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Abstract
This article examines new multivalued interpolative Reich–Rus–Ćirić-type contraction
conditions and fixed point results for multivalued maps that fulfill these conditions.
Earlier defined interpolative contraction type conditions cannot be particularized to
any contraction type condition. This slackness of the interpolative contraction type
condition is addressed through new multivalued interpolative Reich–Rus–Ćirić-type
contraction conditions.
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1 Introduction and preliminaries
A fixed point to a self-mapping L defined on a non-void abstract set B is a solution to an
equation Lb = b. Banach’s fixed point result [1] is the initial result in the metric fixed point
theory which deals with the existence of a solution to the aforementioned equation for
a self-map L of a metric space (B, dB). This result requires the following two conditions
to ensure the existence and uniqueness of a solution to an equation Lb = b, equivalently,
fixed point of L:

(1) The metric space should be complete;
(2) L should be contraction map, that is, dB(Lb, Lz) ≤ �dB(b, z) for each b, z ∈ B, where

� ∈ [0, 1).
Above conditions have a pivotal role in the development of the metric fixed point theory.
Several generalizations have been concluded by modifying these conditions. For instance,
some modified types of metric spaces are known as partial metric spaces [2], b-metric
spaces [3, 4], and extended b-metric spaces [5]. Meanwhile, the classical and the earli-
est modifications in contraction map are provided by Kannan [6], and Chatterjea [7], as
follows:

A map L : (B, dB) → (B, dB) is called a Kannan contraction, if

dB(Lb, Lz) ≤ �
[
dB(b, Lb) + dB(z, Lz)

]

for all b, z ∈ B, where � ∈ [0, 1/2).
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A map L : (B, dB) → (B, dB) is called a Chatterjea contraction, if

dB(Lb, Lz) ≤ �
[
dB(b, Lz) + dB(z, Lb)

]

for all b, z ∈ B, where � ∈ [0, 1/2).
An interpolative Kannan contraction seems like a modified form of Kannan contrac-

tion. This notion is derived by Karapınar [8] and further improved by Karapınar, Agarwal
and Aydi [9]. Since the introduction of an interpolative Kannan contraction by Karapınar
[8] many of the existing contraction type conditions have been modified utilizing the pat-
tern of interpolative Kannan contraction. Details can be found in [10–18]. A few existing
interpolative contraction type conditions are as follows:

A map L : (B, dB) → (B, dB) is an interpolative Kannan contraction, if

dB(Lb, Lz) ≤ �
[
dB(b, Lb)

]τ1[dB(z, Lz)
]1–τ1

for all b, z ∈ B with b �= Lb, where � ∈ [0, 1) and τ1 ∈ (0, 1).
A map L : (B, dB) → (B, dB) is an improved interpolative Kannan contraction, if

dB(Lb, Lz) ≤ �
[
dB(b, Lb)

]τ1[dB(z, Lz)
]1–τ1

for all b, z ∈ B\Fix(L), where � ∈ [0, 1), τ1 ∈ (0, 1) and Fix(L) = {b ∈ B : Lb = b}.
A map L : (B, dB) → (B, dB) is an (�, τ1, τ2)-interpolative Kannan contraction, if

dB(Lb, Lz) ≤ �
[
dB(b, Lb)

]τ1[dB(z, Lz)
]τ2

for all b, z ∈ B\Fix(L), where � ∈ [0, 1), τ1, τ2 ∈ (0, 1) with τ1 + τ2 < 1.
A map L : (B, dB) → (B, dB) is an interpolative Reich–Rus–Ćirić-type contraction, if

dB(Lb, Lz) ≤ �
[[

dB(b, z)
]τ1[dB(b, Lb)

]τ2[dB(z, Lz)
]1–τ1–τ2]

for each b, z ∈ B \ Fix(L), where � ∈ [0, 1) and τ1, τ2 ∈ (0, 1) with τ1 + τ2 < 1.
The set-valued/multivalued interpolative Reich–Rus–Ćirić-type contraction map was

introduced by Debnath and Sen [16] in a b-metric space.
This article examines new multivalued interpolative Reich–Rus–Ćirić-type contraction

maps and fixed point results for such maps. The new multivalued interpolative Reich–
Rus–Ćirić-type contraction conditions which are being examined in this article cannot
only be particularized to Nadler’s type contraction condition but also to some other types
of interpolative contraction conditions. Debnath and Sen [16] discussed the existence of
fixed points for multivalued interpolative Reich–Rus–Ćirić-type contraction map in b-
metric space, by assuming that all bounded and closed subsets of the b-metric space are
compact. Readers can see that the restriction of compactness is not required in the pre-
sented results of this article.

Before moving towards the main results, we discuss the notion of b-metric spaces, pre-
sented by Bakhtin [3] and Czerwik [4], with a few essential concepts.

Definition 1.1 ([3, 4]) A function dB : B × B → [0,∞) is called a b-metric on B �= ∅, if for
all b, z, c ∈ B and for some λ ≥ 1, we get
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(1) dB(b, z) = 0 ⇔ b = z;
(2) dB(b, z) = dB(z, b);
(3) dB(b, c) ≤ λ[dB(b, z) + dB(z, c)].

Then (B, dB,λ) denotes b-metric space along coefficient λ ≥ 1.

The concept of b-metric space is considered as the strongest generalization of metric
space and it is reflected by the work of several researchers. The reader may refer to [19–
27].

Definition 1.2 ([4]) Let (B, dB,λ) be a b-metric space along coefficient λ ≥ 1. Then:
• a sequence {bn} is Cauchy in B, if limn,m→∞ dB(bn, bm) = 0;
• a sequence {bn} is convergent to b∗ in B, if limn→∞ dB(bn, b∗) = 0 and b∗ ∈ B;
• (B, dB,λ) is called complete if each Cauchy sequence {bn} in B is convergent in B.

Now on, (B, dB,λ) denotes the b-metric space along coefficient λ ≥ 1 and CB(B) rep-
resents the collection of all non-empty bounded and closed subsets of B. The functional
HB : CB(B) × CB(B) → [0,∞) defined by

HB(D, E) = max
{
sup

{
dB(ω, E) : ω ∈ D

}
, sup

{
dB(η, D) : η ∈ E

}}

is the Pompeiu–Hausdorff b-metric on CB(B), where dB(ω, E) = inf{dB(ω,η),η ∈ E}.
The following theorem has an important role in the results presented by this article.

Theorem 1.3 ([19]) Let (B, dB,λ) be a b-metric space. Let D, E ∈ CB(B) and ω ∈ D. Then,
for each � > 1, there is η ∈ E with

dB(ω,η) ≤ �HB(D, E).

2 Main results
This section begins with the following definition.

Definition 2.1 Assume a b-metric space (B, dB,λ) and maps L : B → CB(B), γ : B × B →
R – {0}. The map L is called a γ -interpolative Reich–Rus–Ćirić-I-contraction, if

[
HB(Lb, Lz)

]γ (b,z) ≤ �
[[

dB(b, z)
]τ1[dB(b, Lb)

]τ2[dB(z, Lz)
]τ3] (2.1)

for each b, z ∈ B with

min
{

dB(b, z), dB(b, Lb), dB(z, Lz)
}

> 0,

where � ∈ (0, 1
λ2 ) and τ1, τ2, τ3 ∈ [0, 1] with τ1 + τ2 + τ3 = 1.

The existence of fixed points for the defined notion is discussed as follows.

Theorem 2.2 Assume a complete b-metric space (B, dB,λ) and γ -interpolative Reich–
Rus–Ćirić-I-contraction map L. Also, assume that:

(1) there exist b0 ∈ B and b1 ∈ Lb0 with γ (b0, b1) = 1;
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(2) for each b, z ∈ B with γ (b, z) = 1, we have γ (c, d) = 1∀c ∈ Lb, d ∈ Lz;
(3) for each {bm} in B with bm → b and γ (bm, bm+1) = 1∀m ∈ N, we have

γ (bm, b) = 1∀m ∈N.
Then L has a fixed point in B.

Proof By (1), there exist b0 ∈ B and b1 ∈ Lb0 with γ (b0, b1) = 1. If

min
{

dB(b0, b1), dB(b0, Lb0), dB(b1, Lb1)
}

= 0

then fixed point of L possesses in B. Suppose that

min
{

dB(b0, b1), dB(b0, Lb0), dB(b1, Lb1)
}

> 0.

By (2.1), we obtain

HB(Lb0, Lb1) =
[
HB(Lb0, Lb1)

]γ (b0,b1)

≤ �
[[

dB(b0, b1)
]τ1[dB(b0, Lb0)

]τ2[dB(b1, Lb1)
]τ3]. (2.2)

From (2.2), we obtain

1√
�

dB(b1, Lb1) ≤ 1√
�

HB(Lb0, Lb1)

≤ √
�

[[
dB(b0, b1)

]τ1[dB(b0, Lb0)
]τ2[dB(b1, Lb1)

]τ3]. (2.3)

As 1√
�

> 1, from Theorem 1.3, there should be b2 ∈ Lb1 satisfying

dB(b1, b2) ≤ 1√
�

dB(b1, Lb1).

By (2.3) and the above fact, we conclude

dB(b1, b2) ≤ √
�

[[
dB(b0, b1)

]τ1[dB(b0, b1)
]τ2[dB(b1, b2)

]τ3]. (2.4)

Now, we discuss the proof for the following three choices of τ3:
If τ3 = 0 in (2.4), then τ1 + τ2 = 1, thus dB(b1, b2) ≤ √

�dB(b0, b1).
If τ3 = 1 in (2.4) then dB(b1, b2) = 0, that is, b1 is a fixed point of L and it is not possible
under the assumption.
If τ3 ∈ (0, 1) in (2.4) then we have the following:

[
dB(b1, b2)

]1–τ3 ≤ √
�

[[
dB(b0, b1)

]τ1+τ2] (2.5)

since 1 – τ3 = τ1 + τ2, thus, by the above inequality, we get

dB(b1, b2) ≤ (
√

�)
1

1–τ3 dB(b0, b1) <
√

�dB(b0, b1).

Hence, we arrive at

dB(b1, b2) ≤ √
�dB(b0, b1). (2.6)
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As b1 ∈ Lb0, b2 ∈ Lb1 and γ (b0, b1) = 1, then, by (2), we obtain γ (b1, b2) = 1. Again, we
assume that

min
{

dB(b1, b2), dB(b1, Lb1), dB(b2, Lb2)
}

> 0

then by (2.1) we get

1√
�

dB(b2, Lb2) ≤ 1√
�

HB(Lb1, Lb2)

=
1√
�

[
HB(Lb1, Lb2)

]γ (b1,b2)

≤ √
�

[[
dB(b1, b2)

]τ1[dB(b1, Lb1)
]τ2[dB(b2, Lb2)

]τ3]. (2.7)

As 1√
�

> 1, there should be b3 ∈ Lb2 satisfying

dB(b2, b3) ≤ 1√
�

dB(b2, Lb2).

Thus, by (2.7) and the above inequality, we get

dB(b2, b3) ≤ √
�

[[
dB(b1, b2)

]τ1[dB(b1, b2)
]τ2[dB(b2, b3)

]τ3]. (2.8)

Again, we discuss the proof of the following three choices of τ3:
If τ3 = 0 in (2.8), then τ1 + τ2 = 1, thus dB(b2, b3) ≤ √

�dB(b1, b2).
If τ3 = 1 in (2.8) then dB(b2, b3) = 0, that is, b2 is a fixed point of L and it is not possible
under the assumption.
If τ3 ∈ (0, 1) in (2.8) then we have the following:

[
dB(b2, b3)

]1–τ3 ≤ √
�

[[
dB(b1, b2)

]τ1+τ2]. (2.9)

Thus, we arrive at

dB(b2, b3) ≤ √
�dB(b1, b2). (2.10)

By (2.10) and (2.6) we obtain

dB(b2, b3) ≤ (
√

�)2dB(b0, b1).

Induction yields a sequence {bm} in B with bm ∈ Lbm–1, γ (bm, bm+1) = 1 ∀m ∈N and

dB(bm, bm+1) ≤ (
√

�)mdB(b0, b1) ∀m ∈N.

Also, we get

min
{

dB(bm, bm+1), dB(bm, Lbm), dB(bm+1, Lbm+1)
}

> 0 ∀m ∈N.
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By the triangle inequality, for n > m, we get

dB(bn, bm) ≤
n–1∑

j=m

λjdB(bj, bj+1)

≤
n–1∑

j=m

λj(
√

�)jdB(b0, b1).

Since
∑∞

j=1 λj(
√

�)j < ∞, thus, {bm} is a Cauchy in B. For {bm} the completeness of B shall
give b∗ in B with bm → b∗. By considering (3), we obtain γ (bm, b∗) = 1∀m ∈ N. Here, we
claim that b∗ ∈ Lb∗. Let us suppose that if the claim is wrong then

min
{

dB(bm, b∗), dB(bm, Lbm), dB(b∗, Lb∗)
}

> 0 ∀m ≥ n0

for some natural number n0. By (2.1) we get

dB(bm+1, Lb∗) ≤ HB(Lbm, Lb∗)

=
[
HB(Lbm, Lb∗)

]γ (bm ,b∗)

≤ �
[[

dB(bm, b∗)
]τ1[dB(bm, Lbm)

]τ2[dB(b∗, Lb∗)
]τ3]

≤ �
[[

dB(bm, b∗)
]τ1[dB(bm, bm+1)

]τ2[dB(b∗, Lb∗)
]τ3] ∀m ≥ n0. (2.11)

By the triangle inequality and (2.11), we get

dB(b∗, Lb∗) ≤ λ
[
dB(b∗, bm+1) + dB(bm+1, Lb∗)

]

≤ λdB(b∗, bm+1)

+ λ�
[[

dB(bm, b∗)
]τ1[dB(bm, bm+1)

]τ2[dB(b∗, Lb∗)
]τ3] ∀m ≥ n0.

Suppose that τ3 �= 1 and m → ∞ in the above inequality, then we get dB(b∗, Lb∗) = 0,
that is, b∗ ∈ Lb∗. Suppose that τ3 = 1 and m → ∞ in the above inequality, then we get
dB(b∗, Lb∗) ≤ λ�dB(b∗, Lb∗), which is not possible if dB(b∗, Lb∗) �= 0. Hence, our claim is
true, b∗ ∈ Lb∗. �

Example 2.3 Consider B as a set of all integers and define dB(b, b′) = |b – b′|2 ∀b, b′ ∈ B.
Define L : B → CB(B) by

L(b) =

⎧
⎨

⎩
{0, 1}, b ∈ {0, 1, 2, 3, . . .},
{b, –(b – 2)2}, b ∈ {–1, –2, –3, . . .},

and γ : B × B →R – {0} by

γ
(
b, b′) =

⎧
⎨

⎩
1, b, b′ ∈ {0, 1, 2, 3, . . .},
–[|b| + |b′| + 8], otherwise.

Now, one can calculate the following cases.
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If b, b′ ∈ {2, 3, 4, . . .} with b �= b′, we obtain HB(Lb, Lb′)γ (b,b′) = 0.
If b, b′ < 0 with b �= b′, we obtain HB(Lb, Lb′)γ (b,b′) = 1

[|–(b–2)2+(b′–2)2|2]|b|+|b′|+8 .

If b < 0 and b′ ≥ 2, we obtain HB(Lb, Lb′)γ (b,b′) = 1
[|–(b–2)2|2]|b|+|b′|+8 .

These calculations verify the validity of (2.1). The remaining axioms of Theorem 2.2 are
also valid. Hence, L has a fixed point.

By assuming τ1 = 1 and τ2 = τ3 = 0 in the above result, we arrive at the following results.

Corollary 2.4 Assume we have a complete b-metric space (B, dB,λ) and maps L : B →
CB(B), γ : B × B →R – {0} such that

[
HB(Lb, Lz)

]γ (b,z) ≤ �dB(b, z) (2.12)

for each b, z ∈ B with

min
{

dB(b, z), dB(b, Lb), dB(z, Lz)
}

> 0,

where � ∈ [0, 1
λ2 ). Also, assume that:

(1) there exist b0 ∈ B and b1 ∈ Lb0 with γ (b0, b1) = 1;
(2) for each b, z ∈ B with γ (b, z) = 1, we have γ (c, d) = 1 ∀c ∈ Lb, d ∈ Lz;
(3) for each {bm} in B with bm → b and γ (bm, bm+1) = 1 ∀m ∈N, we have γ (bm, b) = 1

∀m ∈ N.
Then L has a fixed point in B.

By assuming γ (b, z) = 1 for all b, z ∈ B in the above corollary, we obtain the following
result which can be considered as an extended form of Nadler’s fixed point theorem.

Corollary 2.5 Assume a complete b-metric space (B, dB,λ) and a map L : B → CB(B) sat-
isfying the following inequality:

HB(Lb, Lz) ≤ �dB(b, z) (2.13)

for each b, z ∈ B with

min
{

dB(b, z), dB(b, Lb), dB(z, Lz)
}

> 0,

where � ∈ [0, 1
λ2 ). Then L has a fixed point in B.

Remark 2.6 By considering (2.13) one can say that γ -interpolative Reich–Rus–Ćirić-I-
contraction can be particularized to Nadler’s type contraction.

The right side of (2.14) is more analogous to interpolative Reich–Rus–Ćirić-contraction.

Definition 2.7 Assume a b-metric space (B, dB,λ) and maps L : B → CB(B), γ : B × B →
R – {0}. The map L is called a reduced γ -interpolative Reich–Rus–Ćirić-I-contraction, if

[
HB(Lb, Lz)

]γ (b,z) ≤ �
[[

dB(b, z)
]τ1[dB(b, Lb)

]τ2[dB(z, Lz)
]1–τ1–τ2] (2.14)
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for each b, z ∈ B with

min
{

dB(b, z), dB(b, Lb), dB(z, Lz)
}

> 0,

where � ∈ (0, 1
λ2 ) and τ1, τ2 ∈ [0, 1) with 0 < τ1 + τ2 < 1.

Remark 2.8 Consider ς1,ς2 ∈ [0, 1) with 0 < ς1 + ς2 < 1. Define τ1 = ς1, τ2 = ς2 and τ3 =
1 – ς1 – ς2, then τ1 + τ2 + τ3 = ς1 + ς2 + (1 – ς1 – ς2) = 1. Thus, (2.1) of Definition 2.1 gives
(2.14) of Definition 2.7.

Now one can easily understand that Theorem 2.9 is a simple consequence of Theo-
rem 2.2.

Theorem 2.9 Assume a complete b-metric space (B, dB,λ) and reduced γ -interpolative
Reich–Rus–Ćirić-I-contraction map L. Also, assume that:

(1) there exist b0 ∈ B and b1 ∈ Lb0 with γ (b0, b1) = 1;
(2) for each b, z ∈ B with γ (b, z) = 1, we have γ (c, d) = 1∀c ∈ Lb, d ∈ Lz;
(3) for each {bm} in B with bm → b and γ (bm, bm+1) = 1∀m ∈ N, we have γ (bm, b) = 1

∀m ∈ N.
Then L has a fixed point in B.

By assuming τ1 = 0 and τ2 = τ ∈ (0, 1) in the above result we reach the following result.

Corollary 2.10 Assume a complete b-metric space (B, dB,λ) and maps L : B → CB(B),
γ : B × B →R – {0} such that

[
HB(Lb, Lz)

]γ (b,z) ≤ �
[[

dB(b, Lb)
]τ [dB(z, Lz)

]1–τ ] (2.15)

for each b, z ∈ B with

min
{

dB(b, z), dB(b, Lb), dB(z, Lz)
}

> 0,

where � ∈ [0, 1
λ2 ) and τ ∈ (0, 1). Also, assume that:

(1) there exist b0 ∈ B and b1 ∈ Lb0 with γ (b0, b1) = 1;
(2) for each b, z ∈ B with γ (b, z) = 1, we have γ (c, d) = 1 ∀c ∈ Lb, d ∈ Lz;
(3) for each {bm} in B with bm → b and γ (bm, bm+1) = 1 ∀m ∈N, we have γ (bm, b) = 1

∀m ∈ N.
Then L has a fixed point in B.

Remark 2.11 Inequality (2.15) is a generalized form of improved interpolative Kannan
contraction.

The following definition provides another way to generalize interpolative Reich–Rus–
Ćirić-contraction maps.

Definition 2.12 Assume a b-metric space (B, dB,λ) and maps L : B → CB(B), γ : B × B →
[0,∞). The map L is called a γ -interpolative Reich–Rus–Ćirić-II-contraction, if

γ (b, z)HB(Lb, Lz) ≤ �
[[

dB(b, z)
]τ1[dB(b, Lb)

]τ2[dB(z, Lz)
]τ3] (2.16)
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for each b, z ∈ B with

min
{

dB(b, z), dB(b, Lb), dB(z, Lz)
}

> 0,

where � ∈ (0, 1
λ2 ) and τ1, τ2, τ3 ∈ [0, 1] with τ1 + τ2 + τ3 = 1.

The existence of fixed points for the above defined notion are verified through the fol-
lowing result.

Theorem 2.13 Assume a complete b-metric space (B, dB,λ) and γ -interpolative Reich–
Rus–Ćirić-II-contraction map L. Also, assume that:

(1) there exist b0 ∈ B and b1 ∈ Lb0 with γ (b0, b1) ≥ 1;
(2) for each b, z ∈ B with γ (b, z) ≥ 1, we have γ (c, d) ≥ 1 ∀c ∈ Lb, d ∈ Lz;
(3) for each {bm} in B with bm → b and γ (bm, bm+1) ≥ 1 ∀m ∈N, we have γ (bm, b) ≥ 1

∀m ∈ N.
Then L has a fixed point in B.

Proof Axiom (1) says that there are elements b0 ∈ B and b1 ∈ Lb0 with γ (b0, b1) ≥ 1. As-
sume that

min
{

dB(b0, b1), dB(b0, Lb0), dB(b1, Lb1)
}

> 0;

otherwise a fixed point of L occurs in B. Then, by (2.16), we arrive at

HB(Lb0, Lb1) ≤ γ (b0, b1)HB(Lb0, Lb1)

≤ �
[[

dB(b0, b1)
]τ1[dB(b0, Lb0)

]τ2[dB(b1, Lb1)
]τ3]. (2.17)

From (2.17), we obtain

1√
�

dB(b1, Lb1) ≤ 1√
�

HB(Lb0, Lb1)

≤ √
�

[[
dB(b0, b1)

]τ1[dB(b0, Lb0)
]τ2[dB(b1, Lb1)

]τ3]. (2.18)

As 1√
�

> 1, there should be b2 ∈ Lb1 satisfying

dB(b1, b2) ≤ 1√
�

dB(b1, Lb1).

By (2.18) and the above inequality, we get

dB(b1, b2) ≤ √
�

[
dB(b0, b1)

]τ1[dB(b0, b1)
]τ2[dB(b1, b2)

]τ3 ]. (2.19)

Now, we discuss the proof for the following three choices of τ3:
If τ3 = 0 in (2.19), then τ1 + τ2 = 1, thus dB(b1, b2) ≤ √

�dB(b0, b1).
If τ3 = 1 in (2.19) then dB(b1, b2) = 0, that is, b1 is a fixed point of L and it is not
possible under the assumption.



Alansari and Ali Advances in Difference Equations        (2021) 2021:311 Page 10 of 13

If τ3 ∈ (0, 1) in (2.19), then we get the following:

[
dB(b1, b2)

]1–τ3 ≤ √
�

[[
dB(b0, b1)

]τ1+τ2] (2.20)

since 1 – τ3 = τ1 + τ2, thus, by the above inequality, we get

dB(b1, b2) ≤ (
√

�)
1

1–τ3 dB(b0, b1).

Hence, we arrive at

dB(b1, b2) ≤ √
�dB(b0, b1). (2.21)

As b1 ∈ Lb0, b2 ∈ Lb1 and γ (b0, b1) ≥ 1, then by axiom (2), we arrive at γ (b1, b2) ≥ 1. By
the repetition of (2.16) and axiom (2), we arrive at a sequence {bm} in B with bm ∈ Lbm–1,
γ (bm, bm+1) ≥ 1∀m ∈N and

dB(bm, bm+1) ≤ (
√

�)mdB(b0, b1) ∀m ∈N.

Also,

min
{

dB(bm, bm+1), dB(bm, Lbm), dB(bm+1, Lbm+1)
}

> 0 ∀m ∈N.

From the proof of Theorem 2.2, we can see that {bm} is a Cauchy in B and there should be
b∗ in B with bm → b∗. Also, by (3), γ (bm, b∗) ≥ 1∀m ∈N. Now we can claim that b∗ ∈ Lb∗.
If our claim is wrong, then min{dB(bm, b∗), dB(bm, Lbm), dB(b∗, Lb∗)} > 0 for each m ≥ n0

(for some natural number n0). By (2.16), we arrive at

dB(bm+1, Lb∗) ≤ HB(Lbm, Lb∗)

≤ γ (bm, b∗)HB(Lbm, Lb∗)

≤ �
[[

dB(bm, b∗)
]τ1[dB(bm, Lbm)

]τ2[dB(b∗, Lb∗)
]τ3]

≤ �
[[

dB(bm, b∗)
]τ1[dB(bm, bm+1)

]τ2[dB(b∗, Lb∗)
]τ3] ∀m ≥ n0. (2.22)

By (2.22) and the triangle inequality, we arrive at

dB(b∗, Lb∗) ≤ λ
[
dB(b∗, bm+1) + dB(bm+1, Lb∗)

]

≤ λdB(b∗, bm+1)

+ λ�
[[

dB(bm, b∗)
]τ1[dB(bm, bm+1)

]τ2[dB(b∗, Lb∗)
]τ3] ∀m ≥ n0.

Consider τ3 �= 1 and m → ∞ in the above inequality, then we get dB(b∗, Lb∗) = 0, that is,
b∗ ∈ Lb∗. Consider τ3 = 1 and m → ∞ in the above inequality, then we get dB(b∗, Lb∗) ≤
λ�dB(b∗, Lb∗), which is not possible if dB(b∗, Lb∗) �= 0. Hence, our claim is true, b∗ ∈
Lb∗. �

Now we shall discuss the notion of reduced γ -interpolative Reich–Rus–Ćirić-II-
contraction map and related fixed point result.
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Definition 2.14 Assume a b-metric space (B, dB,λ) and maps L : B → CB(B), γ : B × B →
[0,∞). The map L is called a reduced γ -interpolative Reich–Rus–Ćirić-II-contraction, if

γ (b, z)HB(Lb, Lz) ≤ �
[[

dB(b, z)
]τ1[dB(b, Lb)

]τ2[dB(z, Lz)
]1–τ1–τ2] (2.23)

for each b, z ∈ B with

min
{

dB(b, z), dB(b, Lb), dB(z, Lz)
}

> 0,

where � ∈ (0, 1
λ2 ) and τ1, τ2 ∈ [0, 1) with 0 < τ1 + τ2 < 1.

The following result is a simple consequence of Theorem 2.13.

Theorem 2.15 Assume a complete b-metric space (B, dB,λ) and reduced γ -interpolative
Reich–Rus–Ćirić-II-contraction map L. Also, assume that:

(1) there exist b0 ∈ B and b1 ∈ Lb0 with γ (b0, b1) ≥ 1;
(2) for each b, z ∈ B with γ (b, z) ≥ 1, we have γ (c, d) ≥ 1 ∀c ∈ Lb, d ∈ Lz;
(3) for each {bm} in B with bm → b and γ (bm, bm+1) ≥ 1 ∀m ∈N, we have γ (bm, b) ≥ 1

∀m ∈ N.
Then L has a fixed point in B.

Example 2.16 Consider B as a set of all real numbers and dB(b, b′) = |b – b′| for all b, b′ ∈ B.
Define L : B → CB(B) by

L(b) =

⎧
⎨

⎩
[0, b

8 ], b ≥ 0,

{0, 2b}, b ≤ 0,

and ξ : B × B → [0,∞) by

ξ
(
b, b′) =

⎧
⎨

⎩
1, b, b′ ≥ 0,

0, otherwise.

For instance, take b = –1 and b′ = –3, then HB(Tb, Tb′) = 4, dB(b, b′) = 2 dB(b, Tb) = 1 and
dB(b′, Tb′) = 3. Also

[
dB

(
b, b′)]τ1[dB(b, Lb)

]τ2[dB
(
b′, Lb′)]1–τ1–τ2 < 3 ∀τ1, τ2 ∈ (0, 1).

Thus, it can be seen that the set-valued versions based on the structure of b-metric spaces
for the interpolative contraction type conditions given in [8–12, 16], with many other ex-
isting interpolative contraction type conditions, are not applicable on the above defined
function L with respect to the above dB. Meanwhile, all the axioms of Theorem 2.13 are
valid on the above defined functions.

3 Conclusion
This article presents new multivalued interpolative Reich–Rus–Ćirić-type contraction
conditions and fixed point results for multivalued maps which fulfil these conditions in
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a complete b-metric space. Earlier defined interpolative contraction type conditions can-
not be particularized to any contraction type condition. This slackness of interpolative
contraction type condition is addressed through the introduction of new multivalued in-
terpolative Reich–Rus–Ćirić-type contraction conditions. A few examples are given to
support the findings of this article.
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in b-metric spaces. Mathematics 7, 849 (2019)
17. Debnath, P., de La Sen, M.: Fixed points of interpolative Ćirić–Reich–Rus-type contractions in b-metric spaces.
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