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Abstract

In this work, we present a lake-eutrophication model with nontransient/transient
impulsive dredging and pulse inputting. We obtain globally asymptotically stable
conditions for the phytoplankton-extinction periodic solution of syster) (
Furthermore, we gain the permanent conditions for syst2rf) (Finally, we employ
computer simulations to illustrate the results. Our results indicate the e ective
controlling strategy for water resource management.
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1 Introduction

Lakes are very important water resources; many lakes have water supply, shipping, "ood
control, irrigation, aquaculture, tourism, and other functions]]. Lake eutrophication has
become a worldwide environmental problem. According to statistics, the proportion of
eutrophic water bodies in Asia, Europe, North America, and Africa reached 54%, 53%,
46%, and 28%, respectivelf][ Bennett et al. B] investigated human impact on erodable
phosphorus and eutrophication. The main characteristic of lake pollution is eutrophica-
tion of water body. Because of human interference of activities, eutrophication process
is very rapid. Deposing the sediment is an important reservoir of nutrients in lakes. Af-
ter the nutrient load of the lake is reduced or completely cut o, the nutrient salt in the
sediment will gradually released to become the dominant factor of lake eutrophication
endogenous4]. So the preventing and controlling phytoplankton in eutrophication lake
ecosystem have also become an important subject of water environmental protection.
Partly and periodically dredging sediments can protect lake ecosystem and water resource.
At present, physical, chemical, and biological methods are the common methods of con-
trolling phytoplankton (cyanobacteria) in eutrophication lake ecosysterB|[ The physi-

cal methods are relatively safe ways to remove algae. Impulsive di erential equations are
found in almost every domain of applied science and have been studied in many investi-
gations [6..13]. However, the authors did not applied impulsive di erential equations to
describe the physical methods for water resource management. In this paper, we present
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a lake-eutrophication model for water resource management, which considers e ects of
nontransient/transient impulsive dredging and pulse inputting.

2 The model
For the diagram in Fig 1, in this paper, we consider a like-eutrophication model with non-
transient/transient impulsive dredging and pulse inputting on nutrients

% =21 ..das(t)
RSO (0) - S2s(a(t),
dxl(t) = Bras()x1(t) .. drax1 (),
dxz(t) = Bros()xa(2) .. droxa(t),
As(t) = . us8(),
Axy(t) = .. u1xa(2), t=(n+hrnez,
sz(t) = ..uaxo(2),
ds(t) = o ...8>+E)s(t)
ﬁzls(t)xl(t) 2s(eealt),
410) = Bors()xa(t) ... o1 + Exxa(t),
dxz(t) = Boos(t)xo(t) ... 8o + Ex)xo(t),
As(t) =,
Ax(H)=0,1 t=(n+lrnez".
Axo(t) =0,

t € (nt,(n+ 1],

(2.1)

te((n+Dr,(m+ ],

Here s(t) represents the concentrations of the nutrients at time, x;(¢) (i = 1,2) rep-
resent the concentrations of phytoplankton in lake at time, A; > O represents the in-

B

pooxo] || 5, "% a5 (1)

Non-dredging period of
system(2.1)

~ds) k= 5| IO —

I Transient impulsive
dredging moments
of system(2.1)

B

psoxo] || 5, 05O i (0)

Non-transient impulsive
period of system(2.1)

“ds k= 50| I —

Pulse inputing moments
of system (2.1)

Figure 1 Diagram for the dynamics of a lake-eutrophication model with nontransient/transient impulsive
dredging and pulse inputting
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put concentration of the nutrients from ravine streams around the eutrophication-lake
in the interval (nt, (n + [)t)], d1 > 0 represents washout and loss rate of the nutrient in
eutrophication-lake in the interval ¢z, (n +[)7)], B11 > 0 represents the maximum growth
rate of phytoplanktonx; in eutrophication-lake in the interval @z, (z + {)t)], 0 <811 <1
represents the yield of the nutrients for phytoplanktorx; in eutrophication-lake in the
interval (nt, (n + [)7)], B12 > 0 represents the maximum growth rate of phytoplanktos,

in eutrophication-lake in the interval @, (n + )7)], 0 <812 < 1 represents the yield of the
nutrients for phytoplankton x, in eutrophication-lake in the interval ¢z, (n +1)7)], d12>0
represents the death and loss rate of the phytoplankton in the eutrophication-lake in the
interval (nt, (z + )7)], 0 <u,s <1 represents the impulsive dredging e ect on the nutri-
ents in the eutrophication-lake at moment = (» + )7, 0 <u; < 1 represents the impulsive
dredging e ect on phytoplanktonx; in the eutrophication-lake at momentt = (1 +[)t, 0 <
u2 < 1representsthe impulsive dredging e ect on phytoplanktaty in the eutrophication-
lake at momentt = (n + )T, A2 > 0 represents the input concentration of the nutrients
from ravine streams around the eutrophication-lake in the interval #(+ )z, (z + 1))],

d» > 0 represents washout and loss rate of the nutrient in eutrophication-lake on inter-
val ((z + )T, (n + 1)7)], Es > O represents the nontransient impulsive dredging e ect on
the nutrients in the eutrophication-lake in the interval (¢ + )z, (z + 1)t)], B21 > O repre-
sents the maximum growth rate of phytoplanktor; in eutrophication-lake in the interval
((n+ Dz, (m+ D)7)], 0 <681 < 1 represents the yield of the nutrients for phytoplanktony

in eutrophication-lake in the interval (¢ + [)t, (n + 1)7)], B22 > O represents the maximum
growth rate of phytoplanktonx; in eutrophication-lake in the interval (¢ + )z, (n + 1)7)],

0 <82, < 1representsthe yield of the nutrients for phytoplanktom, in eutrophication-lake

in the interval ((n + )z, (n + 1)7)], d22 > 0 represents the death and loss rate of the phyto-
plankton in the eutrophication-lake in the interval (¢ + /), (n +1)7)], E; > O represents the
nontransient impulsive dredging e ect on phytoplanktorx; in the eutrophication-lake in
the interval ((z + )z, (z + 1)7)], E2 > 0 represents the nontransient impulsive dredging ef-
fect on phytoplanktonx; in the eutrophication-lake in the interval (¢ +{)t, (n+1)t)], « >0
represents the pulse inputting amount of the nutrients with seasonally rainstorm washing
from soil around the lake at momentt = (n + 1)r. The time interval (27, (n + )] repre-
sents the nondredging period, the time interval £(+ [)t, (n + 1)t] represents the dredging
period, and 0 </ < 1 represents the interval length of the nondredging.

3 Somelemmas

The solution X(z) = (s(£),x1(t),x2(£))” of system 2.1) is a nonsmooth functionX: R, — RS.

It is continuous on (uz, (z + [)t] and ((z + [)z, (n + 1)z], n € Z+, and the limits X (nt*) =
lim,, o+ X (£) and X ((m + {)T*) = lim,_, 4.+ X (£) exist. Obviously, the global existence and
uniqueness of solutions of systen2(1) are guaranteed by the smoothness propertiesfof
de“ned by right-side of systemZ2.1) [6].

Lemma 3.1 For solution (s(£),x1(£),x2(2)) of system (2.1), there exists a constant M > Osuch
that s(t) <M, x1(t) < M, and x2(t) < M for all t large enough.

Proof De*ning V() = 8s(t) + x1(t) + x2(t) and taking § = max{811,812,821,822} and d =
min{dy,dy1,d12,d>,do1,d27}, we haveD* V(t) + dV(t) <ér forte (I’I‘L’, (Vl + l)‘lf] We also
haveD* V(¢) +dV (t) < 8r; for t € ((n+ )T, (n + 1)r]. Denoting & = max{8Ay,512}, we have
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the following inequality fort Z nt, t Z (n + )t:
D'V(t)+dV(t) <&.

We haverV(nt*) = V(nt) + pfor t=nt and V((n+ )t*) < V((n + )7) for t = (n + [)z. By
the lemma of ] we have

. Me..d(t..r) ued’
V(&) = V(O)exp(..dt) + = (1 ..exp(.dt) + ———+ F—)
dt
- §+ e‘ljfe... 1 ast= o

SoV(¢) is uniformly ultimately bounded. By the de“nition of V(¢£) we have that there exists
a constantM > 0 such thats(¢) < M, x1(¢) < M, andx,(t) < M for ¢ large enough.
If x;(£) =0 (i = 1, 2), then a subsystem of systerf.() is

LW =51 . dis(t), te(nt,(m+D)7l,
As(t) = .us(t), t=m+Dt,neZt,

J 3.1)
B ==y, .dps(t), te((n+D)r,(n+1)],
As@®)=p, t=m+Lr,neZ'.
Between the impulsive points, systen3(1) has the analytic solution
o = | Bl b dasre e, e o, G+ e (3.2)

%[AZ Ko dos((n+ DTH))e 2]t e ((n+ DT, (n+ 1))

Considering the second and fourth equations of systeri.{), the stroboscopic map of
system B.1) is presented by

S((Vl + l)‘l.'+) — e..dllrs(nf+)

(1. g4 A2
+ o+ Lda(1.D)t 1.. iy 4 22 1.. .da(1.D)t ) 3.3
o LtV sy iy 220 i) @)

The unigue “xed point s* of (3.3) is

L) . do(l.. . da(1L..
N ( Zl))\le d(Ld)r(1 | g-dalt) + ;\l_i(l .e-d2(Ldr)

*
$ 1 pdilt

(3.4)

Similarly to [12], we can easily obtain the following two lemmas.
Lemma 3.2 The fixed point s* of (3.3) defined in (3.4) is globally asymptotically stable.

Lemma 3.3 The periodic solution sﬂ(\t’) of system (3.1) is globally asymptotically stable,
where s?f) is defined as

%[Al oK1 o disP)e eIt e (nr, (n+ D1,

(3.5)
Llhz .. ko dos™)e 20, p e ((n+ DT, (n+ 1)),

s(t) =
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where s* is defined in (3.4), and s** is defined as

S (1 ”MS) [)\.1 (}\.l ..dls*)e“dllr].

g (3.6)
4 The dynamics
Theorem 4.1 If
1
In T (i—lll)»l dll)ll’ + [%Az ...d21+51)}(1 L)t
% ()\11 dls*)(l ”e..dll‘r)
1
% (hz ..dos™)e-217 (1 e @)
2
and
1
In T ('Z—llz/\l d12>l7: + [/Z—ZZZ)LZ ...(l22+51):|(1 L)t
% ()‘1 --dls*)(l ..e“dllf)
1
% ()»2 __dzs**)e..dzlz (1 __e..dz(l..L)z), “2)
2

then the phytoplankton-extinction periodic solution (s’(‘Z), 0,0) of system (2.1) is globally
asymptotically stable, where s* is defined in (3.4), and s** is defined in (3.6).

Proof We “rst prove that the phytoplankton-extinction solution (s’(Z), 0,0) of @.1) is locally
stable. De"“nings1(¢) = s(¢) ..st), x1(t) = x1(¢), andxy(£) = x2(¢), we have the following lin-

early similar system for systen®(1), which is concerning one periodic solutionsff), 0,0)
of system R.1):

410 i 80 B2(z)
dx;t(t) =1 0 11$(t) d1g ~0
dx;t(t) 0 0 ﬂ]_zs(t) ..dio
Sl(t)
x| xu(e) | te(nT, (n+ D], (4.3)
x2(t)
and
10) .4 +E) ‘gis(t) f;ggs(t)
&0 | = 0 B215(2) ... o1 + Ex) 0
d%(t) 0 0 Boos(t) ... fo2 + Ep)
Sl(t)
x |x®) |, tenr,(n+r]. (4.4)

x2(2)
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It is easy to obtain the fundamental solution matrix on intervaliz, (n + )]

@4(2)
e..dl(t..m:) %11 *12
=| 0 exp(fy, (Bus) .. du)ds) *13 : (4.5)
0 0 exp( [ (B125(t) .. d12) ds)

There is no need to calculate the exact form ef; (j = 1, 2, 3) as they are not required in the
analysis that follows, and the fundamental solution matrix on the intervak(¢ [)z, (n+1)7]
is

(1)
e...(12+Es)(t..l'lf) *21 *22
= 0 A *23 y (46)
0 0 exp(fiuupy (Bozs(?) - o2+ E2) ds)

whereA = exp(f(;mr(ﬂzlsf(?) ...flo1 + E1)ds). There is no need to calculate the exact form
of x5 (7= 1,2,3) as they are not required in the analysis that follows.
For ¢ = (n + [)z, the linearization of the fourth, “fth, and sixth equations of2.1) is

si((n+1)17) 1.us 0O 0 si((n+1)7)
x((n+Dr) =1 0 1l.ua O x((n+ D7) |- (4.7)
x2((n+0)17) 0 0 1.uz) \xa((n+Dr)

For ¢t = (n + 1)t, the linearization of the tenth, eleventh, and twelfth equations 02 (1) is

si((m+ 1)) 1 0 O\ [si((n+21))
x((n+D*) =10 1 O] | x((n+2)7)|. (4.8)
xo((n+ 1)) 0 0 1/ \wo(m+21))

The stability of the periodic solution sf(?), 0,0) is determined by the eigenvalues of

1.y, O 0 10 0
M= 0 1..u1 0 01 0 (Dl(l‘l,')cbz(t). (49)
0 0 1.uw/\0 01

The eigenvalues 0f4.9) are represented as

A= (1 ”Ms)e...@llHdz(l..l)]r < 1,

r=(1 __Ml)efér(ﬁnsf@--d11)d5+fﬁ (ﬁ2156)---d21+51)d5,

and

As=(L..p Z)efér(ﬁlzsm--d12)d5+f(tn+l),(ﬂzzSE)---(izﬁEz))dsl
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From (4.1) and @.2) we have|r,| <1 and|is| < 1. Then, according to the Floguet theory
[6], we can obtain that the phytoplankton-extinction solutiom(ff), 0,0) of systemZ.1) is
locally stable.

Inthe next step, we prove that the phytoplankton-extinction solutiorsff), 0, 0) of system
(2.1) is globally attractive. Choosing > 0 such that

1= (L .. pug)elo” BualOwe)- iy dst [ (Ba(se). Lor+En)ds 1

and

2= (1 .. jup)el0 (B1260%e)- d12)ds [y (BoalsTOyve)- oz E2)ds o 1

we have the following two inequalities by the “rst and seventh equations &.0):

d
% <A1 ..dus(t) (4.10)
and
d;—(tt) <o o+ E)s(0). (4.11)

Therefore we “nd the comparatively impulsive di erential equation

10 =3y disi(t), te(nt,(m+D7],

As1(t) = . us1(t), t=m+Dr,mez*,

W0 =), o+ EJsa(t), £ ((n+ D, (n+ 1)),
Asi(®)=p, t=m+L)r,neZ’.

(4.12)

From Lemma3.3 and the comparison theorem of impulsive equatior6] we haves(t) <
s1(¢) ands1(¢) — s1(¢) ast — oo. Then there exists >0 small enough such that

s(t) < s1(t) <s1(t) + e =s(t) + ¢ (4.13)

for all £ large enough. For convenience, we assume that@3 holds for allz > 0. From 2.1)
and (4.13 we have

d%” < [B1(s(t) + &) .. dulxa (),
% < [Bra(s(2) + &) .. dr2]xa(2),
Axa(£) = .. paxa(2),

Axap(t) = .. uaxo(2),

d%(’) < [ﬁzl(sff) +€) ... o1+ ED)]xa(2),
420 < [Boa(s(t) +¢) ... o1 + E2)]xa(t),
Ax1(8) =0,

Axo(t) =0,

] t e (nt,(n+r],

t=(n+Dr,neZ,
(4.14)
] te((n+Dr,(n+ ],

t=(m+lr,nez*.
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Therefore

(n+1)r

(n+l)t 77
x1((n+1)7) <xa(nr¥)(1 .. pa)e’™ (Bra6@y+e) drn) dst [y " (B2 6(O%e). Aor+En)) ds

and

x2((n+1)7)

<) (1 .. pa)el N (Bra(sTO ). dr) st [T (Boa(sTD+e) . 22+ ER) ds

Hencex;(nt) < x;(0%)p’ (i = 1,2). Sax;(nt) — 0 (i = 1, 2) asn — oco. Thereforex;(t) - 0
(i=1,2)ast — oo.
In the third step, we prove thats(z) — sff) ast — oo. Forg; > 0 small enough, there exists

to > 0 such that 0 <x1(¢) <e1 and 0 <x,(t) <& for all £ > £,. Without loss of generality, we
assume that 0 <« (¢) <e; and 0 <x,(t) <e, for all £ > 0. Then we have

A ...[dl + (@ + @> } (t) < ds—(t) <1 ..dis(d) (4.15)
11 di
and
A2 ...|:d2+ (E + @> } () < ﬁ < Ao ..dos(), (4.16)
12 dxn

and zy(¢) < s(t) < z1(¢) and z1(£) — z1(t), z2(t) — z2(2) ast — oo, wherez; (¢) andzy(z) are
the solutions of

B0 =50+ BB+ B)er]za(t), te(nr, (n+ D),
Azl(t) = ..,uszl(t) t=(n+0r, 4.17)
10 =)y o+ (B2 + P2)er]an(t), te((n+Dr,(n+ 1), '
Azi(t)=p, t=m+r,neZ",

and
) =), diz(t), te(nt,(n+D)7],
Azo(t) = .uszo(t), t=m+ Dz, (4.18)

0 =5, dyz(t), te ((n+ DT, 6+ 1],
Azp(t)=pn, t=m+Lr,neZ",

respectively. Similarly to LemmaB.3 the periodic solution of @.17), which is globally
asymptotically stable, is

K B (BB + E2)e]2))

B B
~ HHT g )el(e nr)]’ £ e (nr, (n+ D],
alt)= 1 B2 4 P22 Kok (4.19)
W[Az RECRE (d12 + dzz)gl)zl )
_@2+(ﬁ12+ﬁ22

dip  dpp

)sﬂ(t--m)], te((n+Dr,(n+ )],



Jiao and TangAdvances in Di erence Equations (2021) 2021:280

where
o+ — G e---¥2+(%+%)61l(1--l)f(1 oA (2
[ +(G+ F12)eq) B
* d11 di1p
Zl_

CTRET

1 e e

1. e...ﬂz+<§—}§+%)511(1..br)

A2
P12, P22
+ [da+( dio + doo Jeil

L
1 (e el

and
1. .4
ZI*: (ﬂ M; |:)\.1 ...<)\.1...|:d1+ <@+@>81]S*>
[da+ (1 + Z12)eal dii  di
B
d

b1, b2
R 11+d12>8111r}

Therefore, for anye > 0, there existg > ¢; such that
zT(E) £ <s(t) <z/2\(;) +e.

Letting ¢; — 0, we have

SE) £ <S(t)<S,(E)+8

for ¢ large enough, which implies(¢) — sff) ast — oo. This completes the proof
Theorem 4.2 If

1 B11 Bo1
1 <|=—=XA1..dp )i+
T (dl ! 11) i |:

d—z)xz d21+El):|(1 l)T
/311 dis*) (1 Ldilt
d—%()»]_ 18 )( ..Ee )
% ()»2 ..dzs**)e”dzh (1 ”e..dz(l..L)r) (4.22)
2
and
1
In T < <Z—]f)\1 ..dlz)lt + |:lzl—222)nz ...(122+E1):|(1 l)‘L'
D200, i) (1 o)
1
% (h2..dos™)e 2T (1 .. g2 0m), (4.23)
2

then system (2.1) is permanent, where s* is defined in (3.4) and s** is defined in (3.6).

(4.20)

(4.21)

Page 9 of 16



Jiao and TangAdvances in Di erence Equations (2021) 2021:280 Page 10 of 16

Proof By Lemma3.1,s(¢) < M, x1(t) < M, andx,(t) < M for t large enough. We may assum
that s(t) < M, x1(¢) < M, andx,(t) < M for ¢ > 0. Therefore we have

ds(t) B ﬂlz
d.
% > o ...|:d2+ (fl_z + %) 1]5(0, (4.25)

ands(t) > z3(t) andzs(t) — z?(?) ast — oo, Wherezs(t) is the globally asymptotically stable
solution of the comparatively impulsive di erential equation

dza(t)
0 =+ (BB + E2)Mza(e), £ € (nr, (n+ D)),
Az3(t) = ..uez3(t), t=m+Dr,meZ”,
. (3;)() wsz3(t), ; fg ) (4.26)
20 =)yl + (B2 + B2)Mzs(t), e ((n+ DT, (n+ 1],
Azz(t)=p, t=m+Lr,neZ",
with
2 /311{1;1: (G2 + B2)M)z3)
~ « e...{11+(d11+d12)M](t m)], te (I’l‘L’, (}’l + l)‘L’],
z3(t) = L bz B (4.27)
[ +(ﬂ12 ﬂzz)M][ 2. k2. (12+(di§ dgi)M)zé*)
B12 , B22
e @’2+(dlz*dzz)MW““’)], te((n+Dr,(n+1)),
where
+B +B
o+ (;155)2112 (2 2)ma. (1 e (G B2 B
. R
Z3 = {11+(ﬁ11+ﬁ12)1\/[]lr
1.7
P12, B22
[d2+(d12 d22)M]
B11, P12 (4.28)
1 g M
and
Z** — (1 MS)
=
s+ (B + Bym)
B11, P12
x [Al ( [d1+ (’311 @>M]z3> Ayt dlz)M]h]. (4.29)
dii  di

Therefore, for anye, >0,

s(t) > za(t) .. £2 (4.30)
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for ¢t large enough, which implies that

B B
S(t) > di|:)»1 ...()»1 |:d1 + (@ + @>M]z’1‘) X e"'€1+(d_ﬁ+%)M]Ij|
1

11 di

1 B2 | B2 o
+ [d2+(m n @)M] [}\.2 ...()\2 ...<d2+ <d_12 + d—22>M>Zl >

di2 ~ d22

P12, P22
X e"'52+(d12+d22)M]Ti| ..E2 = m>.

Thus we only need to “ndm; > 0 such thatx;(¢£) > m; andx,(t) > m; for ¢ large enough.
By the conditions of this theorem we can seleet; > 0 ande; > 0 small enough such that

P11 )
0'1:( )»1...d11..£1 T
[d1 + (G2 + E2)m3)
B21 ]
+|: Ao ...flat+tEi+e)|(1.. D)t
B B
(3 +
Bu1 ()\1 [d1+ (ﬂu N ,312>m3]s*>
U lda+ (B + E2)mg]? din  diz
< (1 ..e...ﬂ1+(g—ﬁ+%)m3]lr)
Ba1 sy Al (B124 822501 do(L. D)
...[d2+(m+@)M3]2(A2..d25 )e 2y " )3 (l_.e 2( ))>l
di2  dz2
and
P12 )
o2 = Al..dlz..é‘l T
([dl + (G + 2y
B2z ]
+ )Lz...(i22+E1+81) (11)1’
[[d2+ (f}—g + g—si)ma]
B12 ()»1 [d1+ (1311 . ﬁlz)m3]5*>
Cldy+ (G4 + B2ymg]? din  di

P11, P12
X (1 ..e"'yl+(d11+d12)m3]lr)

B2z Bi2 | P22 o
m[d2+(@ N @)ms]z ()\2 ...|:d2+ (d_12 + d—22>WZ3i|s )

di2  dz2

% e..dzlr(l __e...&lz+(%+§_§§)mg](1..zﬁ) 51

We prove thatx; (t) <ms andx,(t) <mg cannot hold for¢ > 0. Otherwise,

BO >+ (B2 B2 mls(r), te (nr, (n+ D],

As(t) = .ues(t), t=m+Dt,neZt,
B0 > flp+ (B2 + E2)mals(e), e (n+ Dr, 1+ 1)1,
As@®)=pn, t=m+Lr,neZ'.

(4.31)
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By Lemma3.3we haves(t) > z(¢) andz(t) — z(t), t — oo, wherez(z) is the globally asymp-
totically stable solution of

LD =)q .+ (B + EYmal2(r),  te(nr,(n+ D],

Az(t) = .uz(t), t=m+DTt,neZ",
O =g+ (2 + Ym0, e O+ e, (n+ 1],

Az(t)=u, t=@m+Lr,neZ*,

(4.32)

with

d—ll[)vl . 01 -..@1+(§—ﬁ + ﬁ—g)mslz*)

e...{11+(%+m)m3](t..nr)],

X 11 412

L te(nt,(n+r],
O e Do ko o (G + BIm)e)
(2 + Z2yma)© OIS Mo de

B12, B
--Hzﬂ%*%)mﬂ(t“m)], te((n+Dr,(m+1)r],

(4.33)

X e
where

4 @y e...@z+<§—g+%)msl(1..nr(l e...ﬂl+(2—ﬁ+2—g)mslzr)
K e B+ B2y )

*

z

A11, P12

d11 d12)m3]lr

1 ..em{il+(
B B
ﬁlzkzﬁzz ( __e---{iz’f(%“f%)ma](l--br)
+ [d2+(712+@)msl

1 .'e...ﬂl+(g—ﬁ+§%)m3]lt

, (4.34)

and

z

[d1 + (B + E2)m3)

X |Ag..|Ar..|di+ @+@ ms |Z* e"'gl+(g_ﬂ+%)m3]h . (4.35)
di di2

Therefore thereT; > 0 such that, fort > T,
s(t) > 2(t) > 2(t) .. £1
and

B0 > [BuQ) --£) . dulra (),
420 > [B1o(2(t) .. £) .. dr2lxa(t),
Axq(t) = ..puaxa(t),

Axa(t) = .. poxa2(2),

440 > [Bo1(a(t) .. £) .. o + En)]xa(8),
420 > [Br(z(t) .. 2) ... o1+ Eo)x2(),
Axy(t) =0,

Axo(t) =0,

t e (nt,(n+r],
t=(n+Dr,neZ,
(4.36)

te((n+Dr,(mn+ ],

t=(m+lr,nez*.
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X, (0

0.4

0.3

0.2
0

50 100 150 200 100 150 200
t t

(1) (d1)

x,(t)

0 50 100 150 200 X, (0 0 o2
t

s(t)

Figure 2 Globally asymptotically stable phytoplankton-extinction periodic solution of sy&dmvith

5(0) = 0.3),(1(0) = 0.3%(2(0) =0.3A1=05d1 = 0.2,,311 =0.5611= l,ﬂlz =0.5012=1,d11=0.4,d12,=0.4,
A2=0.1d2=0.2,821=0.3821=1,622=0.3,822=1,d21 =0.3d22=0.3£,=0.3 1 =0.2£,=0.2,u; = 0.28,
n1=0.1,u2=0.1,.=0.1/=0.8,r =1, @) time-series of(t); b) time-series of1(t); ) time-series of1 (t);

(d) the phase portrait of the globally asymptotically stable phytoplankton-extinction periodic solution of
system?2.])

Let N; € N and Nyt > Ty, Integrating @.36 on (ut, (n + 1)t), n > N1, we have

x1((n+1)7) = 1 (nt")(1 .. p11)

o PV (Brael0) o). drp)dst [(1 ) (B1(E0) ). dox+En) s

= (1 .. u1)xa(nr¥)e™ (4.37)
and

x2((n+1)7) = x2(nt™)(1 .. p12)

% eﬁf?”” (B12(z(D). 2)..d12) ds+/((::,§3r (B22(z(2). £)... f22+E2)) ds

= (1 .. u2)xa(nt™)e”. (4.38)

Thenxy (N1 +&)7) > (1 .. 1) % (N1 T7)ekt — oo andawa(N1 +k)7) > (1 .. ) xo(N1Tt) x
e°2 — oo ask — oo, which is a contradiction to the boundedness af,(£) andx; (¢). Hence
there existst; > 0 such thatxy(¢) > m1 andx,(t) > m;. The proof is complete. O
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5 Discussion

According to the fact of water management, we propose a periodic lake-eutrophication
model with nontransient/transient impulsive dredging and pulse inputting on nutrients.
We proved that the phytoplankton-extinction boundary periodic solution of systen2(1)

is globally asymptotically stable and obtained the conditions for the permanence of system
(2.9.

If we suppose thak(0) = 0.3,x1(0) =0.3,x2(0) =0.3,A; =0.5,d; =0.2,811=0.5,811 =1,
B12=0.5,810=1,d11=0.4,d15=0.4,1,=0.1,d>=0.2,21=0.3,801 =1, B2 = 0.3,825 = 1,
dy1 =0.3,d2,=0.3,E,=03,E1=0.2,E,=0.2, u;, =0.28, 43 = 0.1, u2 = 0.1, u = 0.1,
[=0.8,7 =1, then these parameter values satisfy Theorehil Then the phytoplankton-
extinction periodic solution (sff), 0,0) of systemZ.1) is globally asymptotically stable (see
Fig. 2). If we assume that(0) = 0.3,x1(0) = 0.3,x2(0) = 0.3,11 = 0.5,d1 = 0.2, 811 = 0.8,
811=1, B12=0.8,812=1,d11=0.4,d12=0.4,1, =0.2,d, = 0.2, 821 = 0.5, 621 = 1,
B22=0.5,800,=1,d21=0.3,d»=0.3,E,=0.3,E; =0.2,E, = 0.2, uy, = 0.2, u1 = 0.1,
u2=0.1,u=0.1,/=0.8,7 = 1, then these parameter values satisfy Theorefri2. Then
system @.1) is permanent (see Fig3). From Theorems4.1 and 4.2, and Figs.2 and 3
we can deduce that the parameter, has a controlling thresholdr3. When i, < A%, the
phytoplankton-extinction periodic solution (sff),0,0) of systemZ.1) is globally asymp-
totically stable. Wheni, > A%, system 2.1) is permanent. That is to say, we should re-

(a) (b)

1.2 T T T 0.3

(¢
°
2

X, ()

[ 50 100 150 200
t

(a) (b)

0.05 - -
0 50 100 150 200 ) 0 02
t

s(t)

Figure 3 The permanence of syster®.{) with s(0) = 0.3x1(0) = 0.3x2(0) =0.371 =0.5,d1 =0.2,811=0.5,
611=1,812=0.5012=1,d11=0.4d12=0.412=0.1,d2 =0.2,821 =0.3,821 =1,822=0.3622=1,d21 = 0.3,
d22=0.3F=03F1=0.2£2=0.2,us=0.2,41=0.1,u2=0.1,0 =0.1/=0.8,7 = 1; @) time-series of(t);
(b) time-series of1(t); €) time-series of,(t); d) the phase portrait of the permanence of systeari)(
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0 50 100 150 200 0.2
¢ 0 s()

Figure 4 Globally asymptotically stable phytoplankton-extinction periodic solution of sy&dmvith

5(0) =0.3x1(0) =0.3x2(0) =0.341 =0.5d1 =0.2,811=0.5,11=1,$12=0.5612=1,d11 = 0.4,d12=0.4,
A2=0.1d2=0.2,821=0.3821=1,B22=0.3822=1,d21 =0.3d22=0.3F,=0.3F, = 0.2/, =0.2,u; = 0.28,
n1=0.1,u2=0.1,.=0.1/=0.6,r =1, @) time-series of(t); b) time-series of1(t); €) time-series of; (t);

(d) the phase portrait of the globally asymptotically stable phytoplankton-extinction periodic solution of
system2.])

duce the nutrients indraughting lake-ecosystem during nontransient impulsive dredg-
ing.

The parameter values(0) = 0.3,x1(0) = 0.3,x2(0) = 0.3,A1 = 0.5,d; = 0.2, 811 = 0.5,
611=1,B12=0.5,612=1, d11=0.4,d1,=0.4,A,=0.1,d> = 0.2,821=0.3,621=1, $22=0.3,
522 = 1,d21 = 0.3,d22 = 0.3,Es = 0.3,E1 = 0.2,E2 = 0.2,/L5 = 0.28,,LL1 = 0.1,/,L2 = 01,/L = 01,
/=0.6,7 =1 satisfy Theorem4.1 Then the phytoplankton-extinction periodic solution
(s’(Z), 0, 0) of systemZ.1]) is globally asymptotically stable (see Fi¢). From Theorems4.1
and 4.2 and from the simulation experiments of Figs3 and 4 we can easily deduce that
there exists a threshold*. If [ > [*, then system 2.1) is permanent. If/ < [*, then the
phytoplankton-extinction periodic solution (sff), 0,0) of systemZ.1) is globally asymp-
totically stable. That is to say, a too long nontransient impulsive period will confuse the
lake-ecosystem. Then appropriate extending the nontransient impulsive period will be
bene“cial to water resource management. A similar discussion may do with thresholds of
the parametersiy, g, i1, 12, and so on. Therefore the method of dredging sediment en-
gineering should be combined with implementing ecological engineering to restore and
rebuild healthy and stable aquatic ecosystem, which should be an e ective way to con-
trol eutrophic lakes. Our results also provide reliable tactic basis for the practical water
resource management.
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