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1 Introduction

Fractional differential equations are considered as prolongation of the concept of deriva-
tive operator from integer order to any real or complex order. Fractional differential equa-
tions usually describe the nonlocal effects. Over the last two decades, there has been a
blistering growth in the field of fractional calculus. Owing to the vast amount of applica-
tions, many mathematicians focused their engrossment on fractional calculus.

There exist several definitions for fractional derivatives and fractional integrals in the
literature like Riemann-Liouville, Caputo, Hadamard, Riesz, Grunwald—Letnikov, Mar-
chaud, Erdelyi—Kober, etc. The process of developing these operators began with a series
of stages ranging from exponential functions to different classes of functions. Having lately
come into holocene Udita N. Katugampola [1] generalized the above mentioned integral
and differential operators. Meanwhile the well-developed theory and many more applica-
tions of the said operators are still a spotlight area of research in applied sciences.

As we know, the existence theory is meat-and-potatoes in every field of science, as it is
very applicative to comprehend whether there is a solution to a given differential equation
beforehand; otherwise, all the attempts to find a numerical or analytic solution will become
valueless. The analysis of fractional differential equations has been carried out by various
authors (see, for example, [2-18]).
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As most fractional derivatives are computed using the corresponding integrals, re-
searchers describe the nonlocal effects in terms of left and the right derivative. Thus,
many mathematicians are in a hunt to generalize the notions further. In this context, Riesz
[19] demonstrated the two-sided fractional operators using both left and right Riemann—
Liouville’s fractional differential and integral operators.

Due to the two-sided nature of Riesz’s differential operator, the interesting differential is
specifically used for fractional modeling on a finite domain. Some optimality conditions
are discussed by Almeida for fractional variational problems with Riesz—Caputo derivative
[20]. Frederico et al. derived Noether’s theorem for variational problems having Riesz—
Caputo derivatives. In [21], Mandelbrot demonstrated that there is a close connection
between Brownian motion and fractional calculus.

In [22], the authors solved the fractional Poisson equation having Riesz derivative using
Fourier transform. Due to the validity of Riesz derivative operator on the whole domain, it
appears in the fractional turbulent diffusion model. In [23], the authors numerically solved
the advection-diffusion equation having Riesz derivative. For further applications of Riesz
derivative on the anomalous diffusion, see [24—29].

In this work, we define the generalized Riesz—Caputo type derivative operator by using
the generalized operators. We present basic perspectives on the existence and unique-
ness of solutions of fractional differential equations. Motivated by [30, 31], we provide the
analysis on existence of solutions for the following nonlinear fractional differential equa-
tion involving generalized Riesz—Caputo type derivative operator with general boundary

conditions:

REDLP (1) = g1, p(w),EE DL P (), € [0,T),
¢(0) = o, o(T) = ¢r,

1)

where ¢ and ¢7 are constants, while g : [0, T] x R? — R is continuous with 1 <o < 2,
O<a*<l,and 1< p <o0.

The rest of the paper is organized as follows: Sect. 2 presents some basic definitions
and lemmas from literature. In Sect. 3 we introduce the generalized Riesz—Caputo’s frac-
tional operators and derived some useful results, while in Sect. 4 we establish some equiv-
alence results for boundary value problem (1) and establish the results for the existence
and uniqueness of solutions for BVP (1). The last section of this paper presents the stability

of solutions for BVP (1) by means of continuous dependence on parameters.

2 Preliminaries

In this section we demonstrate some useful results including definitions and lemmas
related to Riesz—Caputo derivatives and integrals that will help us in our later discus-
sions. Following the same traditional definitions of Riesz—Caputo derivative and integral
[19, 30, 32], we can generalize these definitions using a generalized Caputo type derivative
operator. Some preliminary structural properties, which we will frequently use in our later
discussion, are also introduced in this section. In 2010, Om Prakash Agrawal defined the

generalized fractional in the following way.
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Definition 2.1 ([33]) Let « > 0. Then the generalized fractional integral operator A(a Tirs)

is defined as

T

m
A b e=r / Koo )pn) iy + s / Ka(s ) (n) dn,

a 3

where the kernel function K, (u,7) may depend onw anda < < T and r,s € R.

This is the generalized fractional integral operator which, by using the specific kernel

ILVI
I'o

T = 0 leads to the left sided R-L integral operator and by taking K, (u, 17) =

function, leads to the specific operator. For example, if K, (u,n) = - and by taking

PP —yP)e !

P 11"( )
with T = 0 gives the left generalized integral defined below. Furthermore, the limits of

integration a and T can be extended to —oo and oo respectively.

Definition 2.2 ([34]) Let @ € R,,c € R, and g € X¥(a, b), where X?(a, b) is the space of
Lebesgue measurable functions. Then corresponding generalized left- and right-sided
fractional integrals (°I7,g)(1) and (°I;g)(u) of order o € C(Re(w)) > 0 are defined by

G )
fwly G

pt= b e lg(n)

C(@) Ju (g7 =)™

("I7.8) () =

dn, w>a,p>0,

("Iy-g) () = dn, w<b,p>0,

respectively, where I'(-) is Euler’s gamma function.

Theorem 2.3 ([35]) Leta, p € Rand p,a > 0. Then, for ¢ € X% (a, b), the following relation
holds:

(D5 15 6) (1) = B(1e).

Similarly, the inverse property holds for a right-hand-sided integral and a derivative op-
erator as well.

Lemma 2.4 ([35]) LetO<a < B <1and p,a>0. Then, for ¢ € X% (a,b), the following rela-
tion holds:

PDYPIE () =PI o).

Lemma 2.5 ([35]) Let o, p € R, and g € AC}[0, T']: the space of complex-valued functions
g which have continuous derivatives up to order (n — 1) on [a,b] such that 8/()”’1)g(p.) €
AC[0, T is absolutely continuous on [0, T], where 8,(g(u)) = Ml‘p%(g(m). Then, for 0 <
w < T, the following relations hold:

. 2P ) j
() (25D5,.8) (1) = g) = Xty 5= (5,
(i) (Q130D% 19)(T) = {g(n) — Yr S22 (1=l
where n = [a] and 8, = (n" % )1
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3 Generalized Riesz-Caputo fractional operators
In this section we introduce the generalized Riesz—Caputo fractional integrals and deriva-

tive operators.

Definition 3.1 ([19]) For g(u) € C(0, T), the classical Riesz—Caputo derivative is defined
by

1

T
ng,Tg(ﬂ) = Toi—a) /0 i — "¢ () dn

1
= 5 (*D&M + (—1)H*DZ,T)g(M);
where .Dj , and D} 1 are left and right Caputo derivatives [36], respectively.

Following the same mechanism, we generalize the Riesz fractional integral by means of

Definition 2.2 as follows.

Definition 3.2 Let g(u) € X¥(a,b) and a, p > 0. Then, for 0 < u < T, the generalized Riesz
type integral is defined as

l1-a

(Cr2g) () = 2

! =1 (np _ ,,P)|*L
F(oz)/o " (" = w?)|" " g(n)dn

o

= o15g(n) + 1 17g(1).

Accordingly, the Riesz—Caputo derivative [19] can be generalized by means of general-

ized Caputo type derivative operators [1] as follows.

Definition 3.3 Let o, p € C with Re(ar), Re(p) > 0and g(u) € X7 (a, b) for 0 < u < T. Then
the generalized Riesz—Caputo type derivative operator is defined as

RC p pot—n+1 T np—l ) d\"
D g(u) = / (n p—) (n)dn
o Fré Cn—a)Jo |(ue—ne)*"! dn) ¢

1 o
= g(ng,u +(=1)"7D% 1)g(w),

where {D{ , and QDZ,T are left and right generalized Caputo type derivatives [37] as fol-

lows:

o
Op — Fn-a)ty (P — np)a—n+l

a-n+l " p-1 d n

1Y -

{ 1 <n1 "d—> g(n)dn
n

and

oa-n+l T p-1 d n
4 n _
(D 7= / (—nl ”—) (n)dn,
wT F(}’l _ Ol) " (np _ Mp)(x—;ﬂl dn g

where n = [«a].
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Since for o = 1 the right generalized derivative is the negative of the left generalized
derivative, so for integer values of «, the generalized Riesz—Caputo type derivative defined
above comes to term with the conventional definitions of derivative.

Lemma 3.4 Let g € AC§[0, T] with 0 < u < T. Then the following relation is true:
ol70 D7 g(1) = 5 S GIeDS, + (DRI g, (*)

Proof Using the above definitions, we can write

0I56 D g () = ﬂl“(ﬂDa +(=1)"/Dy, r)g(w)

=5€1T£Do,ug(u)+ 5 oD . 78(1)
— ﬂIapDot pIapDct (_1)71 ,OIotpDcx pla,oDa
2( o,u p_ )g( )+ 2 ( MT m )g(/’b)

1
= S CIEDg, + (LD e,
and the proof is finished. g

Remark 3.5 1f 0 < o < 1, then for g(u) € C[0, T the relation illustrated in (x) becomes

(IEECD g1 =£(0) - 5 (£(0) +(T))

Proof The proof simply follows by using # = 1 in Lemma 3.4 and Lemma 2.5, which yields
the required result. 0

Theorem 3.6 Let o > 0 and {¢;}, be a uniformly convergent sequence of continuous func-
tions on [a, b). Then we can interchange the generalized fractional integral operator and the
limit, i.e.,

("L, lim ) () = (lim "L, ;) (1)-

Proof Let ¢ be the limit of the sequence {¢;}. Since {¢;} is the convergent sequence of
continuous functions, so ¢ is also continuous. To prove that under the given conditions
we can interchange fractional integral and limit, it is enough to show that the sequence
{PIg, ¢} s also uniformly convergent. That is, |15, ¢;() — 715, ¢ ()| — 0 as j — oo. For
this, consider

P12, () = P12, (1)
:‘pl‘“ m (P! n_pl“’ mgimn!
@) Ja (ue—po)@ " T(@) Ja (ue —ne)

/ i(n) - ¢(n))np !
- r(a) (ur —ne)!

rl —
_’F’(a) — Bl / (=) dn. 2)

Page 5 of 28
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Now, we first shall evaluate the integral

n . w1 1 . n® a-1
/ "N (wf =) dn = M“”‘p/ 7 (1-—] dn.
a a Iu'p

Substituting Z—Z = u, we have

" a-1
/ N (u” =) dn
a

ap 1 ap 1 o\ 1-1
K /p W1 —uw)tdu= L ) (u - U_p) (1-w)*"du.
o J p J %

Now, using the result f;f (u— &) (& — u)f ' du = (& — &)**P1B(a, B), the above equa-
tion leads to

" a-1
/ (=) dn
a

e { (" —a")“B(La)} (W -afBla)  (u —a?)’
P e - P ap

Consequently, from equation (2), we arrive at

P _ g\
1719, 6, 0) — 1%, p ()] < L =4

< m||¢j‘¢”oo-

Since (¢;) is a uniformly convergent sequence, thus
P12, (1) -"12,¢(1)| > 0 asj— oo.

Therefore, the sequence {"I, ¢}, is also uniformly convergent, and hence the result fol-

lows. 0
The similar result holds true for the right-sided generalized fractional integral as well.
Lemma 3.7 If¢(u) is an analytic function in (ag—§, a0 + &), where t > 0 and a, ag > 0, then

© T(L+1)E20D(E —apy™

P = L . .
( a0¢)(§) ; j!F(é +a+1)p ¢'(ao)

In particular, "Iy ¢ is also analytic.

Proof Since ¢ is an analytic function, thus it can be written in the form of convergent
power series, i.e.,

&) =3 5= 4y,

!
Jj=0

Page 6 of 28
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Using Definition 2.2, we get

l—oz

g o0

j=0

Using Theorem 3.6, the summation and integral sign are interchanged as follows:

l—a & j 3 )
(12,0)€) = 2 Z"’;f"’) [ r-ay e -y dn 1z 0@

I'(a)

P o B (ag)E* PV (E — ag) ™ (j )
= B - 1)

r(a)j:ZO ot p e

(2 + D50 —ao)"™

5 ,
= ; : @ (ao).
; /!F(ﬁ +o+1)p O

Theorem 3.8 Let ¢ € X! (a,b) and {2}, be a convergent sequence of nonnegative real
numbers with limit ). Then

lim(*16) (1) = (*12,9) 10,

where convergence of the sequence {”1214)}/931 is signified in terms of X (a,b) norm with
l1<p<oo,p,ceR,p>0,andc<p+1.

Proof Let the sequence {2;}7°, converge to the limit A. Then, by definition,

A G 1))
F()\. ) (/LP np)l_ki

(p1a+¢)( ) = dnr w>a,p>0,

and by taking limit on both sides and by using Theorem 3.6, we have

) , z plim/ﬁo(l A -
111_{%( Ia+¢)( )= m/ qb(n){hm(,u -n ) }d’?

(1-2) "
e / n o) — ") dn

= ("I}, ¢) (1),

and this ends the proof. d

Theorem 3.9 Leta > 0 and {¢;}) be a uniformly convergent sequence of continuous func-
tions on [a,b]. Then we can mterchange the generalized Riesz fractional integral operator
and the limit, i.e.,

(077 lim ;) (1) = (lim 575;) ().

Proof The result follows taking into account Definition 3.2, Theorem 3.6, and the fact that
sum of two convergent sequence is convergent. g

Page 7 of 28
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Lemma 3.10 ([38]) Let o >0, g(it) and uy(w) be locally integrable, nonnegative, and non-
decreasing functions with u € [0, T). Also, assume that v (1) is a nondecreasing continuous

Sfunction such that 0 <vi(w) < L, where L is a constant. Furthermore, if

"
&) < ur(p) + p' vy (1) /0 (1 =) T g)dy O<u<T),

then the following inequality is true:

nl 1-no T " no—
g(u) <wuy(u) +/0 |:Z P (11:1((”0[))”0[)) n° " u(n)(w” —n”) 1:| dn.
=1

Corollary 3.11 ([38]) Let o > 0 and assume that g(u), u1 (1), and vi1(u) are defined in the
same way as in Lemma 3.10. Furthermore, if g satisfies

g(u) < u () + p () /0 ' 0 (wf =) T g)dn, 0<n<p,
on i €[0,T), then

g(1) < ur()Ea1 (0 vi()T (@) ),
where E, 1(-) is a Mittag-Leffler function [12].

Likewise, the Gronwall inequality for generalized right-sided generalized fractional op-

erator is expressed as follows.

Lemma3.12 ([38]) Leta >0, u € [0, T) and assume that g(j1), uy (1), and vy (1) are defined

in the same way as in Lemma 3.10. Furthermore, if

T
g(u) < up(p) + Pl_aVz(M)/ (0" - ) gydn, 0<p<n,
w

then the following inequality holds true:

g(p) <wup(p) +/

m

T[& P ()M @),
‘ I'(na)

us(n)(n” — M”)ml} dn.

1

Lemma 3.13 Let o > 0 and assume that g(i), ui (), and vi() are defined in the same

way as in Lemma 3.10. Furthermore, if

T
g(i) < up() + pl‘“m(u)/ P (0 —wf) gydn, 0<p<n,
o
on € [0,T], then

g() < ua(WEa (0™ va()T () (T7 = 12?)”).
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Proof From Lemma 3.12,

g(u) <wup(u) + /

i

d [i P (1T (@)

j=1

Since u, is a nondecreasing function, therefore u, (1) < uy(n) for all n € [0, T'], and hence

T > 1-na T n
gw) < uz(,u){l + / 3 P (;z((n oe))r(a))
moiny

= P (vo(T)T ()" no
1+Z: I'(na + 1) (Tp_up) ]

n*us () (n” — )" dn}

= uy (1)

o (P~ Vo (T)T ()(T* — )"
Z I'(na +1) }

= tr () Ea,1 (0~ v2 ()T (@) (T7 = pu”)%),
and the proof is ended. d
Lemma3.14 Leta >0,0< u < T, and assume that g(i), ur (1), uza (1), vi(w), and vo(u) are

defined in the same way as in Lemma 3.10 and Lemma 3.12. Furthermore, if g(1) satisfies
the inequality

m

g(p) < upu) + pl'“vl(u)/ 7?7 (1 = n°) " g(n) dn + ua(w) + 0" va(u)

0
r a-1
x / n" (- u”)* g(n)dn,
o

then the following inequality holds true:

g(w) < (wr(1) + w2 (1)) Ea g (0™ va ()T (@) (T7 = 1)) Eap (0™ v ()T (@) ),

where E, 1(-) is a Mittag-Leffler function.

Proof Conflating Lemma 3.10 and Lemma 3.13 gives

T
g(u) < (ul(u) + Uy (1) +,01_a1/2(u)/ np—l(r]p _Mp)a—l dn)
N

X Eq1(p™*vi(W)T () )
< (ur(p) + ur(1)) Ea g (0™ va()T (@) (T = 1))
X Eq1(p™*vi(W)T () ). 0
4 Existence and stability

For the upcoming existence results and discussion for boundary value (1), we use the fol-
lowing conditions. Let J/ = [0, T'] and C(J) be the space of all continuous functions defined
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on J. We define the space

X = {¢(w)l(n) € CY) and LD ¢(n) € C)}
characterized by the norm |[|¢(u)|lx = max,e; [¢(n)| + max,.e; 12D ().
Lemma 4.1 (X,| - ||x) is a Banach space.

Proof Let {¢, » be a Cauchy sequence in (X, | - [lx). Then clearly {{ D qb} o is also a
Cauchy sequence in the space C(J). Therefore both {¢;(u )} < and (D" ¢,(,u)}] o converge
uniformly, say u(u) and v(u), respectively, in the space C(J). We just have to show that
v = D" u. For this, consider

715 £ DR () = 1. v(1w)|

“ADG ¢ V("™
d
‘F(“*)/ (ue —n2)™ F(04*) (wr -y "
(Dg: fb,(n)—V(n))n” !
d
“F NCh )/ (wr —np)' !
e
= Fan™ max 7D ¢;(1) = V(1)

Since {#D*" ¢,~(M)}1‘?=°o converges uniformly to v(ut) for p € J, hence
7157 2D (1) = I V()| — 0

asj— oo, ie, limj_, /’Igf ﬁDg‘f ¢i(n) = ”1“ v(u). Now considering
ODG: (lim *15:£Df (1)) = £DG 15 viw)

and taking into account Theorem 3.6 and Theorem 2.3, we get v(i) = ?D*" u(p). This com-

pletes the proof. 0

Lemma 4.2 Let o € (1,2), «* € (0,1), and g € C(J). Then problem (1) is equivalent to the

following integral equation:

1 —
¢(u) = 5 (o +r) + <¢2T0¢°>(2u" - T7)

l-a(,,p _ TP T .
+ %(O())/O nwp—lg(n’qs(n)’gCD(; :ﬂ¢(n))d

T

P Hl-a *
pe (TP = )" g(n, (), KEDE P () d

TP (@) Jo

+ P /Tn”‘IW—M"Ia g(n, (), EEDL " () dny
(o) Jo

= G0+ 91) + V() 3)
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where, for ;L > 1,

V() =

(@1 —go)u”  puPp' / n"Lg(n, p(n).5 DY "om)
27T° I'(a)T? (TP —pr)t=

’

/ n*1g(n, d(n),E° DY ”¢(n))
F(Ot) (ur —nP)t=

and for n > [,

(@1 — o) = T?)  (uP — TP)p'~® /Tg(n,¢(n),§cD°%*”’¢(n))
0

lﬁ(ﬂ) = 2T + F(O[)Tp nl—ap

dn

o n*~1g(n, (1.2 DL p(n))
d
’ <a>/ﬂ (17 — o)

—

Proof Let ¢() € X be a solution of boundary value problem (1). Then, by applying the
generalized Riesz-type integral operator on both sides of equation (1) and using Defini-
tion 3.2, Lemma 2.5, and Lemma 3.4, we obtain

1 1 u 1 1 1 uP =T
3400 = 3600 o+ 5000 - S0(T) - 5c1< - )

e an’”I(n" - 1”)|* g (n, ¢ (), REDY $ () dny
(o) Jo

or

o(n) = —(¢o +¢r7) ¥ E

1 1" 1 o RC N
*3a (T) F(a)/ - n”) (77»¢(77) D7 ¢(77))
o

T
/ (0 — 1) g(n, ¢ (), REDY ¢ () dny
m

Using the boundary conditions ¢(0) = ¢y and ¢(T) = ¢7 into the above equation, we get

_pgr—¢o) 207 f n"Lg(n, ¢ (n).5° DY "em)
0

Co = Tp I'(a)T? (Tp_np)l o
and
_olr—go) 20> /T g(n. ¢ m).5° D5 p(n)
= dn.
TP ()T J, nl-or

Now again substituting these values of constants into the above equation, we get

(¢ — o)’
2Tr

ot / w5 D5 p(n)
T(a)T? (TP —pr)t

B = 560 + 1)
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pre / n*~1g(n, d(n),¢ D& p¢(n)) (p1 — Po)(1u” — T*)
0

* ) (P — o) an 217
R f £, 8 DF "9
F(Ol)Tp 0 771 ap

dn

/ n?~1g(n, $(n).RC DL " $(n))
F(a)

p—ﬂp)l o

N §(¢0 + 1) + < 2;:)0)(2#0 -T")

l-a(,,p _ TP T .
+ %(O())/O nwp—lg(n’qs(n)’gCD(; ,ﬂ¢(n)) d’?

T

uf pte 1 a-1 RC %0
"N (T? = n")" " g(n, ()5 D7 " (n)) dn

S TrD() Jo

R RC a*0
p=1l 0 _ p - o
+ F(a)/o Y0P — | g (n, ¢(n), BEDS " p(m)) dn

1
= §(¢o +or) + (1),

where, for u >,

C(Pr—gon’ w7 g(n ¢(n).EC DY "om)
lﬁ(ﬂ) = 2TP B F(a)Tﬂ / (Tp _ np)l o
/ n°~g(n, (n).EC DY "em)
F(Ot) (wr = eyt '
and for n > u,
C(Gr—g)w —T7) (= T?)p" [T gn,¢(n).5C Dy *p(n)
R fo = d

n°"g(n, $(n).K€ DL p(n))
r(oe>/ T

Conversely, let ¢(1) € X be a solution of the fractional integral operator (3), and we denote
the right-hand side of equation (3) by ®(u), i.e.,

D) = 30 + 61) + V().

Now taking the left and the right generalized Caputo derivative on both sides of the above

equation, we get

(p7 — o)

01 =901, ()

1
)[:Dg,#(p(/j,) = ng,u <§(¢0 + ¢T))
_ 513g(T,¢(T), 5D ¢(T))
Tr
+0D% 1% (1, (1), 5CDY (1))
= g(1, (1), D% (1)) (4)

DG, (1)

Page 12 of 28
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and

(¢ — o)

9y -17)

1
L300 =t (300w o)) +

. P12g(T, $(T), D% $(T))
Tr
+0D% 1P 1% (1, (1), KDY p(w))

= g(1 (W), KDY p (). (5)

(DL (" - T%)

Here, we have used Theorem 2.3, and some simple calculation leads to the facts that
ng,#(/,Lp) =0 and fDZ,T(/‘p — T*) = 0. Consequently, from equations (4), (5) and Defi-
nition 3.3, the required result follows, i.e.,

1 .
5 (005, @ (1) + 205, r (1)) = §°D7 (1) = g (1, $(10),5“D7. "¢ (),

and the proof is completed. g

Now we present the existence and uniqueness results for the nonlinear boundary value
problem (1). We define an operator T': X — X by

T(pw) = %((l)o + 1) + (¢T ¢°)(2M -1

2TF
Tr
+ %/‘ ap— 1 77 ¢( ),cha p¢(’7))
P Hl-a T .
- ;p?(a) (T = 0°)" g (n, (n).C DY o) d
pl—a T ot )
+ (@) /0 77,0*1|7]’0 _p/’| g(n,q&(n)’ch;ﬂ ﬂ¢(n)) dn. ©)

Lemma 4.2 signifies that solutions of problem (1) coincide with the fixed points of the
operator T(¢(u)). Ahead of the detailed existence results, let us have the following con-
siderations first:
(Hy) Letl<a<2,0<a*<1,and g:[0,T] x R x R — R be a continuous function and
U(w) € L'[J,R,] be a nonnegative function such that U(i) < ¢(11). Furthermore, g
satisfies

g (1, (1), BEDE P p(w))| < 0 (ar| ()| + as |[FEDE P p()]) + —uw)

where ai,a,,b € R,.
(H3) Letl<a<2,0<a*<1,and g:[0,T] x R x R — R be a continuous function, and
g satisfies the Lipschitz condition, i.e.,

lg(n, &1(n), KDL 1 (m)) — g (n, 2 (0), KDL ()|

< M([¢1(w) = ga(w)| + KDL i (m) = KD o) ),

where 0 < A; < % max{Ky, K,}.

Page 13 of 28
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Let My = max,ep{fi () : 1h1 ()| < dy} and M* = max, 7 {f (1) : |[f ()| < d1}, where

P 1or = polu”' ™7 2a3Kpree
+
2TPT(2 — a*) TP pl=*"I'(2 — a*)
Zﬂgpa—11<’up(a¢—a*) N bplﬂx*[(*’up(l—a*)
Mo —a*+1) I'Q2-a*)1?

hy(u) =

and
F(w) = TPV 4+ 1 4 (T = ).

Furthermore, let

T T
1<*;:Lmax< / (17 = n")* " U dn, / naﬂ-lum)dn),
I'(a) 0 0

L= sup(ma}((T""’ + u* + (T’J - ,u”)a))
JE

and

{ Tp(a—l)’up(l—a*) M(a—a*)

Ly :=
2 Sup[max Ta+DM2-a") TR-a +1)

nej

TPeD(Tr — ) (TP — o)
Ta+DM2-a9) @ Ta-a +1) ”

By means of local integrability of U(u), K* exists certainly. Define a set

Ar={peCO): gl <r},

2?#, 211_<(Z3%* )}Eozé‘l(b). Then manifestly the set A, is a closed,

bounded, and convex subset of the above defined Banach space (X, || - || ).

where r = {4max(|¢7], |pol,

Theorem 4.3 Assume that condition (HY) holds. Then problem (1) has a solution in A,.

Proof We prove this result using the Schauder fixed point theorem. First we show that
the operator T : A, — A, is a self-map. Suppose ¢ € A,, and for L € (0, 1), the operator (6)
satisfies ¢(u) = LT(¢(w)). Then from (6) and using condition (H7), we have that

lpG0)| < [T

|1 — polu” s lpo — dr (TP — p”)
2T, 2T,

1
< §|(¢O+¢T)’ +

P T
ot [ ol

p T N
;Z?/(La) (T ) D 9]
bpu?

T
p=1(p _ p\e-l
+ szr(a)/o n’ = (TP =n")" U@ dy
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* % OM 7 (= n?) o) dn

. rp) " =y D ) d
T Ter a)/ 7w = n?) " U dn
% "t o(n)| dn
arp(T* -

TN ap—1|RC o .p
+W/o n |0 Dy’ ¢(fl)|d77

bo(r? ) (7 e
*pr«xTZ/o pl”(")d“ﬁp) 7 (0" =) o) dn

L B
') J,

bp T a-1
+ p=1(pp _ P
Tr@ ), 70 H)

T
(0 = ) REDE P ()| dny

U(n)dn

2a3Kpu” (T a-1
< + —_— P=L(TP —nP d
<Igrl+1gol+ = p o | (T ") dn

T a-1
T - ) U(n)d
+ szr(a)/o (T =)™ U dy

2“31(10 /M p—1 » » -1 b,O /M -1 -1
- _ d P P _nyP U d
F o W) dn e oo | =) U

2&3[(,0(T’0 //Lp)/ ap— ld blo(Tp p)/ ap— lu
[(a)T? [ (a) T

20131(/0/ o1( p . pya-l bp f 1 a-1
- — d p= _ Pl U d s
" ) (0" =)™ dn + o o (" —we)" U dn

where K = max ;s (|¢(12)], [E°D5 ¢ (1)), and so

2asK P bK*
_— +
TreoT (g +1)  T7
2K 2asK(TP — puP)  2asK(TP — puP)?
+ + +
Mo+1) TP (o +1) Mo +1)

| To(w)| < dr] + ol +

bp " — a-1
+ Tpr(a)/o 0’ (u” = ") U(n)dn
bp ! p=1(pp _ , p)¥1 d
trr@ ), " (n” =) " Um)dn
K" 2Kas vty op (o o)
=7l + 1ol + - T +1){T + 1+ (17 - )"}
bp " — a-1
+ Tpr(a)/o 0’ (u” —n”)" " U(n)dn
bp r

p=1( 0 _ ,,p)%1 d
@ ), " (n” = w)" U dn.
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Since the functions u*” and (7% —

Page 16 of 28

uP)* are integrable, uniformly continuous, and non-

negative for u € [0, T] and also U(u) < ¢ (), hence applying Lemma 3.14 gives

2bK* 2Kas

Mo +1)

b(TP — 1P ap
><EM< ( u) )EM(bM )
’ TP A\ e

m }<{|¢T|+|¢o|+

{Tp(a—l) + U+ (Tp _Mp)“}}

bK* 2KasM* b(TP — ur)* bu*r
s{|¢T|+|¢o|+—+ : }Ea,1< = )Ea,1< - )

T°  T(x+1) TP
Thus
~ 2bK*  2KazM* )| _,
|T¢’(M)} = {|¢T| + |¢hol + o + m}fm(b) <r.
Also,
D%, (Te(w))]

« (1
<:Dg, <§(¢o + ¢T))

2Tr T

bp® |
+ (LPD;;{M(M)%I“ (w) +2asp"? Dg, SI°K +

T2 *
Using Theorem 2.3 and Lemma 2.5, we get

’pDo m (T(f)(,bb)) ‘

P o1 = polp? 7 2azKpree

, (@1 -0 @r=90) (o e (0)) + <2a3pa0Da (1)

)SI%K

bp*

"Dg‘ﬂgl"‘u( ).

- 27T (2-a*) TPpl-2*['(2 — a*)
bpoz+a* Mp(l_a*)gl%u(n) ap ja—a* bp® P rou—a*
* T(2—a*)T% +2a3p%o 0, K+ =m0, Un)
P o1 — ol 2azKpreatD 2g, perl gy plese®)
2I°T(2-av) TPp'=T2-a*)  Tle-a*+1)
bpl*'o‘*[(*“/?(l—a*) bplﬂ)t*

Q2 —a*)T?° +T’”F(Ol—0[*) 0

Since U(u) < ¢ (1) and pP1=o"), prle-
w € [0, T], therefore by using the assumption ¢ (1)

|£Dg, (T¢ /’L))| <M1 (—a* <IO b'u(a—a*)p> <r.

Tr

Moreover,

’i)D(;X:T(T‘b(N)H

0 .
f (- n”) T U () dn.

@*-1) are measurable and continuous functions for
=LT(¢(n)) and Corollary 3.11, we get

7)
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« (1
<1 (L)
|¢>T Dol 5 o 2a3K .
2TP le‘vT(Tp _MP) r( )T,ol ) pDH T(Tp _Mp)
bK*

* bpa *
+ T PDY (TP = ) + 2a3p®L D% 1 I2K + FfD;‘j,TI%U(n).

Using Theorem 2.3 and Lemma 2.5, we get

":DZTT(TQ)(M)) |
P | — pol(T? — )= . 2a3Kp* (TP — )=
- 2TPT (2 — a*) IM'a)'(2 - a*)

bK*p*" (T7 — )" g PO e
F@-ar2e 2P ol )

P |7 — pol (TP — )= . 2a3K p*" (TP — pu?) ™
2TPT(2 — a*) Fe)T(2 - a*)

bK*p (TP — uP)=" . 2a3K p (TP — uP)*~"
F(2—ot*)T2/’ IMNo-—o*+1)

1+a
o 1 a—a*—lu d
T/’I"(oz a*)/ 1) (n)dn.

Since U(u) < ¢(u) and (T? — u?)* " e L[], R,] for p € [0, T}, therefore taking into ac-
count the assumption that ¢(u) = LT(¢(w)) with L € (0,1) and Corollary 3.11 yields

o

* b a—a*
205+ (To(w)| SM1E(a-a*),1<pr (TP — ) ) <ry. (8)

From Definition 3.3, inequalities (7) and (8) yield
o* ~ 1 o ~ o o
[6°DF”(To(w)| = 5 |2D5,.(T¢(w) = 2D (Te ()| <7,

which implies T¢ € A,; that is, the operator 7': A, — A, is a self-map. Next we show that
operator (6) is continuous. For this, let ¢; (1), ¢2(1t) € A,. Then we have

| Tep1 () — Teha ()|

- uP pt= / 7 1g(n, 1 (n), KDLy () — g (1, o (), REDL p¢2(fl))|
= T()T° (TP —yp)

N pl f = g(n, (), BEDE Py (n)) — g(n, (), REDE P o ()|
I'(e) Jo (ue —np)t

(TP — uP)pl= /T 1g(n, 1 (1), BEDE 1 (m)) — g(m, ba(1), RED P by ()|
C(a)T? 0 ni-or

dn

dn

+

p [ g ). 8°DT 7 $1(0) 0 20D, 6D oD
T()J, (= )™

(T + (17 = ")
T T (a+ 1)

|2 (1,61 (), BEDE 7 $1.(n) — g (m, 32(0), KEDE " o) |-
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Since g is continuous on A,, hence for all u € [0,7] there exists § > 0 such that
ll$1(n) — p2(n)l < 8, and for any € > 0,

0T (a +1)
— ¢

l¢(n, 100, 6D $1) =g (m, 820, 6D " $2) | < 7

Therefore,

| T (w) - Tho ()|
(T +(T" — u°)*}
T (o + 1)
x |g (1,61 (n), KD 31 () — g (m, d2(0), BED * o ()|

e (TP —ur)*
—+ ——E<E&.
2 27

=

Likewise one can prove OCD“ ?(T¢(w)) is continuous on A,. Moreover, we show that op-
erator (6) is completely continuous. For this, let 11,7 € J with 11 < 13 and ¢ € A,. Then

we have

| Tep(p1) — Top(a)|
_l¢r- dol(1] — ub)
< To

‘(Ml p)p”/ n°g(n, ¢(n).RC DL ”¢(n)) ‘
[(a)T? o (TP - np)l o dn

‘p“‘ 1 p-lg(n, ¢(n).RC DS P ()

N d

T(@) Jo (- n”)

P /“2 n”~'g(n, <i>(n),§CD“ "om) ‘
() (Mz 77p)

‘(Ml ”)pl‘“/ g(n,¢(n).EE DY ”¢(n)) ’
()T 0 ni-er

+

ple / n° g, ¢(n),§CD“ ”¢(n))

() (- uf
/ 0~ g(n, (n).8€ D "o ‘
l1-a n
0‘) (° - ub)
2197 —Gol(nd — ) | 2a3KT" (g — p3)
- T Mo +1)

bpK* (1} — ub) , Wasp
T20T (o) ')
b,O Ml p=1(, P p\e-1 p=1(, P p\e-1
- - - UG d
+ T/’F(oz)_/o {n"H(wf =n")"" =07 (s —n”)" JU(n)dn

21(“3;0 H2 p=1(, P p\e-1 bp 12 -1 a-1
- d ? 5-n")" " Umd
@ W s =) dn s s | =) Uy d

Ml =1(,,P pyo-1 p=1( P pye-1
(077 (1f =) =0 (s —n")" L dn
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2Kas(uf — ph) TPV , - K

Ma+1) I°
2Kazp “1(p _ P\ o-l( p o)l
= (n” - -0 (" - dn

F(Ol) 1% { ( 1) ( 2) }
. / =) (0 - ) U d

TrT(@) J ., ! 2
, 2Kasp f”z . b / SELEC(ONPS

F@ Ju e -p)™ " TPT@ (g =)™

Since U(w) € L[], R,], therefore the functions
_ a-1 _ a-1
(" =) =0 (s =) ) U),

(77 g =) U®)), and (7 (0 — pf)' ™ = 4P (n? — pug) ™) U(n) are Lebesgue in-
tegrable in 1. Also (1} — u)T°@D and T (uf — %) are uniformly continuous for
11, 1o € J. So we see through that the right-hand side of the above inequality tends to
zero as (; — Wo. Furthermore, we prove that |§CD(;*'/)(T¢(,LL1)) —Rc D‘;*’p(T¢(u2))| -0
as 1 — o for all uy, g € [0, T] with p; < . For this, let us compute first the left and
the right generalized Caputo derivatives of operator (6).

P (1 — po)ut ™

005, (To(w) = 2Tﬂr(2—a )
Pl / n"Lg(n, ¢(n).5° DY om)
Tpr(a)r 2 a*) (7% = 7)™
o 1g(n ¢( )6¢ DY o) 4
r(a a*)/ — o)t 7
and
. - (o — ) (TP — )"
D (Tow) = 2 ot )

2TPT (2 — %)

ple=a (TP — pf la*/ (0, ¢(n).5° D o)
0

TPT (a)[(2 — a*) nl-ar

1-(a-a®) 1 RC y™,p
L P T e, ¢(n),eC DT " d(n)) dn. (10)
F(a a*) J, (ne —Mf)l (e

From Definition 3.3 and equations (9) and (10), we have
6°D7 " (Tp(m))

1
= 5 (005, (T ) = LD, 1 (T(1)))

1 (gr—gouf ) pileenp gt / 1 ¢ ()6 DT ")
2l 2TPr2-a*)  TPT(@)T(2-ab) (TP —yr)

A e (U] ¢(n),§CD“ ") i+ P (b = po) (TP — )™

Mo —a*) Jo (! _ eyt 2TPT (2 — ar*)
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pee (e — ) /T g0, ()R DL p ()
0

TPF(oz)l"(2 — o) o n

/ n’- 1g(n,¢>(n),§CDa “p(n)) n]
*) H/l) —(a—a*) :

Therefore, by using the above equation, we establish that

IREDE (T (1)) — REDE " (Th(1o)) |

P (pr = do) (g — ) ‘

- 4TPT(2 — a*)
‘p o) (1) A=y / n*~1g(n, d(n),E¢ DY ‘o) ‘
ZTPF(ot)F 2- a* (TP —nr)t—

M1 77 np 1
‘2[‘(0{ o[*) / {(M _ 7’]’0)1 (a—a*) (M/Z) _ np)lf(ot—a*) }

x g(n, (n).8€ DY " ¢ (n)) dn‘

/M n*~1g(n, d(n),E DL " p(n))
2F(a o*)

' o dn‘
| P @r = (17— ) - (1 —u@)”*}'

4TPT(2 — a¥)

P (T — ) - (1 - )y [T gln, @ n).EC DY ()
¥ 2T/ T (@)D (2 —a*) / ni-or dn'

pl—(a—a*) /MZ 77'0 lg(ﬂ» ¢(77)»§CDa p¢(77)) ‘
5} (n” _Mf)l e

N pl—(cx—a*) {/T n,o—l _/T np—l }
20 =) Uy (e =)0 iy G = )

x g(1, ¢ (1), D& (1)) dn‘-

Using condition (H7),

[BCDE P (Td(1)) - KDL (T(12)) |

* 1 1-a*
P b1 — ol () = ppt=e)

- 4TPT(2 — a*)
1+a a I((Mp(l * ) p e ))f p— 1 p)a—ld
TPT()T(2 - a* 1
bpl+o¢*(Ml(1 o*) M;J( —a¥) )
+ TP - "Um)d
2T @) /0 " (T —n”)" " Um)dn
1+ao*
1Y 6131< 0 p\le—a®)-1 , 1 p=1(.p P (a—a™*)-1
P ask - _ _ d
el SRICEL) ™t ="y~ ) bdn
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e /M n?) 0 (s - ) ) dn
ZTFF(oz a¥) 2
1+a*
0 6{31< m2 p=1(,P p (e-a®)-1
L Pk _ d
F(Oé — (X*) %51 ! (MZ ! ) '
bp1+ot* 1) 1 (@—a™)-1
L b p— P _ P U(n)d
27°T (o — o*) /m ) e

P b7 — pol{ (T = )™ = (TP = 1))
4TPT(2 — o)

asKp® {(T? - pf)' ™ — (17 = u5)'™ )
(o) (o — a*)[(2 — o) TPA-a+e™)

b (TP =)™ (T = 1)) [T et
" ()T (2 —a*) T2 / tn)dn

ﬂsl(pa*{(Tp _ M/IO)(ot—a ) (Tp _ Mg)(a—a )}
F@)(@— a2 —a’)

N bp1+a* T{np 1( )(a—a*)—l
2TPT (@) (2 —a*) J,,

— 0 (n? — 8) YUy dn

e | )
21T (@)l 2—-a%) J,, " e e

Since U(u) € L'[J,R,] and the functions

0 (g —np)

)

(@ 1U(n), and
(S R o o (T by V()

are Lebesgue integrable on [0, T'], so the right-hand side of the above inequality tends
to zero as p; — pup. Hence the set of operators TA, is equicontinuous. Also TA, CA,
implies that T4, is uniformly bounded. Henceforth, T is completely continuous and thus
Schauder’s fixed point theorem assures the existence of at least one fixed point of operator
(6). Hence, by taking into account Lemma 4.2, the proof is finalized. O

Theorem 4.4 Assume that conditions (HY) and (H}) hold. Then equation (3) comports as
a unique solution of Problem (1).

Proof To prove this theorem, we use the Banach fixed point theorem. For this, we first
necessitate to confirm that (6) is a self-mapped operator, and afterwards we show that
T satisfies the contraction mapping principle. Since we have shown in Theorem 4.3 that
To(w), gCDO}*’p (Te(n)) € A,, so the operator T satisfies the self-mappedness property un-
der these conditions. Hence, the only stipulation that we need to verify here is contraction.
For this, consider

| Te1(w) - T ()|
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<1g(n, &1, 2EDE 7 1) - g (0, o (1), EDE * ()|
§ (Mpp —a /T el ins pl-a /u pe-1 i
L(@)T? Jo (TP -nr)'™ L) Jo (uo—no)™
, (TP =)ol /T L s P R dﬂ)
() TP o nt () J, (e —pr)t

M (11 () — pa()] + [REDL "y () = BEDE o)1)
- T (o + 1)

x (T + pu* + (TP - w’)a)

<2

1
where K; = % Moreover,

XD (Ta (1) — KD (Tha(1) |
pl—(a—ot*)’up(l—a*)
T 2TPT ()T (2 — ™)

X/ n"~1g(n, $1(n), DY "1 (0) — g(n, $2(n), KDY pd)z(n))
0

(TP —ne)t=
pl—(a—a*)
i 2T (o — ™)
y /“ n°~11g(n, 1 (n), BEDL " (n)) — g(n, o (), REDE "¢2(n))|
0 (P — o)l

pl—(a—a*)(Tp _ Mp)l—a
2TPT ()(2 — a*)

y /T (1, @1 (0), E°DY "1 (n) — g(n, 2(n), 8D p¢2(ﬂ))|
0

771 op
pl—(tx—a*)
* 2T (o — a*)
o / n°~ g, $1(n), KD " 1 () — g(n ¢2(Tl),§CDa p¢2(77))
n (P — o)

p(a*—a) Tp(a—l)Mp(l—vt*)
2N (o + DIN(2 — a*)

x (|1 (1) = o ()| + [REDE* 1 () = REDE* o)) )

P&y
2—a+1)

% ([1(10) = $2 ()| + [REDL " 91 (m)) — REDE o (m))])

p(a*fa)Tp(afl)(Tp _ ’up)lfa
2N (o + T2 — a*)

<M

(0—a™)
+ )\.1

+ A1

% (|1 (1) = do ()| + |RED% * 1 () = REDS * o)) )
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(TP — Py
2N (0 —a* + 1)

x (|1 (1) = o ()| + |RED% * d1(m) = REDS * o)) )

+ A1

’

- 1% l61041) - ba(ie)

20"
Ly

where K, = . Therefore

179100~ To200)| = 22 10) - 9000

where M = max(Ky, K;). Thus the Banach fixed point theorem assures the existence of a
unique fixed point of operator (6). So, in consequence of Lemma 4.2, we concluded that
(3) is the unique solution of boundary value problem (1). O

Lemma 4.5 Assume that 1 <a <2,0<B*<1and g:[0,1] x R x R — R is a continuous
function. Furthermore, g satisfies

g (14, B (1), §D5 " $ () | < a3 + asmax|p()] + by max|§DG "y (1)
for all as,as,b, € R,. Then the solution ¢(1) of (1) exists in A,.
Proof The result follows from Theorem 4.3. O

Lemma 4.6 Assume thatl <o <2,0<B*<1landg:[0,1] x R x R — R is a continuous
function. Furthermore, g satisfies the following condition:

o, pa
(1, @G, 5DT ()| < 25 |o ().
Then problem (1) has at least one solution in A,.

Proof Let a; = a, =0 and U(w) = |¢|. Then, taking into account Theorem 4.3, the result
holds. -

Example 4.7 Consider the following fractional differential equation:

7
RC 372 _ ]
o Dz u(p) = (02 (1eja)’ w € [0,7],

u(0) =0, u(mr) =1,

where g(u,u) = ( lu , Q= %, and T = m. Also, since ||g(u,u) —g(w, v)|| < Allu—v|

p+4)* (1+]ul)
with A; = %, therefore Theorem 4.4 assures that the boundary value problem has a unique
solution on [0, 7].

4.1 Dependence of solutions on the parameters

The stability analysis of fractional differential equations has been carried out by many
mathematicians. For details, one can see [36, 39-42] and the references therein. The so-
lutions satisfy various types of stability, and continuous dependence on the initial data is
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one of them. This section demonstrates that the solution of problem (1) depends on the
parameters «, ¢y, ¢7, and g provided that the function g satisfies conditions (H}) and (H3).

Continuous dependence of solutions on the parameters indicates the stability of solutions.

Theorem 4.8 Assume that ¢1(n) is the solution of BVP (1) and ¢»(n) is the solution of the
following problem:

REDLP (1) = g1, p(u),RE DL P (), p € [0, T),
0 =do,  (T)=¢r,

wherel <o —€ <o <2,0<a* <1, and g is continuous. Then |¢1 — ¢>| = O(e).

Proof Using equation (3), we have

|p1(10) — (1)

<|g(n o1(N.XE D d1(m) - g (0, (). RE DG * o ()|
{ (T 4 p + (TP = uP)®)  (TP) 4 @) 4 (TP — 11P)2~") }

T +1) P (a—e+1)
[T (T ) (TP 4 e (10— ) )
=M T (o + 1) P4 — e + 1)

X [l¢1 — @2l = O(e).

Also

REDE (1(1)) =RE DL ($20)) | < 2alls — ol (H (1) + H(ya, 6))

= 0(8)7
where
p(a*—a) Tp(a—l),up(l—a*) p(“*_“)u(“_“*)
H(p) = +
2 (¢ + DIN(2 — a*) 22 —a*+1)
p(a*—a) TP (TP — Mv)l—a* . p(a*—a)(Tp _ /,LP)"“"‘*
2l (a + DI(2 — a*) 2N —a* + 1)
and
(a*—a—¢) pla—e-1) ,, p(1-a™) (a*—a—¢) ,, (@—e—a™)
o T 2z o 1z
H(up, €)=

Wa-c+)I2-a") = 2M2-a+1)

p(a*—a—s)Tp(a—s—l)(Tp _ ’up)lfa* . p(a*—a—s)(Tp _ Mp)ﬂ*f*a*
2N (¢ —e + 1)I'(2 — a*) 2l (o —a* + 1)

+

This completes the proof. d
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Theorem 4.9 Assume that the conditions of Theorem 4.4 hold and if ¢1(n) is the solution
of BVP (1) and ¢,(n) is the solution of the following problem:

D% (1) = g1, p(W).RE DY P (1)), w0,
@(0) = o + €1, O(T) = ¢pr + &2,

then ||¢1 — ¢o|| = O(max{ey, £2}).

Proof We have

|p1(1) — 2 ()]

(e1+&2)u” (&1 +&2)
< +

- 2 2T

18018108 DT 91(n)) ~ g0, $2)6° D " paI(T + 1 + (17 — )
0T (a + 1)

(e1+&)u”  (e1+8) AT +p* +(T7 - pu)%)

< —

S Ry Tt D 1 (1) = 2 ()|

= O({81,82})~

This gives the desired result. O

Theorem 4.10 Assume that ¢1(n) is the solution of BVP (1) and ¢,(n) is the solution of the
following problem:

REDEP (1) = g, p().8C D p(w) +€, e 0, T]
¢(0) = o, o(T) = ¢r,

wherel <o —€ <o <2and0<a* <1 andg is continuous. Then ||¢p1 — ¢2| = O(e).

Proof From Lemma 4.2, we have

|p1(1) — o ()]

< |g(n, 1 (0).%€ D 91 (n)) - g (m, d2(0),5C DG 2 () |

(T + p* + (TP = pn)*)\  e(T* + p* +(T° — p*)*)
x ( T (o + 1) > T (o + 1)

< {211 10) = da ()| + |REDG P 91 (m)) = REDG " o(m))| + €))
o T+ p + (T = o))
0T (a +1)
_ (T +u* 4 (T7 = "))
0T (a + 1)

{A1llg1 = ¢l + €} = O(e).

Moreover,

RCDE (T (1)) = REDE* (Ta (1)) | < H(){Mrllhs — ol + £} = Ofe),
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where
H) = p(a*—a) Tp(ot—l)’up(l—a*) . p(a*—vt)u(ot—a*)
M(a+ T2 —a*)  2D2-a*+1)
pl* =) o= (TP _ Mp)lfﬂl* ple =T — Mﬂ)“"”*
+
2N (o + DI(2 — a*) 2N (o —a* + 1)
This completes the proof. d

5 Concluding remarks

We presented a generalization of the Riesz fractional operator in this work. We provided
some results and inequalities for the new generalized Riesz fractional operators. Further-
more, we proved some equivalence results for the nonlinear fractional differential equa-
tion involving the generalized Riesz derivative operator. By using suitable fixed point the-
orems, we provided the uniqueness of solution of the problem and some several mathe-
matical techniques. Also, we discussed the stability of solutions and showed continuous
dependence onto given parameters. An instructive comparison with literature shows that
these results present the generalization of various old theorems in the related areas.
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