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1 Introduction
The topic of fractional differential equations (FDEs) has attracted the interest of re-
searchers from various disciplines thanks to it being considered a useful gizmo in mod-
eling the dynamics of various physical systems and their applications in many fields of
applied sciences, engineering and technical sciences, etc. For further details, we refer the
readers to [2-5].

There are various definitions of fractional calculus (FC) that developed the (FDEs)
in modeling and describe the memory accurately. Among these famous operators are
Riemann-Liouville, Riemann, Grunwald-Letnikov, Caputo, Hilfer and Hadamard which
are the foremost used. For more details, we refer the readers to [1, 6—17]. There is a promi-
nent and noticeable interest within the investigation of qualitative characteristics of solu-
tions (existence, uniqueness, stability) of (FDEs). For applications and up-to-date work,
we refer the readers to [18-26].

On the other hand, the study of coupled systems involving (FDEs) is additionally im-
portant as intrinsically systems occur in various problems of applied nature. For a few
theoretical works on coupled systems of (FDEs), we refer to a series of papers [27-31].
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The topic of stability of systems is one among the foremost important qualitative char-
acteristics of a solution. But as far as we know, this is often the primary work with regard
to a tripled system of weighted fractional differential equations with time delay.

Tripled fractional boundary systems may be a generalization of coupled fractional sys-
tems as they are governed by three associated differential equations with three conditions
[32, 33].

Recently, Matar et al. [34], by means of some fixed point theorems like Banach and Kras-
noselskii, studied the existence and uniqueness of solutions of the tripled system

CDSLQ(%) :fi(%r g(%))r Ki € (1r2]
with cyclic permutation boundary conditions

c2(0) = arjs U (T), i=1,2,3,j=0,1,
where “Dj. denotes the Caputo fractional derivative (CFD) of order «;, i = 1,2,3, f; :
[0, T] x R® — R are continuous functions, o = (1,2,3) is a cycle permutation.

Wang and Zhang [35], by means of the Banach fixed point theorem and the Picard op-
erator method, studied existence, uniqueness, and UHML stability results with respect to
Chebyshev and Bielecki norms of the following problem:

CDE, ¢ (30) = f (31, (3), < (0(5)), 3 €[0,b],x €(0,1),

5(0) = ay,

where €D, is the Caputo FD of order «.

Motivated by the preceding works, in the current paper, we investigate the existence of
a unique solution and a UHML stability result for a tripled system of weighted Caputo
fractional differential equations (TSWFDEs) with time delay

5Dt 5i(5)

= fi(5¢, 61(%2), 62(50), 63(), 61(H(52)), 62(h(50), 53(h(50)), 3¢ €] :=(0,D],
ci(0)=a;eR, i=1,23,
Gi(>) = 0i(»), s €[-r0],

where {Dg is the weighted generalized Caputo fractional derivative (WCFD) of or-
der «; € (0,1), wf; : (0,b] x R? x R® — R is a given continuous function, w(») # 0 is

a weighted function with w™ () = 5

> ¢+ (0,b] - R* is strictly increasing such that
@ € C[0, b] with ¢'(5¢) #0 for all s € (0,b], ¥; € C([-r,0],R) and b € C([0, b], [-r, b]) with
h(5¢) < 5, r > 0. For simplicity, we denote the sequence of functions (¢1(), §2(22), 53(5¢))
by ¢(s¢) and (g1(h(5)), s2(h(5¢), 53(h(32)) by ¢(h(>)). In the sequel, the functions such as
Ji(3¢,61(52), 62(50), 63(2), 61(H(50)), 62(h(50), 53(h(5¢)) will be written as fi(, 5 (5¢), 5 (h())).
By a solution of system (1.1), it is meant that there is a sequence ¢ = (¢1, §2, ¢3) satisfying
system (1.1) on (0, b].
The major contribution of this paper is to derive equivalent fractional integral equations
to the (TSWEFDEs) and to establish the existence of a unique solution and Ulam—Hyers—
Mittag-Leffler stability results for (TSWFDEs) with respect to Chebyshev and Bielecki
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norms with time delay. The Picard operator method and the Banach fixed point theorem
are the important tools used to prove our main result. To the best of our observation,
there is no analytical literature on studying the existence of tripled systems of fractional
differential equations (TSWFDEs). This paper is the first work to study the existence of a
unique solution and an Ulam-Hyers—Mittag-Leffler stability result for (TSWFDEs) with
respect to Chebyshev and Bielecki norms with time delay.

This paper is systematized as follows: In Sect. 2, we render the rudimentary definitions
and prove some lemmas that are applied throughout this paper, also we present the con-
cepts of some fixed point theorems. In Sect. 3, we prove the existence of unique solu-
tions and (UHML) stability results of system (1.1) under Chebyshev and Bielecki norms.
In Sect. 4, we give a pertinent example to illustrate our results. Concluding remarks about
our results are given in the last section.

2 Preliminaries
In this part, we give important definitions and auxiliary lemmas that are pertinent to our
main results.

Let E = C([-r,b],R) and © = C([0,b],R), (b > 0) be the Banach spaces of continuous
function u : [-r,b] — R and v: [0, 5] — R with the norms

lullp= max |u(x)|
sc€[~r,b)

and

’

Ivllg = max |v(s)
sel0,b]

respectively. Clearly, E and 2 are the Banach spaces with the above norms. Let £* := E x
E x E and Q% := Q x Q x Q be the product spaces with the norms

3
= Z lwille, (1, ua,u3) € E*
i-1

|| (u1, U, u3)

and

3
||(V11 V2, VB)’ o = Z ||Vi||ﬂv (Vlr V2, V3) € Q*;
i=1

respectively.

Definition 2.1 ([1]) Let x >0 and ¢ : [0,5] — R be an integrable function. Then (WCFI)
and (WCEFD) are given by

-1 b4
s =" 2 [T woN esis0ds
and
1 4\
SDS;‘pg(%) = W_l(%)(go/(%) d_%> ng:K,wg(%);
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respectively, where ./\/;’,f‘l(%, $) = @' (s)(@(30) —(s)) L, n = [k] +1,and ¢ is a strictly increas-
ing function on [0, b].

Definition 2.2 ([1]) Let« € (n—1,n), n € N, and ¢ € A/,[0,b]. Then (WCED) is given by
Cy<r® wl g(p]w( )
SDY (30 =y Dy | 5(30) — w7 (50) Z () - (0)

where n =

55 =) (w(5)5 (). Moreover, D" can be written as

1 d\”
Crye _ ke 1 @
e (%)(w’(%) d%) st

_ w () —1 ]
- o [ a0 ds

where # = [k] + 1 and g(/[)"](%) =
DR () = g1 (59).

w,(lz) ﬁ)”(g(%)). In particular, if k = n € N, we have

Lemma 2.3 ([1]) Letk,y > 0. Then

I'(y)

SIS W 9 (0 (59) - 9(0) '] = e 7) (¢(:0) — @(0) "™ (2.1)
and
CDE[w (30) (9(30) — 0(0)) '] = 1ﬂ(i(y)y)(w(%) 0(0)) "

in case SDLY [w(50)(p(5) — 9(0))* 1 =0 forall y -1 €1{0,1,...,n— 1}, neN.

Remark 2.4 ([1]) If w(s) = 1, then equation (2.1) reduces to the relation obtained in Kilbas
etal. [3].

Lemma 2.5 ([1]) Fork € (n—1,n), n € N, we have

W Dol wIs s (50) = 5 ()

and
0C G s«%@ ;
WIo D 6 (30) = g (50) — W (3¢ )Z (¢(>¢) - p(0)'. (2.2)
i=1
In this paper, due to k € (0,1), then
WL Sy 6 (50) = 6 (50) - —(W(O)g(O))

w(3)

Lemma 2.6 ([1]) Let k > 0. Then ,,Z;. : (C[0,b],R) — (CI[0,b],R) is bounded. Moreover,

wIo g0 = lim Tgi""g () = 0.
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Definition 2.7 ([35]) Let (X,d) be a metric space. Now T : X — X is a Picard operator if
there exists ¢* € X such that Fr = ¢*, where Fr = {¢ € X : T(¢) = ¢} is the fixed point set
of T, and the sequence (7" (co))qen converges to ¢* for all g € X.

Lemma 2.8 ([35]) Let (X,d, <) be an ordered metric space, and let T : X — X be an in-
creasing Picard operator with Fr = {¢}}. Then, for ¢ € X, ¢ < T(c) implies ¢ < ;.

Remark 2.9 A sequence (1, S, G3) € E* satisfies the inequality

S5 G0 6 6 2(0(9)|

<&k, (go(%) - <p(0))Ki, i=1,2,...,n,3x€(0,b], (2.3)

if and only if there exists a function wn; € Q2 such that
(1) [wGmi(39)| < &Ly (@(>2) — 9(0))*, 3 € (0, D];
(2) §DY Gi(59) = fi(5, S, S(0(50))) + i), 3¢ € (0, B].

Definition 2.10 System (1.1) is (UHML) stable with respect to E.((¢(3¢) — ¢(0))*) =
max;.eop{Eq; (@(2) — ¢(0))}, i = 1,2,3, if there exists M > 0 such that, for each ¢ =
max{e1, &2, €3} > 0 and each sequence (S1, 2, 63) € E* satisfies inequality (2.3), there ex-

ists a solution (g1, 62, 63) € E* of system (1.1) with

g S MEE(p(39) - 9(0))", € (0,b].

”(/g\lr /g\Z,g‘\E’:) - (gl» G2, §3)

Lemma 2.11 Leti=1,2,3 and wf;: (0,b] x R3 x R3 - R be continuous functions. If the
sequence (g1, G2, G3) € E* satisfies system (1.1), then, in view of Lemma 2.5, we can easily

prove that (g1, 52, 63) satisfies the following integral equations:

< | B T 6 S OEOG, e O.b) 04
l D,0), e l-r,0], '

foralli=1,2,3.

Lemma 2.12 Letk; € (0,1),i=1,2,3, and [t = maX,.cop) |W(>0)|. If a sequence (S1, 2, G3) €
E* satisfies inequality (2.3), then (31, S, G3) satisfies the following integral inequality:

W(O)a wl(x) [
w(x) ' Tk Jo

WINE (4, 5)fi(s, €06, E(0(5)) ) ds

Proof Let (31,62, 3) € E* satisfy inequality (2.3). Then, in the light of Remark 2.9 and
Lemma 2.11, we have

~ w(0) ..

Gi(50) = ——a; +w T [fi(s, 5 (), 5 (0(5))) + 0:(5)] (>¢)

w(s¢)

"o i) [
w(z) ' T() Jo

WONE (e, ) (5, €(6), E(0(9)) ) ds
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(o) [F e
+WF(Kj)t/O w(s)N (56,9)| (n:(9)) | ds.

Thus, we have

i) 2 0 O [N (5260 £(069) s
< Flil” [ A el ()] ds
< F(Kl / N6, )E (9(5) — (0))" di

“y o T D 0D [ 2666 - pt0) ™ s

&i n (9(59) — 9(0)) "+

< —

u ; IM'((m+1)k; +1)

& o (9(32) — (0))
ol Z AR/ VT

& ‘
m<~  D(nki+1) < ;EK; (9(2) — ()™ .

Let us consider the continuous operator G : E* — E* defined by

G(5)(50) = (G1(5)(52), Ga(6)(52), G3(5)(2)), (2.5)
where

G110 = | e B T 6 0) sOENG, € (0]
(20, se[-r0],

Ga (<) (50) = 20y +0 Tfo(s5, 6 (5), s (D)) (>0), 2 € (0],
Dy(%), s €[-r,0],

and

20 2+ T35, 5 (), s ((s)) (), 2 € (0,B),
3(x), s e[-r0].

G3(5)(50) =

3 Main results
In this section, we prove the existence of a unique solution and a (UHML) stability result
for system (1.1) with respect to Chebyshev and Bielecki norms with time delay. For our
analysis, the following hypotheses should be satisfied.

(H1) wf; € C([0,b) x R® x R3,R), h € C([0,b], [-7,b]), h(30) < 2,7r>0,i=1,2,3.

(H1) (wf) : [0,b] x R® x R® — R are continuous functions and there exists £; > 0 such
that

3
(Wi, 6,2) — wialfiGavy)| < L) [lsk = vl + 2k = yxl]
k=1

for all 5z € (0,b], ¢,v,z,y € R3.

Page 6 of 18
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Theorem 3.1 Assume that (H1) and (H2) are satisfied. If

3
2L; (p(b 0))«i
. Z_(go( )—pOr |
~ I'(k; +1)
then system (1.1) has a unique solution ¢ =(¢1,62,63) EE:=ENQ X ENQ X ENQ.

Proof Define a closed ball set as P, = {(s1, 62, 63) € E*: [[(¢1, 62, $3)llp+ < ¢} with & > 17 T,
where

[ |w(O)| +(p(b) - ¢(0))
v e ) Y

=

andﬁ = SUPsc(op) IWfi(5,0,0)[, 1 = max,e[o,p) [W(5)|. In order to examine the existence of
a unique solution by means of the Banach fixed point theorem, we only prove that the
operator G(c) defined by (2.5) has a fixed point in E. For this purpose, we split the proof
into the following steps.

Step (1): G(¢) is continuous.

From the continuity of functions wf;(5, c(3), c(h(5))), we deduce that the operator
G(c1, 62, g3) is continuous too.

Step (2): G(g) € P;

Case (1). For each ¢ = (1, 62, 53) € P, and for s € [-r,0], we have

1Gi(s1, 52, 69)| = I19ille,  i=1,2,3.

Hence

1G (51552, 63) || e < 1911l + D2l + 193]l

= || (1911 ﬁZ;

Case (2). For each ¢ = (61, 62, 53) € P, and for s € [0, b], we have

|Gi(s1, 62, 53)|
[w(0)] wl() (7 e
= weal ™ T /o Ny~ o)
x {|w(s)(fi(s, s (5), s (h(9))) = £i(s,0,0))| + [w(s)fi(s,0,0)|} ds
<'W/i—°)',- /uf( )/ NG| a®)] + |6a6)] + o)
+151(0(9)] + [s2(b(s)| + |s3(H(9)| + |wls)fi(s,0,0)|} ds
SlWI(L—O)'dﬁ if”i){(nglnw||g2||E+||g3||E)+ﬁ} fo N (5e,5) dis
[w(0)] 2L; (p(32) — 9(0))
ST it “{l(s1s 520 fz}w
O, 2L:, (59 - 9(0)"
= M ,U« f} [(k; + 1)
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_ W)l 2Li~(p(b) — (0))i  2L; (p(b) — p(0))
< —a;+ f; +
M u [(k; +1) w o Tl+1)

¢

which implies

||g(§11 G2, §3) E*

= [ Gils1, 62 63) | + |92 (15 62, 63) | + | G361, 620 63) |

3 . 3
W) 2Li=(p(b) - ¢(0))" 2L; (p(b) - ¢(0))"
521:[ w T Mﬁ [(k; +1) }JFZT T(k; +1)

i=1
<A+¢T <¢.

This proves that G(¢) € P,.

Step (3): G(¢) is a contraction in P;.

In this step, we will show that the operator G(¢) is a contraction mapping on P, with

respect to the norm [|(s1, 62, 63)llex = ls1lle + S22 + [ S3llE-
Case (1): For (61, 62, 63), (V1, V2, v3) € P; and s € [-r, 0], we have

1Gi(s1, 62, 63) = Givi,va,v3) [, =0, i=1,2,3.

It follows that

3
1G (515 52, 63) = Gv1,v2,v3) | o = Z”gi(s‘bs‘z,s‘s) = Givi,va,v3)|
i1

=0 <Y (51,62, 63) — (V1,v2,v3) | -

Case (2): For (61, 62, 63), (V1, V2, v3) € P, 52 € (0, b] and by (H;), we obtain

1Gi(s1, 62, 63) = Gilva, va, v3) |

< WF":’S;) /0%W(S)N;i—l(%,s)|[fi(s,g(s),g(h(s))) —fi(s, v(s), v(0(s)))]| ds
W—l( ) > o

< F(/ci /0 N 1(56,8) [ w(s)[fi(s, 5 (9), s (B(9))) = fi(s, v(8), v(b(s))) ]| s

< Ml‘ﬂ(i,(l.) foﬂNgrl(%,s)Hg(s) —1(9)] + [52(5) = va(9)| + | s3(s) — v3(s)]

+[51(8()) = vi(0(s))] + |52(b(s)) = va(b(5))| + |s3(B(s)) = v3(h())|} ds

2L; b) — p(0))~i
<—M[HQ—WHEJr||§2—V2||E+||§3—V3||E]

T u F(Ki+1)
2L; (p(b) — 9(0))*
= " %H(Q,Q,s‘s)—("h"bvﬁ E*

It follows that

1G(s15 52, 63) = Gv1,v2,v3) |

3
= ZH Gi(s1,62,63) = Gi(v1, Vz»Vs)HE
i=1

Page 8 of 18
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IA

o(
. + E*

3 .
i (p(b) - “
2L M”(s‘l,gz, §3) - (Vl; V27V3)
" F(K 1)
i=1 !

<T|(s1 52, 63) = (v1,v2,v3) | -

Thus, in light of the above cases, for all s« € [-r, ], we get

||g(§1) G2yeeey grz) - g(vl’ V2:~~')Vn) E* S T”(glr G2 5-3) - (Vlr V2, V3)HE*'

Thus, the operator G(¢1, 62, ¢3) is a contraction mapping on E with respect to the norm

(51,62 63) | o = lIslle + ls2llE + lIssllE-

So, by the above steps and the Banach fixed point theorem, we deduce that system (1.1)
has a unique solution in E. O

Theorem 3.2 Assume that (H1) and (H2) are satisfied. If

2\ 2L; (p(b) - p(0))"
r= Z " T(k; +1) <

3 2Li(e(b)-p(0)K
cmd/\/(=%>O,wherek=1—zi=1%#0,t}zen

SDy 6i(30) = fi(56, 5 (39), 5 (B(5))), € (0,b),i=1,2,3, (3.2)
is UHML stable.

Proof Let ¢ = (S1, 62, G3) € E be a sequence satisfying inequality (2.3) and ¢ = (g1, 62, 63) €
E be a unique solution to the following (TSWFDEs)

SD6 6i(50) = fi(36, 6 (20), 6 (B(x0))),  3c€ (0,b],

Gi(3) =Gi(30), s €[-r,0].

Now, by Lemma 2.11, for i = 1,2, 3, we have

WO ;4 M [ (NG (e, 5)fi(s 6 (), 6 (0(s) ds, 2 € (0, ),

w(sz)

Gi(s0) = R
Gi(x), 2xe€[-r0].

First, for all ¢ € [-r,0], we have |C;(3) — ¢;(52)| = 0. Next, from (H,) and Lemma 2.12, for

each s € (0, 5], we have

1Gi(50) = i(52)|
- w(0)  w'(x)
§i(%)_mai— (<)
’wl(%) »

(ki) Jo

<

/O WN (e, )fi (5, €(6), E(51(5))) ds

w(S)N ™ (52, 9)fi (5, (), S(0(s))) s
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w(x)

I"(k;)

Ei Ki
“E,. — 0(0))"
< (950 - 9(0))

/0 T WOINE a5 (5 6(5) ¢ (0(5))) s

—1
(%/ NET (6,9)|[wis)[fi(5, 2(5), £(0())) = fi(s, 5 (5), 5 (8(s))) ]| ds
&
ZE,. —0(0)“
< (9(50) - 0(0))"
£ 1
e [N a6 - 510 #6260 - 20 +[636) - a6

x |21(0(5) = 51(09)| + [G2(6)) = ©2(8(6))] + [S3(8()) = 53(b(s)) [ ds.  (3.3)

Set Q. := C([-r,b],R*) and Q* = Q, x @, x Q,. Now, for each sequence y = (y1,2,¥3) €
Q7, we consider the operator U : Q% — Q. defined by

U(Yl,yz,y?,) = (Ul(,)/1,)’2,3’3)(%)»Uz()’byz,%)(%),Us()'byz, e ’yn)(%)):

where U;(y1,2,¥3)(x), i = 1,2, 3, given as

Ui()’l,yz,ys)(%)

LE, (p(o0) — @O + ST NG G5y (s) dis

. ( ()%) [ NG (52, 5)y2(s) ds + L¥(Ki)%) S5 NG o 9)y3(s) ds
_ .c-w‘:)% fok./\/"(iil(%;s)yl(h(s))ds*' ﬁil‘f’(_:i()") fo}‘N;i*l(%,s)yz([)(S))ds
‘:W 1(” LS NG G s)ys(b(s) ds, € (0,b],

0, %e[ 7,0].

We prove that U(y1,¥2,3) is a Picard operator. For i = 1,2,3, 5 € (0,b] and (y1,¥2,%3),
@1»372’3’\3) € Qt, we have

Ui 1,32, 73) = Us(G1,52,73) |

< ) [T N Gl 516 ds
ﬁﬂv; (1:{) / N 2,5) yals) ~5a(s)| ds
+£W (”’ / NS (2,9 |y3(s) = 35(6) | ds
mxl / NE(2,9) 1 (8(5) =31 (6(6)) | ds
O [ N e 06) (009 s
N E/:V;(K‘;" /0 NE(6,5) |y (8(5)) =35 (6(6)) | s

_ 2Lilp(b) - (0))

~Ylle+ 1y2 =92l + vz =
AT+ 1) [ly1 =71l + ly2 = D2llz + llys = 73llg]
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_ 2Lp(8) - 9(0))"
,ILF(Kl' + 1)

|15 y2,¥3) = G1,72,73)

E*?

which implies

||u(yl¢y27y3) - u@l:j’};/\
3

= 3 |ty 2.55) - UG 32,35
i=1

2Li(p(b) — p(0))~
- Z wl (ic; + 1)

|| (yl’yZ»yS) 6711)/2)

i=1

=< T || ()’1,)’27)’3) - @1”}72)/\

Since T < 1, we conclude that the operator U/ is a contraction mapping on E with respect

to the norm

||(g1,g2,

3
g= 2 lsille.
i=1

According to the Banach fixed point theorem, we deduce that U/(y1,y2,3) is a Picard
operator and Fy; = (¥}, 93,3). Now, for all 5c € (0, b], we have

9109 = Us (57, 95,3) ()
Y5(2) = (yl’yZ’yB)( )

and

¥5(5) = Us (v}, 75, 73) ().

Fori=1,2,3, we get

Ji F(3) = (ypyzrys)(%)

i Ki £iw_l (%) * iei—1 * *
EKi ((,0(%) - QD(O)) + W ](; Nfﬂ (%, s)[yl(s) +) (h(s))] ds

Low () (7 i1 . .
el AR CRIEORPH U R

E 1
* rW(K,(%)f NG, 9) () + 95 (0(9)) ] ds.

Next, we prove that the solution (y7,y;,73) is increasing. Let ¢ = max{o, 03,03}, where
0; = minge(op) [¥7(s) + ¥7(h(s))] € Ry, i=1,2,3, then for all 0 < 1 < 3, < b, we have

¥ (50) - y7 (a1)
= [Eap60) ~ 9(0)" ~ B (p(o2) ~9(0)]

Page 11 0f 18
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Y
T

+ F(ﬁl{i') /(; 1[w—l(%2)/\/?;,'—1(%2&)—w—l(%1)/\/;’;:'—1(%1,5)][y’{(s) +;(b(s))] ds

Liw™ (5)

[ N Gasloi0)+ 3009 s

+ F(ﬁl{i') /0 1[w—l(%2)/\/?;,'—1(%2&)—w—l(%1)/\/:;:'—1(%1,5)][y’z‘(s) +5(b(s))] ds

Liw™ (50)
(k)

[ N a0+ 3009 s

L; o _ B 3 . .
* [ (x;) /o v 1(%2)/\[‘;1 {Ges) =W, 1(%1)'/\/:51 (a1, 9) ][5 () + 95 (b(s)) | ds

Liw™ (5)
I (k;)

[Ec(9(02) = 9(0)" = Eq, (9(31) — (0)) ]

f N e 96 + 93 (606) ] ds

w (56) - w (501)
F(Kl' + 1)

+3L0 { (9(22) - 9(0)"

wl(51)
T+ 1)

[(¢(2) - 0(0)) ~ (p(ar) - so<0))”"]}

> 0.

Therefore y! is increasing for all i = 1,2, 3, and consequently (y},y3,73) is increasing too.

Due to h() < 5, we get y; (h(5)) < y;(>) and hence

yi(z) = Ui(y], 955 07) (52)

In particular, if y; = |5i(5) - 6i(59)|, (i = 1,2,3), from (3.3), y; <Ui(y},¥5,y3) by Lemma 2.8,

= —lEm (G - 0(0)"

Ki—1
urm)/ N o shils)ds

MF(KL / NK! (5, 8)y5(s) ds

2L . *
F(Ki)/o N (4,5)y53(s) ds.

we obtain y; < y7, where l{; is an increasing Picard operator. As a result, we get

S0 - 6i(>0)| < p S E e (02) - 9(0)

2L; K= -~
,uF(K) N %’S)’S‘l(%)—s‘l(%)‘ds
MF Kl / NK, 1(%,S) gz(% §2(%)|dS

5l (5,5)|G3(50) — g3(50) | dis.

Page 12 0of 18
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It follows that

IS - sille < &iE; (9(3) — 9(0)) "

§ O O e e+ 18- ol + 185 — sle]
ul(k; + 1) S1=Gulle + 1162 = G2llE + 1163 — S3llE
2L~ O

ul(k; +1)

= E (00— (0) " +

(G152, 53) = (51, 625

Thus

||(§\1”§\2,/§\3) - (51,62

3
=Y G- ile
i=1

3

<3 ZE (90 - p(0)
i1 M
2 2Li(p(b 0))~i
+Z%“(§h§2’§3) (515625

i=1

As aresult, we get

” (g'\lr E\Z, g‘\3) - (glr G2 §3) E* < MaEK (90(%) - ‘/’(O)K~
Hence, equation (3.2) is UHML stable. (|

Next, we use the Bielecki norm || - ||g. Let B; = E = C([-r, b], R) be the Banach spaces of
continuous functions ¢; : [-r,b] - R, (i = 1,2,..., n) with the norms

6>0,i=1,2,3,

Isills, = max e~?¢CI=©
»€[0,]

where
Bi={5::(0,b] - R; W% 0Ol ¢,50) € C([-r,b], R)}.

Define the product space B = B; x B, x Bs. Clearly, B is a Banach space with the following

Bielecki norm:

n
(51, 62:63) 5 = Z lsillg;, (51,62, 63) € B.
i-1

Theorem 3.3 Assume that (H1) and (H2) are satisfied. If

2 2L, 0] ((b) - p(0))"
; Ti+1)

then system (1.1) has a unique solution (g1,62,63) E E:=ENQ X ENQ x EN Q.

Page 13 0f 18
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Proof In order to prove the uniqueness of solution, by means of the Banach fixed point
theorem, we only prove that the operator G(¢1, 62, ¢3) defined by (2.5) has a fixed point in
E with respect to Bielecki’s norm. For this purpose, we divided the proofinto the following
steps.

Step (1): G(s1, 2, G3) is continuous.

The continuity of a function f; implies that the operator G(¢i, 52, ¢3) is continuous too.

Step (2): G(s1, 62, 63) € P

Define IP;« is abounded, closed, and convex set as Pr» = {(¢1, 62, 53) € B: I(51, 62, 63) I8 <
£*} with

3
A 0 2.L,80O-00_((b) — o(0))i
L where A, := E |:|W( )|ai+ € i(‘P( ) — ¢(0)) ]’
i=1 2 14 F(K,' + 1)

whereﬁ: SUPsc(o,5] Wfi(s,0,0)| and p = max,.cjo.p) [W(5)].
Case (1). For each (¢1, 62, 63) € P, i = 1,2,3, and for 3 € [-r,0], we have

1Gi<1, 62, 63)] 5, = 194l

Hence

1G(s1 52, 63) || 5 < 191118, + 1921, + 19315,

< |1, 92,93) |, < ¢*
Case (2). For each (61, 62, 63) € P¢+, i = 1,2, 3, and for s € [0, b], we have

|Gi(s1, 62, 63)|

_ w0 i
= w()]
wl() [* cin1
T Jo w(s)NF (55,9)[fi(s, 5 (5), s (b(s))) —f£i(s,0,0) +£i(s,0,0)| (52)
W) wl() N 519 (32)-p(0)]
=l T /o gt Gosee
X e_‘s[“’(”)_“’(o)]{|w(s)(ﬁ(s, (), 5(h(s))) = fi(5,0,0)) | + |w(s)fi(s,0,0)| } ds
[w(0)] 2L, 1 7 e )
<=t T {(Is1lls, + ls2lls, + llssllz,) +£} fo NET (32, 5)e" =000 g
w(0)] 2Ll = (p(b) — ¢(0))
< " a; + " {||(§1,§27§3)||B+fi}W
w()| 2L !WOO) o (p(B) — 9(0)
S TR
w(0)] 2L (¢(b) - 9(0)) i~
= a; + i
M M I(k; + 1)

N 2L, O1 (¢(b) — p(0))"
" I(k; + 1)

’
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which implies
1G (5152, 63) |

3
=Y l9cr e el
i=1

o[ WO 2L OO (o (b) - p(0)
_;=[ iz “r iz T+ 1) :|
2 2L, 0000 ((b) - (0)

£ Fo+D) ©

i=1

<A1+§*T1 SC*

This proves that G(c1, 62, 63) € Pr=.
Step (3): G(s1, 62, 63) is a contraction.

In this step, we need only to prove that the operator G(¢1, 62, ¢3) is a contraction mapping

on E with respect to the Bielecki norm B.
Case (1): For (¢1, 62, ¢3), (V1,v2,v3) € Band » € [-r,0], i = 1,2, 3, we have

|Gi(s1, 52, 63) = Giva, va, v3)] . =0
It follows that
1G(s1, 62, 63) = G, vav3) |,
= i”gi(gl: 52,63) = Gilvi, va, v3) |,

<Y1 (5162, 63) = (v1,v2,v3) | -

Case (2): For (¢1, 62, 63), (v1,v2,v3) € B, 3¢ € (0, b] and by (H;), we obtain

1Gi(s1, 52, 63) = Giv1, va, v3) ”B.

: sz(%))/(; WONG G4 9)| (s 5(6) 5 (06))) = s (5) v(006)) ]
“(5) .
< Wr(;j / N 1(%,s)|w(s)[ (s, 5(s), 5 (b(s))) f(s,V(s),v(b(s)))]|ds

K, 1 Sl

x e“““’(”)'“’ H|51(8) =vi(9)] + [52(s) = va(s)| + | 53(s) — v3(s)|

+[51(8(9)) = vi(6(s))] + |52(b(s)) = va(b(5))| + |s3(B(s)) = v3(h(s))|} ds

- Zgieélw(b)—w(o)] (@(b) — (0))<
- n I'k; +1)

2L, MO0 (o (b) - (0))
- i C(x;+1)

[||§1 —villg; + lsa = vallg, + llg3 — V3||Bi]

||(§1» 62,63) = (v1, V2;V3)HB.

Page 150f 18
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It follows that
||g(§1, §2’-"’§n) - g(VI)Vbnan)”B
3
= ani(gb §2eerGn) = gi(Vsz:qun)”Bi
i=1

2LO0) ((b) - p(0)
o uw (k; + 1)

IA

||(§1,§2,§3) (vi,v2,v3) | 5

<1 |(s1, 62, 63) = (1, v2,v3) | -

Thus, the operator G(s1, 62, 63) is a contraction mapping on E with respect to Bielecki’s
norm. So, by the above steps and the Banach fixed point theorem, we deduce that system
(1.1) has a unique solution in &

The proof of UHML stability is just like in Theorem 3.1, so we omit it here. d

4 An example
Example 4.1 -i Consider the following WFDE:

CDEY 6i(5) = fi(32, 6 (30), s (0(9))), € (0,1]
6i(0) = a;, (4.1)
Gi(3) = ¢i(%), »xe[-1,0].

Set i = 1, fil (), s (0() = 1L (i) — 9i(0) + g5(cos(2gi(- = 1)) + 5 gl )] wi(s) = e,
i=1,2,3,b()=(--1). Thus, forall ¢;, g/ € R* and » € (0,1], we have

(wiG9)fi (56 5 (50, §(b(%))) —fi(36 % (39, s*(h(>9))) ]|

1

—Olg(%) S* ()| + s |§(b(%)) -6*(b(>9)|.
Here L; = for all i =1,2,3. We select ¢(5) := e*. Then we get ;& = max,.c,] |€”| = e,
and hence T > m (1")(K7+((1)))Kl 2~ 0.5. Thus all conditions in Theorem 3.1 are satisfied,

and hence system (4.1) has a unique solution. Finally, we see that the inequality

ISDEEi(52) - fi(56, S, S(H(39)| < £iEe; (9(52) — 0(0))"

is satisfied. Then equation (3.2) is UHML stable with

131,52, 53) = (61,62, 63) | o < MeE(9(30) = 9(0)%,

where M ~2.2>0.

5 Conclusion

We have obtained the existence of unique solutions and Ulam—Hyers—Mittag-Leffler sta-
bility results for the solution of a tripled system of weighted generalized Caputo fractional
derivatives investigated by Jarad et al. [1] with respect to Chebyshev and Bielecki norms
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and time delay based on the reduction of fractional differential equations to integral equa-
tions. We employed the Picard operator method and fixed point theorems to obtain our
results. To the best of our observation, there is no analytical literature on studying the ex-
istence of tripled systems of fractional differential equations. This paper is the first work
to study existence of a unique solution and an Ulam—Hyers—Mittag-Leffler stability result
for (TSWFDEs) with respect to Chebyshev and Bielecki norms with time delay. We trust
the reported results here will have a positive impact on the event of further applications

in engineering and applied sciences.
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