
∫ � i

0

L(� i …� )� …1

1 + |µ |(� i …� )�
� (� ) d� . (78)

It follows from (77) (78) and (57) that lim� �� 	 y(� )	 = 0 uniformly on D� .

Step 5. LetD = � (D� ). In this step, we claim that the setD|Ji is equicontinuous for every

i � N, where

D|Ji =
{

y� � C(Ji,E) : y� (� ) = y(� ),t � Ji = ]� i, � i+1], y� (� i) = y
(
� +

i
)
,y � D

}
.

Let y� � D|Ji . Then we havex � D and f � S1
F(·,x(·)) such that

y(� ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S� (� )x0 + K� (� )x1

+
∫ �

0 T� (� …� )f (� ) d� , � � [0,� 1],

gi(� ,x(� …
i )), � � (� i,si], i � N,

S� (� …si)gi(si,x(� …
i )) + K� (� …si)g �

i(si,x(� …
i ))

…
∫ si

0 T� (si …� )f (� ) d�

+
∫ �

0 T� (� …� )f (� ) d� , � � [si, � i+1], i � N,

andy� (� i) = y(� +
i ).

Case 1. Let� 1, � 2 � J0 = [0,� 1] with � 1 < � 2. We have

∥
∥y� (� 2) …y� (� 1)

∥
∥ =

∥
∥y(� 2) …y(� 1)

∥
∥

�
∥
∥S� (� 2) …S� (� 1)

∥
∥	 x0	 +

∥
∥K� (� 2) …K� (� 1)

∥
∥	 x1	

+

∥
∥
∥
∥

∫ � 2

0
T� (� 2 …� )f (s) ds …

∫ � 1

0
T� (� 1 …� )f (� ) ds

∥
∥
∥
∥
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�
∥
∥S� (� 2) …S� (� 1)

∥
∥	 x0	 +

∥
∥K� (� 2) …K� (� 1)

∥
∥	 x1	

+
∫ � 2

� 1

∥
∥T� (� 2 …� )

∥
∥
∥
∥f (� )

∥
∥d�

+
∫ � 1

0

∥
∥T� (� 2 …� ) …T� (� 1 …� )

∥
∥
∥
∥f (� )

∥
∥d�

= Q1 + Q2 + Q3. (79)

From the compactness of the families{S� (� ) : � > 0} and{K� (� ) : � > 0}, we get

lim
� 2� � 1

Q1 = lim
� 2� � 1

∥
∥S� (� 2) …S� (� 1)

∥
∥	 x0	 +

∥
∥K� (� 2) …K� (� 1)

∥
∥	 x1	 = 0, (80)

and from the continuity of � , we arrive at

lim
� 2� � 1

Q2 = lim
� 2� � 1

∫ � 2

� 1

∥
∥T� (� 2 …� )

∥
∥
∥
∥f (� )

∥
∥d�

� (1 + � )L max

{

1,
1

|µ |

}

lim
� 2� � 1

∫ � 2

� 1

� (� ) d� = 0. (81)

Moreover, since the family{T� (� ) : � > 0} is compact, we get

lim
� 2� � 1

Q3 = lim
� 2� � 1

∫ � 1

0

∥
∥T� (� 2 …� ) …T� (� 1 …� )

∥
∥
∥
∥f (� )

∥
∥d�

� (1 + � ) lim
� 2� � 1

∫ � 1

0

∥
∥T� (� 2 …� ) …T� (� 1 …� )

∥
∥� (� ) d�

= 0. (82)

Equations (79)…(82) lead tolim� 2� � 1 	 y� (� 2) …y� (� 1)	 = 0.

Case 2. Let� 1, � 2 � (� i,si] (i � N) with � 1 < � 2. From the fact thatgi is uniformly continu-

ous on bounded sets,

lim
� 2� � 1

∥
∥y� (� 2) …y� (� 1)

∥
∥ = lim

� 2� � 1

∥
∥y(� 2) …y(� 1)

∥
∥

� lim
� 2� � 1

∥
∥gi

(
� 2,x

(
� …

i
))

…gi
(
� ,x

(
� …

i
))∥

∥

� lim
� 2� � 1

sup
	 z	� �

∥
∥gi(� 2,z) …gi(� 1,z)

∥
∥ = 0. (83)

Case 3. Let� 1, � 2 � (si, � i+1] (i � N) with � 1 < � 2.

lim
� 2� � 1

∥
∥y� (� 2) …y� (� 1)

∥
∥ = lim

� 2� � 1

∥
∥y(� 2) …y(� 1)

∥
∥

� lim
� 2� � 1

∥
∥S� (� 2 …si) …S� (� 1 …si)

∥
∥
∥
∥gi

(
si,x

(
� …

i
))∥

∥

+ lim
� 2� � 1

	 K� (� 2 …si) …K� (� 1 …si)
∥
∥g �

i
(
si,x

(
� …

i
))∥

∥

+ lim
� 2� � 1

∥
∥
∥
∥

∫ � 2

0
T� (� 2 …� )f (s) ds …

∫ � 1

0
T� (� 1 …� )f (s) ds

∥
∥
∥
∥. (84)
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Again, from the compactness of the families{S� (� ) : � > 0} and{K� (� ) : � > 0}, we have

lim
� 2� � 1

∥
∥S� (� 2 …si) …S� (� 1 …si)

∥
∥
∥
∥gi

(
si,x

(
� …

i
))∥

∥

= lim
� 2� � 1

∥
∥K� (� 2 …si) …K� (� 1 …si)

∥
∥
∥
∥g �

i
(
si,x

(
� …

i
))∥

∥

= 0. (85)

Furthermore, by repeating the arguments employed in Case 1, one can show that

lim
� 2� � 1

∥
∥
∥
∥

∫ � 2

0
T� (� 2 …� )f (s) ds …

∫ � 1

0
T� (� 1 …� )f (s) ds

∥
∥
∥
∥ = 0. (86)

Equations (84) and (86) ensure thatlim� 2� � 1 	 y� (� 2) …y� (� 1)	 . Therefore,T|Ji is equicon-

tinuous for anyi � N.

Step 6. Our goal in this step is showing that, for anyi � N and any� � Ji, the setZi
� :=

{y(� ) : y � D = � (D� )} is relatively compact inE.

Case 1. Let� � J0 = [0,� 1]. If � = 0, thenZ1
� = {x0} is compact. Let� � (0,� 1]. be a “xed

point. We have

Z1
� =

{
y(� ) : y � � (D� )

}

=
{

S� (� )x0 + K� (� )x1 +
∫ �

0
T� (� …� )f (� ) d� : f � S1

F(·,x(·)),x � D�

}

.

Now, for any	 � (0,� ), let

Z1
� ,	 :=

{

S� (� )x0 + K� (� )x1 +
∫ � …	

0
T� (� …� )f (� ) d� : f � S1

F(·,x(·)),x � D�

}

.

Notice that 	 f (� )	 � (1 + � )� (� ), for any� � [0,� …	 ], anyn � 1. Because� is continuous

on [0,� ], the set{fn(� ) : n � 1} is bounded, and hence, by the compactness ofT� (� …� );

� � [0,� …	 ], the setZ1
� ,	 is relatively compact inE. Moreover, for anyx � D� and any

f � S1
F(·,x(·)), we get from (6), (HF)� (iv) and the continuity of � ,

lim
	 � 0

∥
∥
∥
∥

∫ �

0
T� (� …� )f (� ) d� …

∫ � …	

0
T� (� …� )f (� ) d�

∥
∥
∥
∥

� L max

{

1,
1

|µ |

}

(1 + � ) lim
	 � 0

∫ �

� …	
� (� ) d�

= 0.

Then there exist relatively compact sets that can be arbitrarily approximated to the set

Zi
� . Then it is relatively compact inE.

Case 2. Let� � [si, � i]; i � N be a “xed point. Since the set{x(� …
i ) : x � D� } is bounded,

then by (Hgi)� (ii), the set{y(� ) : y � � (x),x � D� } = {gi(� ,x(� …
i )) : x � D� } is relatively com-

pact in E.

Case 3. Let� � [� i,si+1] ; i � N be a “xed point. As in Case 2, the set{gi(� ,x(� …
i )) : x � D� }

is relatively compact inE, and hence, by the compactness ofS� (� …si), we conclude that
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{S� (� …si)gi(si,x(� …
i )) : x � D� } is relatively compact inE. Also, due to the compactness of

K� (t); t > 0, the set{K� (� …si)g �
i(si,x(� …

i )) : x � D� } is relatively compact inE. Furthermore,

using the same arguments as in Case 1, one can show that the sets{
∫ �

0 T� (� …� )f (� ) d� :

f � S1
F(·,x(·)),x � D� } and {

∫ si
0 T� (si …� )f (� ) d� : f � S1

F(·,x(·)),x � D� } are relatively compact.

As a result of this discussion, we conclude that, for anyi � N and anyt � Ji, the setZi
� =

{y(� ) : y � � (D� )} is relatively compact inE.

Now, according to Lemma4, Steps 4, 5 and 6 imply the setT = � (D� ) is relatively com-

pact in SAP� PC(J,E).

Now, as a result of Steps 1…6, we conclude that� is closed and completely continuous

from D� to the family on non-empty convex compact ofD� . Applying Lemma3, � has a

“xed point which is an S-asymptotically� -periodic mild solution to Problem (1). �

Remark 4 For anyt � 0, we have

t� …1

1 + |µ |t�
�

⎧
⎨

⎩

2
|µ |(1+t) ; if 0 < |µ | � 1,
2

1+t ; if |µ | > 1.
(87)

To clarify this, we consider the following cases:

Case 1. Let 0 <|µ | � 1. Then

t� …1

1 + |µ |t�
�

⎧
⎨

⎩

t� …1� 1 � 2
|µ |(1+t) ; if 0 � t � 1,

t� …1

|µ |t� = 1
|µ |t � 2

|µ |(1+t) ; if t > 1.

So,

t� …1

1 + |µ |t�
�

2
|µ |(1 + t)

, � t � 0.

Case 2. Let|µ | > 1. In this case, we have

t� …1

1 + |µ |t�
�

⎧
⎨

⎩

t� …1� 1 � 2
1+t ; if 0 � t � 1,

t� …1

|µ |t� = 1
|µ |t � 1

t � 2
1+t ; if t > 1,

which yields

t� …1

1 + |µ |t�
�

2
1 + t

, � t � 0.

Then (87) holds.

4 Examples
Example 1 Let� = 3

2, m = 4,� = 2� , J = [0,� ), si = i �
2 ; i � { 0} � N, and� i = (2i…1)�4 ; i � N.

Observe that, fori � N, si+m = si+4 = (i + 4)�
2 = si + 2� , and� i+4 = (2(i + 4) … 1)�4 = � i + 2� .

Let � = {s = (s1,s2) : s2
1 + s2

2 � 1}, andE = L2(� ). De“ne an operatorA : D(A) � E � E by

A(u) := � u …u, (88)
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with D(A) = H2(� ) � H1
0(� ). It is known that (see [19]) A is a sectorial operator of type

{M, � , � ,µ } with µ = …1 andL = 3. Let Z be a non-empty, compact and convex subset of
E, � = supz� Z 	 z	 . Consider the multivalued functionF : J × E � 2E de“ned by

F(� ,u) := {v� ,u,z : z � Z}, (89)

where for anyz � Z any (� ,u) � J × E, v� ,u,z : � � R; v� ,u,z(s) = 1+� sin u(s)
(� +1)� 	 z	 ; � > 0. SinceZ

is a non-empty, convex and compact subset, the values ofF also are. Moreover,

∥
∥F(� , 0)

∥
∥ = sup

z� Z

1
(� + 1)�

	 z	 �
1

� + 1
= � (� ), � � � J, (90)

h
(
F(� ,u),F(� ,v)

)
�

(∫

�

∣
∣v� ,u,z(s) …v� ,v,z(s)

∣
∣2 ds

) 1
2

, � z � Z

=
�

� + 1

∫

�

∣
∣sin u(s) …sin v(s)

∣
∣2dx)

1
2

�
�

� + 1

∫

�

∣
∣u(s) …v(s)

∣
∣2dx)

1
2

=
�

� + 1
	 u …v	 , (91)

and

h
(
F(� + 2� ,u),F(� ,u)

)
�

(∫

�

∣
∣v� +2� ,u,z(s) …v� ,u,z(s)

∣
∣2 ds

) 1
2

, � z � Z

=
∫

�

∣
∣
∣
∣
� sin u(s) + 1
� + 1 + 2�

…
� sin u(s) + 1

� + 1

∣
∣
∣
∣

2

dx)
1
2

�
1

(� + 1 + 2� )(� + 1)

(∫

�
2�

∣
∣� sin u(s) + 1

∣
∣2 ds

) 1
2

�
2� (� + 1)

(� + 1 + 2� )(� + 1)

(
	 u	 + 1

)
= L2(� )

(
	 u	 + 1

)
. (92)

Due to (91) and (92), Eqs. (7) and (8) are veri“ed with L1(� ) = �
� +1 andL2(� ) = 2� (� +1)

(� +1+2� )(� +1) ;
� � [0,� ).

Next, in view of (87), and since|µ | = 1, it follows that

(� …� )� …1

1 + |µ |(� …� )�
�

2
1 + � …�

, � � � 0,� � [0,� ].

Therefore,

∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L1(� ) d�

� 2�
∫ �

0

1
1 + � …�

1
� + 1

d�

= 2�
∫ �

0

1
� + 2

[
1

1 + � …�
+

1
� + 1

]

d�

= 4�
ln |1 + � |
(� + 2)

,
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which yieldslim� ��
∫ �

0
(� …� )� …1

1+|µ |(� …� )� L1(� ) d� = 0. Similarly,lim� ��
∫ �

0
(� …� )� …1

1+|µ |(� …� )� � (� ) d� = 0.
Hence, (9) and (15) are veri“ed. Moreover,

� = sup
� � J

∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L1(� ) d� � 4� . (93)

Now, again from (87), one has

lim
� ��

∫ �

0

(� …� )� …1

1 + |µ |(� …� )�
L2(� ) d�

� (� + 1) lim
� ��

∫ �

0

1
1 + � …�

(
2�

(� + 1 + 2� )(� + 1)

)

d�

� (� + 1) lim
� ��

∫ �

0

[
1

1 + � …�
1

� + 1
…

1
1 + � …�

1
� + 1 + 2�

]

d�

= (� + 1) lim
� ��

[
1

� + 2

∫ �

0

[
1

1 + � …�
+

1
� + 1

]

d�

…
1

� + 2 + 2�

∫ �

0

[
1

1 + � …�
+

1
� + 1 + 2�

]

d�
]

= (� + 1) lim
� ��

2 ln |1 + � |
� + 2

… (� + 1) lim
� ��

1
� + 2 + 2�

[
ln |1 + � | + ln |1 + 2� + � | …ln(2� + 1)

]

= 0, (94)

which means that (16) holds.
Furthermore, for anyi � N, de“ne gi : [ti,si] × E � E by

gi(� ,u)(s) :=
� u(s) sin i�

i
; (� ,u) � [� i,si] × E,s � � , (95)

where� is a positive real number. Obviously for anyu � E, d
d� (gi(� ,u))(s) = � (cos i� )u(s);

t � J . Notice that, for anyu � E,

lim
� ��
i��

∥
∥gi+m(� + 2� ,u) …gi(� ,u)

∥
∥

= lim
� ��
i��

(∫

�

∣
∣
∣
∣
� u(s) sin(i + m)(� + 2� )

i + m
…

� u(s) sin(i� )
i

∣
∣
∣
∣

2

ds
) 1

2

� lim
i��

2�
i

	 u	 = 0.

Then (10) is satis“ed. Moreover, for anyu1,u2 � E,

∥
∥gi(� ,u1) …gi(� ,u2)

∥
∥

=
�
i

(∫

�

∣
∣u1(s) sin i� …u2(s) sin i�

∣
∣2 ds

) 1
2

� � 	 u1 …u2	 (96)
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and

∥
∥g �

i(si,u1) …g �
i(si,u2)

∥
∥ =

(∫

�
� 2

∣
∣u1(s)(cos i� ) …u2(s)(cos i� )

∣
∣2 ds

) 1
2

� � 	 u1 …u2)	 . (97)

From (96) and (97), it follows that (11) and (12) hold with N = N = � . In addition,

∥
∥gi(� ,u)

∥
∥ =

(∫

�

∣
∣
∣
∣
� u(s) sin i�

i

∣
∣
∣
∣

2

ds
) 1

2

�
�
i
	 u	 � �

(
	 u	 + 1

)
(98)

and

∥
∥g �

i(si,z)
∥
∥ =

(∫

�

∣
∣� u(s)cos isi

∣
∣2 ds

) 1
2

� � 	 u	 � �
(
	 u	 + 1

)
. (99)

By (98) and (99), we arrive at (13) and (14) are veri“ed where
 1 = 
 1 = � .

Now, all the assumptions of Theorem1 are satis“ed, so the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD�
si,�

x(� ,s) � Ax(� ,s) + F(� ,x(� )), a.e.� � (si, � i+1], i � N � { 0},s � � ,

x(� +
i ,s) = gi(� i,x(� …

i ,s)), i � N,s � � ,

x(� ,s) = gi(� ,x(� …
i ,s)), � � (� isi], i � N,s � � ,

x(0,s) = x0(s), x�(0) = x1(s); s � � ,

x(� ,s) = 0, � � J,s � � � ,

has anS-asymptotically 2� -periodic mild solution, x : J � L2(� ), provided that

8� + 3� <
1
3

, (100)

whereA, F , gi are given by (88), (90) and (94). By choosing� and � su�ciently small, we

can arrive at (100).

Example 2 Let A, � , E, m, � = 2� , J , si, � i; i � N be as in Example1, Z be a non-empty

convex compact subset ofE, the families{S� (t) : t > 0}, {K� (t) : t > 0} and{T� (t) : t > 0} are

compact [19]. De“ne a multivalued functionF : J × E � Pck(E) by

F(� ,u) =
� (	 u	 + 1)

� (1 + � )
3
2

Z, (101)

where � > 0 and � = Sup{	 z	 : z � Z}. Clearly for everyx � E, � � F(� ,x) is strongly

measurable,F(� , ·) is upper semicontinuous and, for anyu � PC(J,E), the function f (� ) =
� (	 u	 +1)

� (1+� )
3
2

z0; z0 � Z is locally integrable andf (� ) � F(� ,u(� )); � � J . Moreover, in view of

(101), for anyu � E and any� � J ,

∥
∥F(� ,u)

∥
∥ �

� (	 u	 + 1)

(1 + � )
3
2

= � (� )
(
1 + 	 u	

)
, (102)
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where

� (� ) =
�

(1 + � )
3
2

; � � J. (103)

We show that (57) and (58) are veri“ed. In view of (87), and by arguing as in (94), one

has

lim
� ��

∫ �

0

(� …� )� …1

1 + |µ |(� …� )�

(
� (� + 2� ) + � (� )

)
d�

= � lim
� ��

∫ �

0

[
1

1 + � …�

(
1

(� + 1 + 2� )
3
2

+
1

(� + 1)
3
2

)]

d�

� � lim
� ��

∫ �

0

[
1

1 + � …�

(
1

� + 1 + 2�
+

1
� + 1

)]

d�

� 2� lim
� ��

∫ �

0

1
1 + � …�

1
� + 1

d� = 0.

Then (57) holds. Furthermore,

sup
� � J

∫ �

0
� (� ) d� = sup

� � J

2�
�

1 + �
= 2� . (104)

Next, let K : D(K) = E � E be a linear bounded compact operator and for anyi � N,

de“ne gi : [� i,si] × E � E by

gi(� ,u)(s) =
(Ku)(s)
i(1 + � )

, � s � � . (105)

Notice that

g �
i(si,u)(s) =

…(Ku)(s)
i(1 + si)2

, � s � � . (106)

In view of (105) and (106), we get

lim
� ��
i��

∥
∥gi+m(� + 2� ,u) …gi(� ,u)

∥
∥

= 	 K 	 lim
� ��
i��

(
∫

�

∣
∣
∣
∣

u(s)
(i + 2� )(1 + � + 2� )

…
u(s)

i(1 + � )

∣
∣
∣
∣

2

ds)
1
2

= 	 K 		 u	 lim
� ��
i��

∣
∣
∣
∣

1
(i + 2� )(1 + � + 2� )

…
1

i(1 + � )

∣
∣
∣
∣ = 0,

∥
∥gi(� ,u1) …gi(� ,u2)

∥
∥

=
(∫

�

∣
∣
∣
∣
(Ku1)(s)
i(1 + � )

…
(Ku2)(s)
i(1 + � )

∣
∣
∣
∣

2

ds
) 1

2

�
	 K |

i(1 + � )
	 u1 …u2	 � 	 K 		 u1 …u2	 ,
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∥
∥gi(� ,u)

∥
∥ =

(∫

�

∣
∣
∣
∣
(Ku)(s)
i(1 + � )

∣
∣
∣
∣

2

ds
) 1

2

�
	 K 		 u	

1 + �
= h� (� )	 u	 ,

and

∥
∥g �

i(si,u)
∥
∥ =

(∫

�

∣
∣
∣
∣

(Ku)(s)
i(1 + si)2

∣
∣
∣
∣

2

ds
) 1

2

�
	 K 		 u	
i(1 + si)2

� 	 K 	
(
	 u	 + 1

)
.

Then (10), (11), (14) and (56) are veri“ed with N = N = 	 K 	 and h� (� ) = 	 K 	
1+� ; � � J and

� = 
 2 = 	 K 	 . Notice that, by the compactness ofK , the function gi(� , ·); i � N is com-

pact, and hence all assumptions of Theorem2 are satis“ed. So, by applying Theorem2,

Problem (1), whereA as be in example (1) and F , gi are given by (102) and (105), has an

S-asymptotically 2� -periodic mild solution provided that 2� < 1
4L = 1

12 and 	 k	 < 1
14.

Example 3 Let A, � , E, m, � = 2� , J , � , si, � i;i � N be as in Example1, Z a non-empty

convex compact subset ofE and x0, x1 two “xed elements ofE. For any (� ,s) � (J, � ) and

any x : J � E, we denotex(� )(s) by x(� ,s). Consider the impulsive semilinear di�erential

inclusion:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD�
si,�

x(� ,s) � � x(� ,s) …x(� ,s) + cos x(� ,s)
40(1+� ) Z,

a.e.� � (si, � i+1], i � N � { 0},s � � ,

x(� +
i ,s) =

x(� …
i ,s) sin i� i

40i , i � N,s � � ,

x(� ,s) =
x(� …

i ,s) sin i�
40i , � � (� isi], i � N,s � � ,

x(0,s) = x0(s), x�(0) = x1(s); s � � ,

x(� ,s) = 0, � � J,s � � � .

(107)

Let F : J × E � 2E be de“ned by

F(� ,u) =
cos u(s)

40(1 +� )
Z. (108)

Obviously,F veri“es (i) and (ii) of (HF). Moreover,

∥
∥F(� , 0)

∥
∥ �

1
40(1 +� )

= � (� ), � � � J, (109)

h
(
F(� ,u),F(� ,v)

)
�

1
40(1 +� )

	 u …v	 , (110)

and

h
(
F(� + 2� ,u),F(� ,u)

)
�

1
40(� + 1 + 2� )(� + 1)

	 u	

�
1

40(� + 1 + 2� )(� + 1)

(
	 u	 + 1

)
. (111)
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It shows that (7) and (8) are satis“ed withL1(� ) = 1
40(1+� ) and L2(� ) = 1

40(� +1+2� )(� +1) ; � �

[0,� ). De“ne

gi(� ,u)(s) :=
u(s) sin i�

40i
; (� ,u) � [� i,si] × E,s � � . (112)

Using the same arguments as in Example1, one can demonstrate that (9) and (10)…(16)

are obtained withN = N = 
 1 = 
 1 = 1
40 and � � 1

10. Notice that L = 3. So,L(2� + N· +

(1 + max{1, 1
|µ | })N ) < 1 By applying Theorem1, Problem (107) has anS-asymptotically

2� -periodic mild solution.

Conclusion Two existence results ofS-asymptotically � -periodic of mild solutions to

non-instantaneous impulsive semilinear di�erential inclusions of order 1 <� < 2 and gen-

erated by sectorial operators are given This work generalizes much recent work such as

[18…20] to the case when there are impulse e�ects and the right-hand side is a multivalued

function. Moreover, our technique can be used to develop the work in [12, 15…17, 21, 23…

25] to the case when the linear part is a sectorial operator, the nonlinear part is a multi-

valued function and we have impulse e�ects. There are many directions for future work,

for example:

1— With the help of technique in [1], we study the existence of solutions for Problem (1)
on a time scales.

2— Investigation an existence theorem for a nonlinear singular-delay-fractional differen-
tial equation considered in [42, 43], when it contains a sectorial operator as a linear
term and the nonlinear term becomes a multivalued function instead of single-valued
function.

3— With the help of technique in [3], discuss the numerical solutions for Problem (1) on
a closed bounded interval.

4— Study the S-asymptotically periodic solutions to Problem (1) when the sectorial op-
erator is replaced by almost sectorial.

5— Study the S-asymptotically periodic solutions to Problem (1) when it involves p-
Laplacian operator � p as well as when the Caputo derivative is replaced by the � -
Caputo or � -Riemann–Liouville derivative. For contributions on BVP involving the
� -Riemann–Liouville derivative, see [3] and for references on BVP containing the
p-Laplacian operator � p, see [6, 8].
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