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Abstract
This paper investigates a new model on coronavirus-19 disease (COVID-19), that is
complex fractional SIR epidemic model with a nonstandard nonlinear incidence rate
and a recovery, where derivative operator with Mittag-Leffler kernel in the Caputo
sense (ABC). The model has two equilibrium points when the basic reproduction
number R0 > 1; a disease-free equilibrium E0 and a disease endemic equilibrium E1.
The disease-free equilibrium stage is locally and globally asymptotically stable when
the basic reproduction number R0 < 1, we show that the endemic equilibrium state is
locally asymptotically stable if R0 > 1. We also prove the existence and uniqueness of
the solution for the Atangana–Baleanu SIR model by using a fixed-point method.
Since the Atangana–Baleanu fractional derivative gives better precise results to the
derivative with exponential kernel because of having fractional order, hence, it is a
generalized form of the derivative with exponential kernel. The numerical simulations
are explored for various values of the fractional order. Finally, the effect of the ABC
fractional-order derivative on suspected and infected individuals carefully is
examined and compared with the real data.
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1 Introduction
The coronavirus is a new viral pneumonia, deadly and rapidly spreading infection that has
put great panic around the globe since the break out late 2019. Within a short span of time,
it affected every country all over the world, which urges every nation take severe action
to control the wild spread of the virus as the severity of the disease will harm human life
badly.

It is well known that infectious diseases are a massive threat for humans and also for na-
tional economies. Proper understanding of a disease dynamics is necessary, which plays
a major role for controlling and eventually exterminate the infection in a community. Im-
plementation of the correct applicable strategy against the disease transmission is another
challenge. Mathematical modeling of the infectious diseases is one of the key tools in order
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to handle these challenges. A number of disease models have been established in the past,
which enables us to investigate and control the spread of infectious diseases in a better
way [1–3].

Regarding COVID-19, from the initial spread of COVID-19, many of the known math-
ematical models were used, or newly established by many researchers, For example Gior-
dano et al. in [4] proposed the so called SIDARTHE model and concluded that restrictive
social-distancing measures will need to be combined with widespread testing and con-
tact tracing to end the ongoing COVID-19 pandemic. At a same time, Alshammari [5]
proposed the SEYNHR compartmental model and applied real data for Saudi Arabia and
obtained good predictions on a short term. The role of quarantining and isolation to con-
trol the spread of COVID-19 is studied by Memon et al. [6], where they used an extended
SIR model. They show that quarantine and isolation are effective measures to control the
outbreak.

From real data of the infectious disease, we know that the outbreak of the disease within
the country or state for time is generally nonlinear, which tells us to design the system
where we can study those dynamic nonlinear phenomena. By this system, we can be able
to define the transmission of such a contagious disease, which helps us to interpret the
remedial measures to stop or contain the spread of the contagious disease.

Most of the present day studies on mathematical modeling of infectious disease are
based on integer-order differential equations (IDEs). However, more recently, many au-
thors state that fractional-order models (FDEs) can describe natural phenomena more
precisely than the integer-order differential equations because fractional-order derivatives
and integrals describe the memory and hereditary properties of different phenomena [7].
Further, the classical IDEs cannot provide the result for non-integer values. In order to
overcome the above limitation of integer-order derivatives, different types of fractional-
order operators were defined, some of the research can be found in the existing litera-
ture [8] and applications of these fractional-order operators are noted in [9], also Sene in
[10, 11] consider the Liu et al. [12] chaotic system with Caputo fractional derivative and
show the Lyapunov exponent to characterize the nature of chaos and prove the dissipativ-
ity of the considered chaotic system.

However, it is known that the classical form of the fractional derivatives with singu-
lar kernel may not be suitable to characterize the non-local dynamics in an appropriate
manner. In order to overcome this problem, Atangana and Baleanu [13] establish a new
model, the so called generalized ABC differential operator involving the Mittag-Leffler
(ML) and non-local type kernel, which has an anti-derivative fractional integral operator
[14]. This new definition of derivative is shown to be more efficient for the SIR model with
generalized incidence rate compared to the other existing fractional models [15] and an
exothermic reactions model having a constant heat source in porous media with power
problem [16]. More recently, Atangana and Atangana [17] solved the system of ABC frac-
tional partial differential equations to see the side effects of facemasks, which is necessary
to protect from COVID-19 and concluded that appropriate facemasks that could help
avoid re-inhaling enough CO2 should be used every time one is in open air even when
alone especially in a windy environment. Later, Khan et al. [18] explored the dynamics
of COVID-19 with quarantine and isolations with real statistical cases reported in the
mainland China, where the model is developed by using a fractal-fractional derivative in
the Atangana–Baleanu sense. They indicate that their results are useful in the early erad-
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ication of the disease in the community. Similarly, Sane in [19] also consider the SIR epi-
demic model with Mittag-Leffler fractional derivative and delay, he uses a Lyapunov direct
method and analyzes the global asymptotic stability of the disease-free equilibrium and
the endemic equilibrium. Naik et al. [20] proposed an Atangana–Baleanu–Caputo opera-
tor for the transmission of COVID-19 epidemic, where they used real data from Pakistan.
They show that fractional operators have many advantages over the existing non-integer-
order types.

The studies from [13] to [20] provide us with enough motivation to study and analyze
a new fractional SIR model involving the ABC operator with complete memory effects.
To the best of our knowledge, this is the first time to study a non-local and non-singular
derivative operator for the model of the SIR, which has nonlinear incidence and recovery
rates, where we also examine the existence and uniqueness results with the Atangana–
Baleanu derivative by using a fixed-point method.

The rest of this paper is organized as follows. Some preliminary results are given in
Sect. 2. Section 3 is devoted to the new fractional SIR model and its main characteristics.
We first derived the solution of the problem and then provided the existence and unique-
ness result results in Sect. 4. In the last section, we demonstrate the numerical solutions
for Eq. (10) by using the ABC-derivative in a graphical method. We also discussed the ne-
cessity of maintaining enough number of hospital beds for controlling of the infectious
diseases.

2 Preliminary results
We note some background material for the Caputo and Atangana–Baleanu fractional
derivatives and Laplace transform are presented [13, 21–23], which we use later.

Definition 2.1 Mittag-Leffler function is defined as

Eα(x) =
∞∑

k=0

xk

�(αk + 1)
, α > 0, Eα,β (x) =

∞∑

k=0

xk

�(αk + β)
, α,β > 0. (1)

Definition 2.2 Let f ∈ Cn be a function, then the fractional Caputo derivative of order α

is defined as [13]

C
0 Dα

t
(
f (t)

)
=

∫ t

0

f n(τ )
(t – τ )α–n+1 dτ , (2)

where α ∈ (n – 1, n) and n ∈ N. Obviously, as α → 1, C
0 Dα

t (f (t)) tends to the f ′(t).

Definition 2.3 Let f ∈ H1(b, b1), α ∈ (0, 1], then the Atangana–Beleanu–Caputo (ABC)
derivative is defined as [13]

ABC
b Dα

t f (t) =
B(α)
1 – α

∫ t

b
f ′(τ )Eα

(
–α

(t – τ )α

1 – α

)
dτ , (3)

where the term B(α) is the normalization function with B(0) = B(1) = 1. The associated
fractional integral is given by

AB
0 I

α
t f (t) =

1 – α

B(α)
f (t) +

α

B(α)�(α)

∫ t

0
f (τ )(t – τ )α–1 dτ . (4)
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If α = 0, the initial function is recovered in Eq. (3), we have the ordinary integral for
α = 1.

Proposition 2.1 If 0 < α < 1, we have

AB
0 I

α
t
(ABC

0 Dα
t f (t)

)
= f (t) – f (0)Eα

(
λtα

)
–

α

1 – α
f (0)Eα,α+1

(
λtα

)
= f (t) – f (0). (5)

Theorem 2.1 The Laplace transform of fractional Caputo derivative and Atangana–
Beleanu–Caputo (ABC) derivatives is given by

L
{C

0 Dα
t
(
f (t)

)}
= sαF(s) –

n–1∑

k=0

sα–k–1f k(0) (6)

and

L
{ABC

0 Dα
t f (t)

}
=

B(α)
1 – α

sαF(s) – sα–1f (0)
sα + α

1–α

. (7)

Property 2.1 The inverse Laplace transform of specific functions can be obtained:

(i) L–1
{

sα

s(sα + a)

}
= Eα

(
–atα

)
, (ii) L–1

{
a

s(sα + a)

}
= 1 – Eα

(
–atα

)
,

(iii) L–1
{

1
(sα + a)

}
= tα–1Eα

(
–atα

)
.

(8)

3 Mathematical model and discussion
Let us consider the total population N(t) to consist of three sub-categories: susceptible
S(t), infected I(t) and recovered R(t) individuals (SIR), where N(t) = S(t) + I(t) + R(t) as
seen in Fig. 1. There are many factors involved in modeling the infectious diseases and
these factors substantially affect the dynamical behavior of the models such as incident
rate and recovery rate. In the classical SIR model, incident rate β S(t)I(t)

N(t) and linear recovery
rate μI(t) are used. However, as for COVID-19, many infectious diseases show multiple
peaks or periodic oscillations during the outbreak or in progress. Therefore, several non-
linear incidence rates have been suggested since they can produce rich dynamics for the
epidemic models [24, 25]. Liu et al. [26] proposed the following form of nonlinear satu-
rated incidence rate to include the effect of behavioral changes:

G(I)S =
β∗Il

1 + k∗Ih , (9)

where β∗, l, h, k∗ > 0. This model is due to Ruan et al. [27, 28]. More recently, a more general
form was considered by Rao et al. [29].

On the other hand, in view of the diversity of public resources, it is not enough to study
the effect of treatment capacity on a large scale at this time, if we want to further explore
the influence of hospital bed number on disease transmission. Then we need to define the
nonlinear recovery rate introduced by [30]

�(I, b) =
(

α0 + (α1 – α0)
b

b + I

)
, (10)
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Figure 1 Time development of susceptible (a) and infected (b) individuals for integer of order derivatives,
b = 100 and R0 = 2.618

where α1 is the maximum per capita recovery rate, when health care resources suffice
and there are few infectious individuals, α0 is the minimum per capita recovery rate due
to lack of clinical resources, b is the ratio between the number of hospital bed and the
population, all the above parameters are non-negative. It has the following properties:
(i) ∂�(I,b)

∂I < 0, limI→∞ �(I, b) = α0 and limI→0 �(I, b) = α1, i.e., �(I, b) is a decreasing func-
tion of I . (ii) ∂�(I,b)

∂b > 0, limb→∞ �(I, b) = α1 and limb→0 �(I, b) = α0, i.e., �(I, b) is an in-
creasing function of b.

Here, we assume individuals move from compartment S to I with transmission rates
βIS
k+I (l = h = 1 in Eq. (9)), and when an individual is infected, then the individual either re-
covers at a rate �(I, b) = (α0 + (α1 – α0) b

b+I ) or dies at the rate of γ I . Then this complex SIR
model can be represented by following nonlinear system of equations:

dS
dt = A – βIS

k+I – μS
dI
dt = βIS

k+I – (α0 + (α1 – α0) b
b+I )I – (γ + μ)I

dR
dt = (α0 + (α1 – α0) b

b+I )I – μR

⎫
⎪⎬

⎪⎭
, (11)

where A = n × N , N refer to total number of people and n is the birth rate, μ is a pos-
itive constant representing the natural death of the population, γ is a positive constant
representing the disease induced death rate, α0 is the minimum per capita recovery rate
due to the function of basic clinical resources and α1 is the maximum per capita recovery
rate due to the sufficient health care resource and few infectious individuals as well as the
inherent property of a specific disease.

The model in (11) is not capable of representing the influence of memory effects with
respect to time derivative. In order to account for the memory effect, in addition, we mod-
ify the fractional operator by an auxiliary parameter σ , having the dimension of second, to
ensure that the right- and left-hand sides of the resultant equation possess the same dimen-
sion s–1. Consequently, we can reformulate the system in (9) by using the ABC derivatives
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as

1
σα–1

ABC
0 Dα

t S(t) = A – βIS
k+I – μS

1
σα–1

ABC
0 Dα

t I(t) = βIS
k+I – (α0 + (α1 – α0) b

b+I )I – (γ + μ)I
1

σα–1
ABC
0 Dα

t R(t) = (α0 + (α1 – α0) b
b+I )I – μR

with S(0) = S0, I(0) = I0, R(0) = R0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (12)

where 0 < α < 1. In the first two equations in (12), R(t) does not appear, it is therefore
assumed the first two equations are sufficient to handle the full system. We modify the
fractional operator by an auxiliary parameter σ , having the dimension of day, to ensure
that the right- and left-hand sides of the resultant equation possess the same dimension
s–1

3.1 Non-negative solution
In this section, we show that the feasibility region of the system (12) is given by the closed
set

� =
{

(S, I, T) : S + I + R ≤ A
μ

}
, (13)

which is positively invariant.

Lemma 3.1 The closed set defined in (13) is positively invariant with respect to the frac-
tional model (12).

Proof Adding all three equations in (12), we have

ABC
0 Dα

t N(t) = σα–1(A – μN – γ I) ≤ σα–1(A – μN). (14)

Applying the Laplace transform on both sides, we obtain

L
{ABC

0 Dα
t N(t)

}
+ μ̂L

{
N(t)

} ≤L{Â}, μ̂ = σα–1μ and Â = σα–1A. (15)

Using Theorem 2.1 and the properties of the Laplace transform, we got

B(α)
1 – α

sαN(s) – sα–1N(0)
sα + α

1–α

+ μ̂N(s) ≤ Â
s

. (16)

Hence

N(s) ≤ B(α)N(0)sα–1

(B(α) + μ̂(1 – α))sα + αμ̂
+

Â(sα(1 – α) + α)
s((B(α) + μ̂(1 – α))sα + αμ̂)

(17)

now, applying the inverse Laplace transform and using Property 2.1, we find

N(t) ≤ B(α)N(0)
(B(α) + μ̂(1 – α))

Eα

(
–mtα

)
+

Â(1 – α)
(B(α) + μ̂(1 – α))

Eα

(
–mtα

)

+
Â
μ̂

(
1 – Eα

(
–mtα

))
, (18)
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where m = αμ̂

(B(α)+μ̂(1–α)) , since the Mittag-Leffler function has an asymptotic behavior, we

obtain N(t) ≤ Â
μ̂

= A
μ

as t → ∞. Hence, a solution of the fractional model (12) stays in
� for every t > 0. Consequently, the closed set is a positively invariant set regarding the
fractional model (12). �

3.2 Equilibrium points, basic reproduction number and local stability of
equilibrium points

The equilibrium points of the system are the zeros of second side of Eq. (12), obviously,
disease-free equilibrium point i.e., I = 0 and S = A/μ or E0 = ( A

μ
, 0). Therefore, the model

(12) has a threshold parameter R0, known as the basic reproduction number, this is de-
fined as the number of secondary infections produced by a single infection in a completely
susceptible population. It is not difficult to write the reproduction number for the disease-
free equilibrium point of Eq. (12) as [5]

R0 =
βA

kμ(α1 + γ + μ)
. (19)

The existence of the endemic equilibrium point(s) can be determined by the relation

S∗ =
(α0I∗ + bα1 + bγ + bμ + γ I∗)(k + I∗)

β(b + I∗)
, (20)

where I∗ is the solution of the following equation:

A1I∗2 + A2I∗ + A3 = 0. (21)

Here, the coefficients are given by

A1 = b(β + μ

k )(α0 + γ + μ)
A2 = b(β + μ

k )(α1 + γ + μ) + μ(α1 + γ + μ)(1 – R0) – μ(α1 – α0)
A3 = μ(α1 + γ + μ)(1 – R0)

⎫
⎪⎬

⎪⎭
. (22)

The solution of quadratic equation in (21) is given by

I∗ =
–A2 ∓ √

A2
2 – 4A1A3

2A1
. (23)

Then we have the three cases of R0

∗ If R0 < 1, so, A1 and A3 > 0, if b ≥ μ(α1–α0)
b(β+ μ

k )(α1+γ +μ)(1+μ)(1–R0) no endemic equilibrium,

if b < μ(α1–α0)
b(β+ μ

k )(α1+γ +μ)(1+μ)(1–R0) , we have no endemic equilibrium for A2
2 – 4A1A3 < 0,

one positive endemic equilibrium for A2
2 – 4A1A3 = 0 and two endemic equilibrium

points for A2
2 – 4A1A3 > 0.

∗ If R0 = 1, then, if b < μ(α1–α0)
b(β+ μ

k )(α1+γ +μ)(1+μ)(1–R0) , then system unique endemic equilib-
rium point.

∗ If R0 > 1, then, if b < μ(α1–α0)
b(β+ μ

k )(α1+γ +μ)(1+μ)(1–R0) , then system unique endemic equilibrium
point.
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Theorem 3.1 The disease-free equilibrium point E0 is locally asymptotically stable and if
R0 < 1 then it is unstable if R0 > 1.

Proof The jacobian matrix corresponding to system (12) is

J(S, I) =

(
– βI

k+I – μ
kβS

(k+I)2
βI
k+I

kβS
(k+I)2 + (α1–α0)b2

(b+I)2 – (α0 + γ + μ)

)
. (24)

Then the solution of characteristic equation associated to J( A
μ

, 0) is given by

λ1 = –μ,λ2 =
1

(α1 + γ + μ)
(R0 – 1). (25)

Hence, if R0 < 1, the disease-free equilibrium point E0 is locally asymptotically stable, if
R0 > 1, it is unstable. �

Theorem 3.2 A sufficient condition for the endemic equilibrium E1 = (S∗, I∗) to be locally
asymptotically stable is N1 < 0 and N2 > 0, where

N1 = Tr
(
J
(
S∗, I∗)), N2 = Det

(
J
(
S∗, I∗)). (26)

Proof See the book of Chou and Friedman [31], we here note that

–
kβαS

(k + I)2 +
((β + μ)I + μk)(α1 + γ + μ)

(k + I)
< Det

(
J
(
S∗, I∗))

< –
kβS

(k + I)2 +
((β + μ)I + μk)βA

μkR0
. (27)

Therefore, local asymptotic stability of the endemic equilibrium point is a function of
R0 and the number of available hospital beds (b). �

Theorem 3.3 For the system (12), if R0 < 1, i.e. βA < kμ(α1 + γ + μ), the disease-free equi-
librium E0 = ( A

μ
, 0) is globally asymptotically stable.

Proof Consider the Lyapunov function V (t) = I in R2+, Calculating the time fractional
derivative of the V (t), we obtain

ABC
0 Dα

t V (t) = ABC
0 Dα

t I(t). (28)

Utilizing the system (12), we have

ABC
0 Dα

t V (t) = lim
S→ A

μ ,I→0

βIS
k + I

–
(

α0 + (α1 – α0)
b

b + I

)
I – (γ + μ)I

= lim
S→ A

μ ,I→0

(
βS

k + I
–

(
α0 + (α1 – α0)

b
b + I

)
– (γ + μ)

)
lim

S→ A
μ ,I→0

I

=
(
βA – kμ(α1 + γ + μ)

)
lim

S→ A
μ ,I→0

I
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= kμ(α1 + γ + μ)(R0 – 1) lim
S→ A

μ ,I→0
I ≤ 0. (29)

The Lyapunov–Lasalle theorem implies that solutions in � approach the largest posi-
tively in-variant subset of the set V ′ = 0, i.e., the plane I = 0. In this plane, S → A

d as t → ∞.
Thus all solutions in the plane I = 0 go to the disease-free equilibrium E0. Therefore E0 is
globally asymptotically stable. �

4 Existence and uniqueness of the solution
Applying the AB-fractional integral on both sides of (12), we obtain

AB
0 �α

t (ABC
0 Dα

t S(t)) = AB
0 �α

t σα–1
A – βIS
k+I – μS�

AB
0 �α

t (ABC
0 Dα

t I(t)) = AB
0 �α

t σα–1
 βIS
k+I – (α0 + (α1 – α0) b

b+I )I – (γ + μ)I�

}
. (30)

By using Proposition 2.1, we have

S(t) – S0 = AB
0 �α

t σα–1
A – βIS
k+I – μS�

I(t) – I0 = AB
0 �α

t σα–1[ βIS
k+I – (α0 + (α1 – α0) b

b+I )I – (γ + μ)I]

}
. (31)

Using Eq. (3) in the above, we find

S(t) – S0 =
1 – α

X(α)
M1

(
α, t, S(t), I(t)

)

+
α

X(α)�(α)

∫ t

0
M1

(
α, τ , S(τ ), I(τ )

)
(t – τ )α–1 dτ (32)

and

I(t) – I0 =
1 – α

X(α)
M2

(
α, t, S(t), I(t)

)

+
α

X(α)�(α)

∫ t

0
M2

(
α, τ , S(τ ), I(τ )

)
(t – τ )α–1 dτ , (33)

where

M1
(
α, t, S(t), I(t)

)
= σα–1

(
A –

βIS
k + I

– μS
)

and

M2
(
α, t, S(t), I(t)

)
= σα–1

(
βIS
k + I

–
(

α0 + (α1 – α0)
b

b + I

)
I – (+μ)I

)
.

(34)

The above system of Eqs. (32)–(33) is the solution of the systems of Eq. (12),

T(S(t)) = 1–α
X(α) M1(α, t, S(t), I(t)) + α

X(α)�(α)
∫ t

0 M1(α, τ , S(τ ), I(τ ))(t – τ )α–1 dτ

T(I(t)) = 1–α
X(α) M2(α, t, S(t), I(t)) + α

X(α)�(α)
∫ t

0 M2(α, τ , S(τ ), I(τ ))(t – τ )α–1 dτ

}
. (35)

Let C[0, T] with subnorm be a Banach space of the real valued continuous functions.
M = C[0, T] × C[0, T] with the norm ‖(S, I)‖ = ‖S‖ + ‖I‖,‖S‖ = supt∈[0,T] |S(t)| and ‖I‖ =
supt∈[0,T] |I(t)|.



Akyildiz and Alshammari Advances in Difference Equations        (2021) 2021:319 Page 10 of 17

Theorem 4.1 The kernels, M1(α, t, S(t), I(t)) and M2(α, t, S(t), I(t)), satisfy the Lipschitz
condition and contraction if the following inequality holds:

0 ≤ L1 < 1 and 0 ≤ L2 < 1. (36)

Proof Consider M1(α, t, S(t), I(t)) = Aα – βα IS
k+I – μαS, Let S(t) and S∗(t) be two functions,

then we have

∥∥M1(α, t, S, I) – M1
(
α, t, S∗, I

)∥∥ = σα–1
∥∥∥∥–

βIS
k + I

– μS +
βIS∗

k + I
+ μS∗

∥∥∥∥

≤ L1
∥∥S – S∗∥∥, (37)

where L1 = ‖μα + βα I
k+I ‖ is bounded since I(t) is bounded, hence the Lipschitz condition is

satisfied. If 0 ≤ L1 < 1, then M1(α, t, S(t), I(t)) becomes a contraction mapping. Similarly,
for M2(α, t, S(t), I(t)), we find

∥∥M2(α, t, S, I) – M2
(
α, t, S, I∗)∥∥ ≤ L2

∥∥I – I∗∥∥, (38)

where

L2 = σα–1
∥∥∥∥

kβS
(k + I)(k + I∗)

–
b2(α1 – α0)

(b + I)(b + I∗)
– α0

∥∥∥∥. (39)

Since S(t), I(t) and I∗(t) are bounded, hence the Lipschitz condition is satisfied, if 0 ≤
L2 < 1, M2(α, t, S(t), I(t)) becomes a contraction mapping. �

Theorem 4.2 Suppose that the following condition holds:

1 – α

X(α)
Li +

1
X(α)�(α)

LiTα < 1, i = 1, 2. (40)

Then the fractional epidemic model (12) has a unique solution for t ∈ [0, T].

Proof Recursively, the expressions in (35) can be written as

Sn(t) =
1 – α

X(α)
M1

(
α, t, Sn–1(t), In–1(t)

)

+
α

X(α)�(α)

∫ t

0
M1

(
α, τ , Sn–1(τ ), In–1(τ )

)
(t – τ )α–1 dτ , (41)

In(t) =
1 – α

X(α)
M2

(
α, t, Sn–1(t), In–1(t)

)

+
α

X(α)�(α)

∫ t

0
M2

(
α, τ , Sn–1(τ ), In–1(τ )

)
(t – τ )α–1 dτ . (42)

As usual taking the difference of successive approximations, we obtain

�S
n = Sn(t) – Sn–1(t)

=
1 – α

X(α)
[
M1

(
α, t, Sn–1(t), In–1(t)

)
– M1

(
α, t, Sn–1(t), In–1(t)

)]
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+
α

X(α)�(α)

∫ t

0

[
M1

(
α, τ , Sn–1(τ ), In–1(τ )

)

– M1
(
α, τ , Sn–1(τ ), In–1(τ )

)]
(t – τ )α–1 dτ , (43)

�I
n = In(t) – In–1(t)

=
1 – α

X(α)
[
M2

(
α, t, Sn–1(t), In–1(t)

)
– M2

(
α, t, Sn–1(t), In–1(t)

)]

+
α

X(α)�(α)

∫ t

0

[
M2

(
α, τ , Sn–1(τ ), In–1(τ )

)

– M2
(
α, τ , Sn–1(τ ), In–1(τ )

)]
(t – τ )α–1 dτ . (44)

It is not difficult to see that Sn(t) =
∑n

i �S
i and In(t) =

∑n
i �I

i , taking the sup norm on
both sides, and using the Lipschitz condition on kernel functions and triangle inequality,
we obtain

∥∥�S
n
∥∥ ≤ 1 – α

X(α)
L1

∥∥�S
n–1

∥∥ +
αL1

X(α)�(α)

∫ t

0

∥∥�S
n–1

∥∥(t – τ )α–1 dτ

=
1 – α

X(α)
L1

∥∥�S
n–1

∥∥ +
tα

X(α)�(α)
L1

∥∥�S
n–1

∥∥, (45)

∥∥�I
n
∥∥ ≤ 1 – α

X(α)
L2

∥∥�I
n–1

∥∥ +
αL2

X(α)�(α)

∫ t

0

∥∥�I
n–1

∥∥(t – τ )α–1 dτ

=
1 – α

X(α)
L2

∥∥�I
n–1

∥∥ +
tα

X(α)�(α)
L2

∥∥�I
n–1

∥∥. (46)

Starting from n = 1, we obtain by back substitution from (30) and (31), respectively,

∥∥�S
n
∥∥ ≤ ∥∥�S

1
∥∥
(

1 – α

X(α)
L1 +

1
X(α)�(α)

L1Tα

)n–1

(47)

and

∥∥�I
n
∥∥ ≤ ∥∥�I

1
∥∥
(

1 – α

X(α)
L2 +

1
X(α)�(α)

L2Tα

)n–1

. (48)

It is clear from our hypothesis that ‖�S
n‖ → 0 and ‖�I

n‖ → 0 as n → ∞. We obtain a
convergent series as follows:

∥∥Sn(t) – S1(t)
∥∥ =

∥∥Sn(t) – Sn–1(t) + Sn(t) – · · · – S1(t)
∥∥

≤ ∥∥Sn(t) – Sn–1(t)
∥∥ +

∥∥Sn–1(t) – Sn–2(t)
∥∥ + · · · +

∥∥S2(t) – S1(t)
∥∥

=
n∑

i=2

ri
1 =

r2
1 – rn

1
1 – r1

(49)

and

∥∥In(t) – I1(t)
∥∥ =

∥∥In(t) – In–1(t) + In(t) – · · · – I1(t)
∥∥

≤ ∥∥In(t) – In–1(t)
∥∥ +

∥∥In–1(t) – In–2(t)
∥∥ + · · · +

∥∥I2(t) – I1(t)
∥∥
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=
n∑

i=2

ri
2 =

r2
2 – rn

2
1 – r1

. (50)

Since ri < 1, Sn(t), In(t) are a Cauchy series in C[0, T], and this series is uniformly conver-
gent, it has a unique limit (Adams). So as n → ∞, in Eq. (18), Sn(t) and In(t) have unique
fixed points and therefore the system in (7) has a solution and this solution in unique. �

5 Numerical results and discussion
In this section, we present the result, for which we use COVID-19 data. The approach
developed in [31] is used to approximate the ABC integral. We first use the fundamental
theorem on the system (6) and obtain

S(t) – S0 =
1 – α

X(α)
M1

(
α, t, S(t), I(t)

)

+
α

X(α)�(α)

∫ t

0
M1

(
α, τ , S(τ ), I(τ )

)
(t – τ )α–1 dτ (51)

and

I(t) – I0 =
1 – α

X(α)
M2

(
α, t, S(t), I(t)

)

+
α

X(α)�(α)

∫ t

0
M2

(
α, τ , S(τ ), I(τ )

)
(t – τ )α–1 dτ . (52)

At time t = tm+1, m = 0, 1, . . . , we obtain following iterative scheme:

S(tm+1) – S0 =
1 – α

X(α)
M1

(
α, t, S(tm), I(tm)

)

+
α

X(α)�(α)

∫ t

0
M1

(
α, τ , S(τ ), I(τ )

)
(tm+1 – τ )α–1 dτ

=
1 – α

X(α)
M1

(
α, t, S(tm), I(tm)

)

+
α

X(α)�(α)

m∑

j=0

∫ tj+1

tj

M1
(
α, τ , S(τ ), I(τ )

)
(tm+1 – τ )α–1 dτ , (53)

I(tm+1) – I0 =
1 – α

X(α)
M2

(
α, tm, S(tm), I(tm)

)

+
α

X(α)�(α)

∫ t

0
M2

(
α, τ , S(τ ), I(τ )

)
(tm+1 – τ )α–1 dτ

=
1 – α

X(α)
M2

(
α, tm, S(tm), I(tm)

)

+
α

X(α)�(α)

m∑

j=0

∫ tj+1

tj

M2
(
α, τ , S(τ ), I(τ )

)
(tm+1 – τ )α–1 dτ . (54)

Now, the function Mi(α, τ , S(τ ), I(τ )) is approximated by Lagrange interpolation on
[tn, tn+1] as

Mi
(
α, τ , S(τ ), I(τ )

) ∼= (τ – tn–1)
h

Mi
(
α, tn, S(tn), I(tn)

)
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–
(τ – tn)

h
Mi

(
α, tn–1, S(tn–1), I(tn–1)

)
, i = 1, 2. (55)

Substituting (55) into (53)–(54) and by integration, we have

S(tm+1) – S0 =
1 – α

X(α)
M1

(
α, t, S(tm), I(tm)

)

+
α

X(α)�(α)

( m∑

j=0

M1(α, tj, S(tj), I(tj))
h

∫ tj+1

tj

(τ – tj–1)(tm+1 – τ )α–1 dτ

–
m∑

j=0

M1(α, tj–1, S(tj–1), I(tj–1))
h

∫ tj+1

tj

(τ – tj)(tm+1 – τ )α–1 dτ

)

=
1 – α

X(α)
M1

(
α, t, S(tm), I(tm)

)
+

α

X(α)�(α)

( m∑

j=0

hαM1(α, tj, S(tj), I(tj))
�(α + 2)

× (
(m – j + 2)α(m + α – j + 2) – (m – j)α(m + 2α – j + 2)

)

–
hαM1(α, tj–1, S(tj–1), I(tj–1))

�(α + 2)

)

× (
(m – j + 1)α+1 – (m – j)α(m + α – j + 1)

)
, (56)

S(tm+1) – S0 =
1 – α

X(α)
M1

(
α, t, S(tm), I(tm)

)

+
α

X(α)�(α)

( m∑

j=0

M1(α, tj, S(tj), I(tj))
h

∫ tj+1

tj

(τ – tj–1)(tm+1 – τ )α–1 dτ

–
m∑

j=0

M1(α, tj–1, S(tj–1), I(tj–1))
h

∫ tj+1

tj

(τ – tj)(tm+1 – τ )α–1 dτ

)

=
1 – α

X(α)
M1

(
α, t, S(tm), I(tm)

)
+

α

X(α)�(α)

( m∑

j=0

hαM1(α, tj, S(tj), I(tj))
�(α + 2)

× (
(m – j + 2)α(m + α – j + 2) – (m – j)α(m + 2α – j + 2)

)

–
hαM1(α, tj–1, S(tj–1), I(tj–1))

�(α + 2)

)

× (
(m – j + 1)α+1 – (m – j)α(m + α – j + 1)

)
. (57)

5.1 Simulation
Case I: The world

We need to use real data for COVID-19 to determine the parameters, the current birth
rate for the world in 2020 is 18.077 births per 1000 people, and the death rate is 7.612
per 1000 people [16]. The world’s population on February was N = 7,610,105,452, so
A = n×N

365 = 391,347,μ = 7.612
365×1000 = 2.08547 × 10–5, according the WHO report [32] the

COVID-19 mortality rate γ = 0.034. The other parameters can be found by a curve fit-
ting technique with real reported data for COVID-19. Figure 1(a) shows the development
of susceptible individuals decrease with the time as expected for integer-order deriva-
tives, b = 100 and R0 = 2.618. Figure 1(b) shows the variations of infected individuals with
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Figure 2 Comparison of the results of integer order derivatives (blue line, α = 1), fractional order of
derivatives (α = 0.9 (red line), α = 0.7 (black line) and α = 0.5 (green line) for b = 100 and R0 = 2.618

the time, it increases with time and reaches the plateau region as seen in each country,
where we used same parameters as Fig. 1(a). We compare the prediction fractional-order
derivatives in Fig. 2. It is well known that an increase in the number of active cases and
reaching the plateau region are different for each country and the number of suspected
population decreases and reaches the steady case. This is also different for each country.
On the other hand, from Fig. 2, it is clear that the active or suspected population not only
is a function of time but also a function of the fractional order. This fact proves that the
fractional-order derivative can be used the adjust the modeling to the different countries.
The other point for fractional-order derivative can also be used as a free parameter to fix
the modeling with the data. The effect of the hospital beds for controlling of the diseases
are given in Fig. 3(a)–(b). Figure 3(a) shows the difference of the results between b = 100
and b = 10,000. In Fig. 3(a) we show the infected individuals’ difference between b = 100
and b = 10,000 could reach 400,000 daily cases, if we assume that only 20% of infected in-
dividuals need medical treatment at hospital, then, if we multiply this one by COVID-19
mortality rate 0.034, we obtain 2720 people life can be saved if we provide sufficient hos-
pital beds. Figure 3(b) shows the difference of the suspected individual results of b = 100
and b = 10,000, this is expected because active infected cases for b = 100 always are bigger
than active infected cases for b = 10,000. We also note that our numerical results converge
to the disease equilibrium point.

Case 2: Saudi Arabia
In the second case, we provide a numerical simulation using real data for the transmis-

sion model of COVID-19 in Saudi Arabia. According to the WHO report, the total pop-
ulation of Saudi Arabia N = 34,218,169 so A = n×N

365 = 0.01335×3,418,169
365 = 1252,μ = 0.0133564

365 =
3.6593 × 10–5, we assumed COVID-19 mortality rate γ = 0.034. On April 8, I(0) = 2260
and S(0) = 34,218,169. In Fig. 4(b), we explored the prediction of active cases for different
values of fractional order, α = 1 (blue line), 0.9 (red line), 0.7 (black line) and 0.5 (green
line), when we compare modeling prediction with the real data (WHO report active cases
in Saudi Arabia [32]), we see that model prediction overestimate sometimes lower esti-
mate, but again it seems that α = 0.9 produces the best result. At this point, we note that
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Figure 3 The differences of active infected cases and suspected individuals for b = 100 and b = 10,000

Figure 4 Comparison of between the results of integer order derivatives (blue line, α = 1), fractional order of
derivatives (α = 0.9 (red line), α = 0.7 (black line) and α = 0.5 (green line) for b = 100, k = 5000 and R0 = 2.618

even our suggested modeling seems simple, but we believe that prediction of this model
can be used as a basis for more complicated model predictions. Furthermore, we have one
more adjustable parameters in fractional-order derivatives, this gives us enormous flexi-
bility. Further, in Fig. 5, we concentrate on the effect of half saturation constant k over the
suspected and infected individual for several values of fractional order of the derivations.
We can see as before the effect of the fractional order provides us with enough flexibility
and suspected individuals decrease with time and eventually reach the equilibrium point
as we expected again the time to reach the equilibrium point to depend on the fractional
order of the derivative.

6 Conclusion
In this study, consideration is given to a complex mathematical fractional SIR model for
spreading of the COVID-19 virus, we first show the feasibility region where the solution
exists. The equilibrium points (disease-free and endemic equilibrium) of the system are
found. The local and global asymptotic stability of the system are discussed. Using the
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Figure 5 Comparison of between the results of integer order derivatives (blue line, α = 1), fractional order of
derivatives (α = 0.9 (red line), α = 0.7 (black line) and α = 0.5 (green line) for b = 100, k = 3000 and R0 = 3.565

fixed-point theorem, existence and uniqueness of solution is proven. A numerical solution
of the system is performed for several values of the parameters involved in the modeling.
We showed the importance of maintaining a sufficient number of hospital beds. We also
discussed and compared the prediction of our modeling with real word data. Finally, we
concluded that using the fractional derivative provides us with one more parameter, which
can be used to simulate the real word data.
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