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Abstract
In this work, we present a lake-eutrophication model with nontransient/transient
impulsive dredging and pulse inputting. We obtain globally asymptotically stable
conditions for the phytoplankton-extinction periodic solution of system (2.1).
Furthermore, we gain the permanent conditions for system (2.1). Finally, we employ
computer simulations to illustrate the results. Our results indicate the effective
controlling strategy for water resource management.
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1 Introduction
Lakes are very important water resources; many lakes have water supply, shipping, flood
control, irrigation, aquaculture, tourism, and other functions [1]. Lake eutrophication has
become a worldwide environmental problem. According to statistics, the proportion of
eutrophic water bodies in Asia, Europe, North America, and Africa reached 54%, 53%,
46%, and 28%, respectively [2]. Bennett et al. [3] investigated human impact on erodable
phosphorus and eutrophication. The main characteristic of lake pollution is eutrophica-
tion of water body. Because of human interference of activities, eutrophication process
is very rapid. Deposing the sediment is an important reservoir of nutrients in lakes. Af-
ter the nutrient load of the lake is reduced or completely cut off, the nutrient salt in the
sediment will gradually released to become the dominant factor of lake eutrophication
endogenous [4]. So the preventing and controlling phytoplankton in eutrophication lake
ecosystem have also become an important subject of water environmental protection.
Partly and periodically dredging sediments can protect lake ecosystem and water resource.
At present, physical, chemical, and biological methods are the common methods of con-
trolling phytoplankton (cyanobacteria) in eutrophication lake ecosystem [5]. The physi-
cal methods are relatively safe ways to remove algae. Impulsive differential equations are
found in almost every domain of applied science and have been studied in many investi-
gations [6–13]. However, the authors did not applied impulsive differential equations to
describe the physical methods for water resource management. In this paper, we present
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a lake-eutrophication model for water resource management, which considers effects of
nontransient/transient impulsive dredging and pulse inputting.

2 The model
For the diagram in Fig. 1, in this paper, we consider a like-eutrophication model with non-
transient/transient impulsive dredging and pulse inputting on nutrients

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds(t)
dt = λ1 – d1s(t)

– β11
δ11

s(t)x1(t) – β12
δ12

s(t)x2(t),
dx1(t)

dt = β11s(t)x1(t) – d11x1(t),
dx2(t)

dt = β12s(t)x2(t) – d12x2(t),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t ∈ (nτ , (n + l)τ ],

�s(t) = –μss(t),

�x1(t) = –μ1x1(t),

�x2(t) = –μ2x2(t),

⎫
⎪⎪⎬

⎪⎪⎭

t = (n + l)τ , n ∈ Z+,

ds(t)
dt = λ2 – (d2 + Es)s(t)

– β21
δ21

s(t)x1(t) – β22
δ22

s(t)x2(t),
dx1(t)

dt = β21s(t)x1(t) – (d21 + E1)x1(t),
dx2(t)

dt = β22s(t)x2(t) – (d22 + E2)x2(t),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t ∈ ((n + l)τ , (n + 1)τ ],

�s(t) = μ,

�x1(t) = 0,

�x2(t) = 0,

⎫
⎪⎪⎬

⎪⎪⎭

t = (n + 1)τ , n ∈ Z+.

(2.1)

Here s(t) represents the concentrations of the nutrients at time t, xi(t) (i = 1, 2) rep-
resent the concentrations of phytoplankton in lake at time t, λ1 > 0 represents the in-

Figure 1 Diagram for the dynamics of a lake-eutrophication model with nontransient/transient impulsive
dredging and pulse inputting
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put concentration of the nutrients from ravine streams around the eutrophication-lake
in the interval (nτ , (n + l)τ )], d1 > 0 represents washout and loss rate of the nutrient in
eutrophication-lake in the interval (nτ , (n + l)τ )], β11 > 0 represents the maximum growth
rate of phytoplankton x1 in eutrophication-lake in the interval (nτ , (n + l)τ )], 0 < δ11 < 1
represents the yield of the nutrients for phytoplankton x1 in eutrophication-lake in the
interval (nτ , (n + l)τ )], β12 > 0 represents the maximum growth rate of phytoplankton x2

in eutrophication-lake in the interval (nτ , (n + l)τ )], 0 < δ12 < 1 represents the yield of the
nutrients for phytoplankton x2 in eutrophication-lake in the interval (nτ , (n + l)τ )], d12 > 0
represents the death and loss rate of the phytoplankton in the eutrophication-lake in the
interval (nτ , (n + l)τ )], 0 < μs < 1 represents the impulsive dredging effect on the nutri-
ents in the eutrophication-lake at moment t = (n + l)τ , 0 < μ1 < 1 represents the impulsive
dredging effect on phytoplankton x1 in the eutrophication-lake at moment t = (n + l)τ , 0 <
μ2 < 1 represents the impulsive dredging effect on phytoplankton x2 in the eutrophication-
lake at moment t = (n + l)τ , λ2 > 0 represents the input concentration of the nutrients
from ravine streams around the eutrophication-lake in the interval ((n + l)τ , (n + 1)τ )],
d2 > 0 represents washout and loss rate of the nutrient in eutrophication-lake on inter-
val ((n + l)τ , (n + 1)τ )], Es > 0 represents the nontransient impulsive dredging effect on
the nutrients in the eutrophication-lake in the interval ((n + l)τ , (n + 1)τ )], β21 > 0 repre-
sents the maximum growth rate of phytoplankton x1 in eutrophication-lake in the interval
((n + l)τ , (n + 1)τ )], 0 < δ21 < 1 represents the yield of the nutrients for phytoplankton x1

in eutrophication-lake in the interval ((n + l)τ , (n + 1)τ )], β22 > 0 represents the maximum
growth rate of phytoplankton x2 in eutrophication-lake in the interval ((n + l)τ , (n + 1)τ )],
0 < δ22 < 1 represents the yield of the nutrients for phytoplankton x2 in eutrophication-lake
in the interval ((n + l)τ , (n + 1)τ )], d22 > 0 represents the death and loss rate of the phyto-
plankton in the eutrophication-lake in the interval ((n+ l)τ , (n+1)τ )], E1 > 0 represents the
nontransient impulsive dredging effect on phytoplankton x1 in the eutrophication-lake in
the interval ((n + l)τ , (n + 1)τ )], E2 > 0 represents the nontransient impulsive dredging ef-
fect on phytoplankton x2 in the eutrophication-lake in the interval ((n+ l)τ , (n+1)τ )], μ > 0
represents the pulse inputting amount of the nutrients with seasonally rainstorm washing
from soil around the lake at moment t = (n + 1)τ . The time interval (nτ , (n + l)τ ] repre-
sents the nondredging period, the time interval ((n + l)τ , (n + 1)τ ] represents the dredging
period, and 0 < l < 1 represents the interval length of the nondredging.

3 Some lemmas
The solution X(t) = (s(t), x1(t), x2(t))T of system (2.1) is a nonsmooth function X: R+ → R3

+.
It is continuous on (nτ , (n + l)τ ] and ((n + l)τ , (n + 1)τ ], n ∈ Z+, and the limits X(nτ+) =
limt→nτ+ X(t) and X((n + l)τ+) = limt→(n+l)τ+ X(t) exist. Obviously, the global existence and
uniqueness of solutions of system (2.1) are guaranteed by the smoothness properties of f
defined by right-side of system (2.1) [6].

Lemma 3.1 For solution (s(t), x1(t), x2(t)) of system (2.1), there exists a constant M > 0 such
that s(t) ≤ M, x1(t) ≤ M, and x2(t) ≤ M for all t large enough.

Proof Defining V (t) = δs(t) + x1(t) + x2(t) and taking δ = max{δ11, δ12, δ21, δ22} and d =
min{d1, d11, d12, d2, d21, d22}, we have D+V (t) + dV (t) ≤ δλ1 for t ∈ (nτ , (n + l)τ ]. We also
have D+V (t) + dV (t) ≤ δλ2 for t ∈ ((n + l)τ , (n + 1)τ ]. Denoting ξ = max{δλ1, δλ2}, we have
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the following inequality for t �= nτ , t �= (n + l)τ :

D+V (t) + dV (t) ≤ ξ .

We haver V (nτ+) = V (nτ ) + μ for t = nτ and V ((n + l)τ+) ≤ V ((n + l)τ ) for t = (n + l)τ . By
the lemma of [6] we have

V (t) ≤ V (0) exp(–dt) +
ξ

d
(
1 – exp(–dt)

)
+

μe–d(t–τ )

1 – edτ
+

μedτ

edτ – 1

→ ξ

d
+

μedτ

edτ – 1
as t → ∞.

So V (t) is uniformly ultimately bounded. By the definition of V (t) we have that there exists
a constant M > 0 such that s(t) ≤ M, x1(t) ≤ M, and x2(t) ≤ M for t large enough.

If xi(t) = 0 (i = 1, 2), then a subsystem of system (2.1) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ds(t)
dt = λ1 – d1s(t), t ∈ (nτ , (n + l)τ ],

�s(t) = –μss(t), t = (n + l)τ , n ∈ Z+,
ds(t)

dt == λ2 – d2s(t), t ∈ ((n + l)τ , (n + 1)τ ],

�s(t) = μ, t = (n + 1)τ , n ∈ Z+.

(3.1)

Between the impulsive points, system (3.1) has the analytic solution

s(t) =

⎧
⎨

⎩

1
d1

[λ1 – (λ1 – d1s(nτ+))e–d1(t–nτ )], t ∈ (nτ , (n + l)τ ],
1

d2
[λ2 – (λ2 – d2s((n + l)τ+))e–d2(t–nτ )], t ∈ ((n + l)τ , (n + 1)τ ].

(3.2)

Considering the second and fourth equations of system (3.1), the stroboscopic map of
system (3.1) is presented by

s
(
(n + 1)τ+)

= e–d1lτ s
(
nτ+)

+ μ +
(1 – μs)λ1

d1
e–d2(1–l)τ (1 – e–d1lτ ) +

λ2

d2

(
1 – e–d2(1–l)τ ). (3.3)

The unique fixed point s∗ of (3.3) is

s∗ =
μ + (1–μs)λ1

d1
e–d2(1–l)τ (1 – e–d1lτ ) + λ2

d2
(1 – e–d2(1–l)τ )

1 – e–d1lτ . (3.4)
�

Similarly to [12], we can easily obtain the following two lemmas.

Lemma 3.2 The fixed point s∗ of (3.3) defined in (3.4) is globally asymptotically stable.

Lemma 3.3 The periodic solution s̃(t) of system (3.1) is globally asymptotically stable,
where s̃(t) is defined as

s̃(t) =

⎧
⎨

⎩

1
d1

[λ1 – (λ1 – d1s∗)e–d1(t–nτ )], t ∈ (nτ , (n + l)τ ],
1

d2
[λ2 – (λ2 – d2s∗∗)e–d2(t–nτ )], t ∈ ((n + l)τ , (n + 1)τ ],

(3.5)
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where s∗ is defined in (3.4), and s∗∗ is defined as

s∗∗ =
(1 – μs)

d1

[
λ1 –

(
λ1 – d1s∗)e–d1lτ ]. (3.6)

4 The dynamics
Theorem 4.1 If

ln
1

1 – μ1
>

(
β11

d1
λ1 – d11

)

lτ +
[

β21

d2
λ2 – (d21 + E1)

]

(1 – l)τ

–
β11

d2
1

(
λ1 – d1s∗)(1 – e–d1lτ )

–
β21

d2
2

(
λ2 – d2s∗∗)e–d2lτ (1 – e–d2(1–l)τ ) (4.1)

and

ln
1

1 – μ2
>

(
β12

d1
λ1 – d12

)

lτ +
[

β22

d2
λ2 – (d22 + E1)

]

(1 – l)τ

–
β12

d2
1

(
λ1 – d1s∗)(1 – e–d1lτ )

–
β22

d2
2

(
λ2 – d2s∗∗)e–d2lτ (1 – e–d2(1–l)τ ), (4.2)

then the phytoplankton-extinction periodic solution (s̃(t), 0, 0) of system (2.1) is globally
asymptotically stable, where s∗ is defined in (3.4), and s∗∗ is defined in (3.6).

Proof We first prove that the phytoplankton-extinction solution (s̃(t), 0, 0) of (2.1) is locally
stable. Defining s1(t) = s(t) – s̃(t), x1(t) = x1(t), and x2(t) = x2(t), we have the following lin-
early similar system for system (2.1), which is concerning one periodic solution (s̃(t), 0, 0)
of system (2.1):

⎛

⎜
⎝

ds1(t)
dt

dx1(t)
dt

dx2(t)
dt

⎞

⎟
⎠ =

⎛

⎜
⎝

–d1
β11
δ11

s̃(t) β12
δ12

s̃(t)
0 β11s̃(t) – d11 0
0 0 β12s̃(t) – d12

⎞

⎟
⎠

×
⎛

⎜
⎝

s1(t)
x1(t)
x2(t)

⎞

⎟
⎠ , t ∈ (nτ , (n + l)τ ], (4.3)

and

⎛

⎜
⎝

ds1(t)
dt

dx1(t)
dt

dx2(t)
dt

⎞

⎟
⎠ =

⎛

⎜
⎝

–(d2 + Es) β21
δ21

s̃(t) β22
δ22

s̃(t)
0 β21s̃(t) – (d21 + E1) 0
0 0 β22s̃(t) – (d22 + E2)

⎞

⎟
⎠

×
⎛

⎜
⎝

s1(t)
x1(t)
x2(t)

⎞

⎟
⎠ , t ∈ (nτ , (n + l)τ ]. (4.4)
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It is easy to obtain the fundamental solution matrix on interval (nτ , (n + l)τ ]

�1(t)

=

⎛

⎜
⎝

e–d1(t–nτ ) ∗11 ∗12

0 exp(
∫ t

nτ
(β11s̃(t) – d11) ds) ∗13

0 0 exp(
∫ t

nτ
(β12s̃(t) – d12) ds)

⎞

⎟
⎠ . (4.5)

There is no need to calculate the exact form of ∗1j (j = 1, 2, 3) as they are not required in the
analysis that follows, and the fundamental solution matrix on the interval ((n+ l)τ , (n+1)τ ]
is

�2(t)

=

⎛

⎜
⎝

e–(d2+Es)(t–nτ ) ∗21 ∗22

0 A ∗23

0 0 exp(
∫ t

(n+l)τ (β22s̃(t) – (d22 + E2) ds)

⎞

⎟
⎠ , (4.6)

where A = exp(
∫ t

(n+l)τ (β21s̃(t) – (d21 + E1) ds). There is no need to calculate the exact form
of �2j (j = 1, 2, 3) as they are not required in the analysis that follows.

For t = (n + l)τ , the linearization of the fourth, fifth, and sixth equations of (2.1) is

⎛

⎜
⎝

s1((n + l)τ+)
x1((n + l)τ+)
x2((n + l)τ+)

⎞

⎟
⎠ =

⎛

⎜
⎝

1 – μs 0 0
0 1 – μ1 0
0 0 1 – μ2

⎞

⎟
⎠

⎛

⎜
⎝

s1((n + l)τ )
x1((n + l)τ )
x2((n + l)τ )

⎞

⎟
⎠ . (4.7)

For t = (n + 1)τ , the linearization of the tenth, eleventh, and twelfth equations of (2.1) is

⎛

⎜
⎝

s1((n + 1)τ+)
x1((n + 1)τ+)
x2((n + 1)τ+)

⎞

⎟
⎠ =

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

s1((n + 1)τ )
x1((n + 1)τ )
x2((n + 1)τ )

⎞

⎟
⎠ . (4.8)

The stability of the periodic solution (s̃(t), 0, 0) is determined by the eigenvalues of

M =

⎛

⎜
⎝

1 – μs 0 0
0 1 – μ1 0
0 0 1 – μ2

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠�1(lτ )�2(τ ). (4.9)

The eigenvalues of (4.9) are represented as

λ1 = (1 – μs)e–[d1l+d2(1–l)]τ < 1,

λ2 = (1 – μ1)e
∫ lτ

0 (β11 s̃(t)–d11) ds+
∫ τ

lτ (β21 s̃(t)–(d21+E1) ds,

and

λ3 = (1 – μ2)e
∫ lτ

0 (β12 s̃(t)–d12) ds+
∫ t

(n+l)τ (β22 s̃(t)–(d22+E2)) ds.
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From (4.1) and (4.2) we have |λ2| < 1 and |λ3| < 1. Then, according to the Floquet theory
[6], we can obtain that the phytoplankton-extinction solution (s̃(t), 0, 0) of system (2.1) is
locally stable.

In the next step, we prove that the phytoplankton-extinction solution (s̃(t), 0, 0) of system
(2.1) is globally attractive. Choosing ε > 0 such that

ρ1 = (1 – μ1)e
∫ lτ

0 (β11(s̃(t)+ε)–d11) ds+
∫ τ

lτ (β21(s̃(t)+ε)–(d21+E1) ds < 1

and

ρ2 = (1 – μ2)e
∫ lτ

0 (β12(s̃(t)+ε)–d12) ds+
∫ t

(n+l)τ (β22(s̃(t)+ε)–(d22+E2)) ds < 1,

we have the following two inequalities by the first and seventh equations of (2.1):

ds(t)
dt

≤ λ1 – d1s(t) (4.10)

and

ds(t)
dt

≤ λ2 – (d2 + Es)s(t). (4.11)

Therefore we find the comparatively impulsive differential equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ds1(t)
dt = λ1 – d1s1(t), t ∈ (nτ , (n + l)τ ],

�s1(t) = –μss1(t), t = (n + l)τ , n ∈ Z+,
ds1(t)

dt = λ2 – (d2 + Es)s1(t), t ∈ ((n + l)τ , (n + 1)τ ],

�s1(t) = μ, t = (n + 1)τ , n ∈ Z+.

(4.12)

From Lemma 3.3. and the comparison theorem of impulsive equation [6] we have s(t) ≤
s1(t) and s1(t) → s̃1(t) as t → ∞. Then there exists ε > 0 small enough such that

s(t) ≤ s1(t) ≤ s̃1(t) + ε = s̃(t) + ε (4.13)

for all t large enough. For convenience, we assume that (4.13) holds for all t ≥ 0. From (2.1)
and (4.13) we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt ≤ [β11(s̃(t) + ε) – d11]x1(t),

dx2(t)
dt ≤ [β12(s̃(t) + ε) – d12]x2(t),

⎫
⎬

⎭
t ∈ (nτ , (n + l)τ ],

�x1(t) = –μ1x1(t),

�x2(t) = –μ2x2(t),

⎫
⎬

⎭
t = (n + l)τ , n ∈ Z+,

dx1(t)
dt ≤ [β21(s̃(t) + ε) – (d21 + E1)]x1(t),

dx2(t)
dt ≤ [β22(s̃(t) + ε) – (d21 + E2)]x2(t),

⎫
⎬

⎭
t ∈ ((n + l)τ , (n + 1)τ ],

�x1(t) = 0,

�x2(t) = 0,

⎫
⎬

⎭
t = (n + 1)τ , n ∈ Z+.

(4.14)
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Therefore

x1
(
(n + 1)τ

) ≤ x1
(
nτ+)

(1 – μ1)e
∫ (n+l)τ

nτ (β11(s̃(t)+ε)–d11) ds+
∫ (n+1)τ

(n+l)τ (β21(s̃(t)+ε)–(d21+E1)) ds

and

x2
(
(n + 1)τ

)

≤ x2
(
nτ+)

(1 – μ2)e
∫ (n+l)τ

nτ (β12(s̃(t)+ε)–d12) ds+
∫ (n+1)τ

(n+l)τ (β22(s̃(t)+ε)–(d22+E2)) ds.

Hence xi(nτ ) ≤ xi(0+)ρn
i (i = 1, 2). So xi(nτ ) → 0 (i = 1, 2) as n → ∞. Therefore xi(t) → 0

(i = 1, 2) as t → ∞.
In the third step, we prove that s(t) → s̃(t) as t → ∞. For ε1 > 0 small enough, there exists

t0 > 0 such that 0 < x1(t) < ε1 and 0 < x2(t) < ε1 for all t ≥ t0. Without loss of generality, we
assume that 0 < x1(t) < ε1 and 0 < x2(t) < ε1 for all t ≥ 0. Then we have

λ1 –
[

d1 +
(

β11

d11
+

β12

d12

)

ε1

]

s(t) ≤ ds(t)
dt

≤ λ1 – d1s(t) (4.15)

and

λ2 –
[

d2 +
(

β12

d12
+

β22

d22

)

ε1

]

s(t) ≤ ds(t)
dt

≤ λ2 – d2s(t), (4.16)

and z2(t) ≤ s(t) ≤ z1(t) and z1(t) → z̃1(t), z2(t) → z̃2(t) as t → ∞, where z1(t) and z2(t) are
the solutions of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dz1(t)
dt = λ1 – [d1 + ( β11

d11
+ β12

d12
)ε1]z1(t), t ∈ (nτ , (n + l)τ ],

�z1(t) = –μsz1(t), t = (n + l)τ ,
dz1(t)

dt = λ2 – [d2 + ( β12
d12

+ β22
d22

)ε1]z1(t), t ∈ ((n + l)τ , (n + 1)τ ],

�z1(t) = μ, t = (n + 1)τ , n ∈ Z+,

(4.17)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dz2(t)
dt = λ1 – d1z2(t), t ∈ (nτ , (n + l)τ ],

�z2(t) = –μsz2(t), t = (n + l)τ ,
dz2(t)

dt = λ2 – d2z2(t), t ∈ ((n + l)τ , (n + 1)τ ],

�z2(t) = μ, t = (n + 1)τ , n ∈ Z+,

(4.18)

respectively. Similarly to Lemma 3.3, the periodic solution of (4.17), which is globally
asymptotically stable, is

z̃1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
d1

[λ1 – (λ1 – [d1 + ( β11
d11

+ β12
d12

)ε1]z∗
1)

× e–[d1+( β11
d11

+ β12
d12

)ε1](t–nτ )], t ∈ (nτ , (n + l)τ ],
1

[d2+( β12
d12

+ β22
d22

)ε1]
[λ2 – (λ2 – (d2 + ( β12

d12
+ β22

d22
)ε1)z∗∗

1 )

× e–[d2+( β12
d12

+ β22
d22

)ε1](t–nτ )], t ∈ ((n + l)τ , (n + 1)τ ],

(4.19)
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where

z∗
1 =

μ + (1–μs)λ1
[d1+( β11

d11
+ β12

d12
)ε1]

e–[d2+( β12
d12

+ β22
d22

)ε1](1–l)τ (1 – e–[d1+( β11
d11

+ β12
d12

)ε1]lτ )

1 – e–[d1+( β11
d11

+ β12
d12

)ε1]lτ

+

λ2
[d2+( β12

d12
+ β22

d22
)ε1]

(1 – e–[d2+( β12
d12

+ β22
d22

)ε1](1–l)τ )

1 – e–[d1+( β11
d11

+ β12
d12

)ε1]lτ
, (4.20)

and

z∗∗
1 =

(1 – μs)
[d1 + ( β11

d11
+ β12

d12
)ε1]

[

λ1 –
(

λ1 –
[

d1 +
(

β11

d11
+

β12

d12

)

ε1

]

s∗
)

× e–[d1+( β11
d11

+ β12
d12

)ε1]lτ
]

. (4.21)

Therefore, for any ε > 0, there exists t > t1 such that

z̃1(t) – ε < s(t) < z̃2(t) + ε.

Letting ε1 → 0, we have

s̃(t) – ε < s(t) < s̃(t) + ε

for t large enough, which implies s(t) → s̃(t) as t → ∞. This completes the proof. �

Theorem 4.2 If

ln
1

1 – μ1
<

(
β11

d1
λ1 – d11

)

lτ +
[

β21

d2
λ2 – (d21 + E1)

]

(1 – l)τ

–
β11

d2
1

(
λ1 – d1s∗)(1 – e–d1lτ )

–
β21

d2
2

(
λ2 – d2s∗∗)e–d2lτ (1 – e–d2(1–l)τ ) (4.22)

and

ln
1

1 – μ2
<

(
β12

d1
λ1 – d12

)

lτ +
[

β22

d2
λ2 – (d22 + E1)

]

(1 – l)τ

–
β12

d2
1

(
λ1 – d1s∗)(1 – e–d1lτ )

–
β22

d2
2

(
λ2 – d2s∗∗)e–d2lτ (1 – e–d2(1–l)τ ), (4.23)

then system (2.1) is permanent, where s∗ is defined in (3.4) and s∗∗ is defined in (3.6).
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Proof By Lemma 3.1, s(t) ≤ M, x1(t) ≤ M, and x2(t) ≤ M for t large enough. We may assum
that s(t) ≤ M, x1(t) ≤ M, and x2(t) ≤ M for t ≥ 0. Therefore we have

ds(t)
dt

≥ λ1 –
[

d1 +
(

β11

d11
+

β12

d12

)

M
]

s(t), (4.24)

ds(t)
dt

≥ λ2 –
[

d2 +
(

β12

d12
+

β22

d22

)

ε1

]

s(t), (4.25)

and s(t) ≥ z3(t) and z3(t) → z̃3(t) as t → ∞, where z3(t) is the globally asymptotically stable
solution of the comparatively impulsive differential equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dz3(t)
dt = λ1 – [d1 + ( β11

d11
+ β12

d12
)M]z3(t), t ∈ (nτ , (n + l)τ ],

�z3(t) = –μsz3(t), t = (n + l)τ , n ∈ Z+,
dz3(t)

dt = λ2 – [d2 + ( β12
d12

+ β22
d22

)M]z3(t), t ∈ ((n + l)τ , (n + 1)τ ],

�z3(t) = μ, t = (n + 1)τ , n ∈ Z+,

(4.26)

with

z̃3(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
d1

[λ1 – (λ1 – [d1 + ( β11
d11

+ β12
d12

)M]z∗
3)

× e–[d1+( β11
d11

+ β12
d12

)M](t–nτ )], t ∈ (nτ , (n + l)τ ],
1

[d2+( β12
d12

+ β22
d22

)M]
[λ2 – (λ2 – (d2 + ( β12

d12
+ β22

d22
)M)z∗∗

3 )

× e–[d2+( β12
d12

+ β22
d22

)M](t–nτ )], t ∈ ((n + l)τ , (n + 1)τ ],

(4.27)

where

z∗
3 =

μ + (1–μs)λ1
[d1+( β11

d11
+ β12

d12
)M]

e–[d2+( β12
d12

+ β22
d22

)M](1–l)τ (1 – e–[d1+( β11
d11

+ β12
d12

)M]lτ )

1 – e–[d1+( β11
d11

+ β12
d12

)M]lτ

+

λ2
[d2+( β12

d12
+ β22

d22
)M]

(1 – e–[d2+( β12
d12

+ β22
d22

)M](1–l)τ )

1 – e–[d1+( β11
d11

+ β12
d12

)M]lτ
(4.28)

and

z∗∗
3 =

(1 – μs)
[d1 + ( β11

d11
+ β12

d12
)M]

×
[

λ1 –
(

λ1 –
[

d1 +
(

β11

d11
+

β12

d12

)

M
]

z∗
3

)

e–[d1+( β11
d11

+ β12
d12

)M]lτ
]

. (4.29)

Therefore, for any ε2 > 0,

s(t) > z̃3(t) – ε2 (4.30)
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for t large enough, which implies that

s(t) ≥ 1
d1

[

λ1 –
(

λ1 –
[

d1 +
(

β11

d11
+

β12

d12

)

M
]

z∗
1

)

× e–[d1+( β11
d11

+ β12
d12

)M]τ
]

+
1

[d2 + ( β12
d12

+ β22
d22

)M]

[

λ2 –
(

λ2 –
(

d2 +
(

β12

d12
+

β22

d22

)

M
)

z∗∗
1

)

× e–[d2+( β12
d12

+ β22
d22

)M]τ
]

– ε2 = m2.

Thus we only need to find m1 > 0 such that x1(t) ≥ m1 and x2(t) ≥ m1 for t large enough.
By the conditions of this theorem we can select m3 > 0 and ε1 > 0 small enough such that

σ1 =
(

β11

[d1 + ( β11
d11

+ β12
d12

)m3]
λ1 – d11 – ε1

)

lτ

+
[

β21

[d2 + ( β12
d12

+ β22
d22

)m3]
λ2 – (d21 + E1 + ε1)

]

(1 – l)τ

–
β11

[d1 + ( β11
d11

+ β12
d12

)m3]2

(

λ1 –
[

d1 +
(

β11

d11
+

β12

d12

)

m3

]

s∗
)

× (
1 – e–[d1+( β11

d11
+ β12

d12
)m3]lτ )

–
β21

[d2 + ( β12
d12

+ β22
d22

)m3]2

(
λ2 – d2s∗∗)e–[d2+( β12

d12
+ β22

d22
)m3]lτ (1 – e–d2(1–l)τ ) > 1

and

σ2 =
(

β12

[d1 + ( β11
d11

+ β12
d12

)m3]
λ1 – d12 – ε1

)

lτ

+
[

β22

[d2 + ( β12
d12

+ β22
d22

)m3]
λ2 – (d22 + E1 + ε1)

]

(1 – l)τ

–
β12

[d1 + ( β11
d11

+ β12
d12

)m3]2

(

λ1 –
[

d1 +
(

β11

d11
+

β12

d12

)

m3

]

s∗
)

× (
1 – e–[d1+( β11

d11
+ β12

d12
)m3]lτ )

–
β22

[d2 + ( β12
d12

+ β22
d22

)m3]2

(

λ2 –
[

d2 +
(

β12

d12
+

β22

d22

)

m3

]

s∗∗
)

× e–d2lτ (1 – e–[d2+( β12
d12

+ β22
d22

)m3](1–l)τ ) > 1.

We prove that x1(t) < m3 and x2(t) < m3 cannot hold for t ≥ 0. Otherwise,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ds(t)
dt ≥ λ1 – [d1 + ( β11

d11
+ β12

d12
)m3]s(t), t ∈ (nτ , (n + l)τ ],

�s(t) = –μss(t), t = (n + l)τ , n ∈ Z+,
ds(t)

dt ≥ λ2 – [d2 + ( β12
d12

+ β22
d22

)m3]s(t), t ∈ ((n + l)τ , (n + 1)τ ],

�s(t) = μ, t = (n + 1)τ , n ∈ Z+.

(4.31)
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By Lemma 3.3 we have s(t) ≥ z(t) and z(t) → z(t), t → ∞, where z(t) is the globally asymp-
totically stable solution of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dz(t)
dt = λ1 – [d1 + ( β11

d11
+ β12

d12
)m3]z(t), t ∈ (nτ , (n + l)τ ],

�z(t) = –μsz(t), t = (n + l)τ , n ∈ Z+,
dz(t)

dt = λ2 – [d2 + ( β12
d12

+ β22
d22

)m3]z(t), t ∈ ((n + l)τ , (n + 1)τ ],

�z(t) = μ, t = (n + 1)τ , n ∈ Z+,

(4.32)

with

z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
d1

[λ1 – (λ1 – [d1 + ( β11
d11

+ β12
d12

)m3]z∗)

× e–[d1+( β11
d11

+ β12
d12

)m3](t–nτ )], t ∈ (nτ , (n + l)τ ],
1

[d2+( β12
d12

+ β22
d22

)m3]
[λ2 – (λ2 – (d2 + ( β12

d12
+ β22

d22
)m3)z∗∗)

× e–[d2+( β12
d12

+ β22
d22

)m3](t–nτ )], t ∈ ((n + l)τ , (n + 1)τ ],

(4.33)

where

z∗ =
μ + (1–μs)λ1

[d1+( β11
d11

+ β12
d12

)m3]
e–[d2+( β12

d12
+ β22

d22
)m3](1–l)τ (1 – e–[d1+( β11

d11
+ β12

d12
)m3]lτ )

1 – e–[d1+( β11
d11

+ β12
d12

)m3]lτ

+

λ2
[d2+( β12

d12
+ β22

d22
)m3]

(1 – e–[d2+( β12
d12

+ β22
d22

)m3](1–l)τ )

1 – e–[d1+( β11
d11

+ β12
d12

)m3]lτ
, (4.34)

and

z∗∗ =
(1 – μs)

[d1 + ( β11
d11

+ β12
d12

)m3]

×
[

λ1 –
(

λ1 –
[

d1 +
(

β11

d11
+

β12

d12

)

m3

]

z∗
)

e–[d1+( β11
d11

+ β12
d12

)m3]lτ
]

. (4.35)

Therefore there T1 > 0 such that, for t ≥ T1,

s(t) ≥ z(t) ≥ z(t) – ε1

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt ≥ [β11(z(t) – ε) – d11]x1(t),

dx2(t)
dt ≥ [β12(z(t) – ε) – d12]x2(t),

⎫
⎬

⎭
t ∈ (nτ , (n + l)τ ],

�x1(t) = –μ1x1(t),

�x2(t) = –μ2x2(t),

⎫
⎬

⎭
t = (n + l)τ , n ∈ Z+,

dx1(t)
dt ≥ [β21(z(t) – ε) – (d21 + E1)]x1(t),

dx2(t)
dt ≥ [β22(z(t) – ε) – (d21 + E2)]x2(t),

⎫
⎬

⎭
t ∈ ((n + l)τ , (n + 1)τ ],

�x1(t) = 0,

�x2(t) = 0,

⎫
⎬

⎭
t = (n + 1)τ , n ∈ Z+.

(4.36)
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Figure 2 Globally asymptotically stable phytoplankton-extinction periodic solution of system (2.1) with
s(0) = 0.3, x1(0) = 0.3, x2(0) = 0.3, λ1 = 0.5, d1 = 0.2, β11 = 0.5, δ11 = 1, β12 = 0.5, δ12 = 1, d11 = 0.4, d12 = 0.4,
λ2 = 0.1, d2 = 0.2, β21 = 0.3, δ21 = 1, β22 = 0.3, δ22 = 1, d21 = 0.3, d22 = 0.3, Es = 0.3, E1 = 0.2, E2 = 0.2, μs = 0.28,
μ1 = 0.1, μ2 = 0.1, μ = 0.1, l = 0.8, τ = 1; (a) time-series of s(t); (b) time-series of x1(t); (c) time-series of x1(t);
(d) the phase portrait of the globally asymptotically stable phytoplankton-extinction periodic solution of
system (2.1)

Let N1 ∈ N and N1τ > T1, Integrating (4.36) on (nτ , (n + 1)τ ), n ≥ N1, we have

x1
(
(n + 1)τ

) ≥ x1
(
nτ+)

(1 – μ1)

× e
∫ (n+l)τ

nτ (β11(z(t)–ε)–d11) ds+
∫ (n+1)τ

(n+l)τ (β21(z(t)–ε)–(d21+E1)) ds

= (1 – μ1)x1
(
nτ+)

eσ1 (4.37)

and

x2
(
(n + 1)τ

) ≥ x2
(
nτ+)

(1 – μ2)

× e
∫ (n+l)τ

nτ (β12(z(t)–ε)–d12) ds+
∫ (n+1)τ

(n+l)τ (β22(z(t)–ε)–(d22+E2)) ds

= (1 – μ2)x2
(
nτ+)

eσ2 . (4.38)

Then x1((N1 + k)τ ) ≥ (1 – μ1)kx1(N1τ
+)ekσ1 → ∞ and x2((N1 + k)τ ) ≥ (1 – μ2)kx2(N1τ

+) ×
ekσ2 → ∞ as k → ∞, which is a contradiction to the boundedness of x1(t) and x1(t). Hence
there exists t1 > 0 such that x1(t) ≥ m1 and x2(t) ≥ m1. The proof is complete. �
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5 Discussion
According to the fact of water management, we propose a periodic lake-eutrophication
model with nontransient/transient impulsive dredging and pulse inputting on nutrients.
We proved that the phytoplankton-extinction boundary periodic solution of system (2.1)
is globally asymptotically stable and obtained the conditions for the permanence of system
(2.1).

If we suppose that s(0) = 0.3, x1(0) = 0.3, x2(0) = 0.3, λ1 = 0.5, d1 = 0.2, β11 = 0.5, δ11 = 1,
β12 = 0.5, δ12 = 1, d11 = 0.4, d12 = 0.4, λ2 = 0.1, d2 = 0.2, β21 = 0.3, δ21 = 1, β22 = 0.3, δ22 = 1,
d21 = 0.3, d22 = 0.3, Es = 0.3, E1 = 0.2, E2 = 0.2, μs = 0.28, μ1 = 0.1, μ2 = 0.1, μ = 0.1,
l = 0.8, τ = 1, then these parameter values satisfy Theorem 4.1. Then the phytoplankton-
extinction periodic solution (s̃(t), 0, 0) of system (2.1) is globally asymptotically stable (see
Fig. 2). If we assume that s(0) = 0.3, x1(0) = 0.3, x2(0) = 0.3, λ1 = 0.5, d1 = 0.2, β11 = 0.8,
δ11 = 1, β12 = 0.8, δ12 = 1, d11 = 0.4, d12 = 0.4, λ2 = 0.2, d2 = 0.2, β21 = 0.5, δ21 = 1,
β22 = 0.5, δ22 = 1, d21 = 0.3, d22 = 0.3, Es = 0.3, E1 = 0.2, E2 = 0.2, μs = 0.2, μ1 = 0.1,
μ2 = 0.1, μ = 0.1, l = 0.8, τ = 1, then these parameter values satisfy Theorem 4.2. Then
system (2.1) is permanent (see Fig. 3). From Theorems 4.1 and 4.2, and Figs. 2 and 3
we can deduce that the parameter λ2 has a controlling threshold λ∗

2. When λ2 < λ∗
2, the

phytoplankton-extinction periodic solution (s̃(t), 0, 0) of system (2.1) is globally asymp-
totically stable. When λ2 > λ∗

2, system (2.1) is permanent. That is to say, we should re-

Figure 3 The permanence of system (2.1) with s(0) = 0.3, x1(0) = 0.3, x2(0) = 0.3, λ1 = 0.5, d1 = 0.2, β11 = 0.5,
δ11 = 1, β12 = 0.5, δ12 = 1, d11 = 0.4, d12 = 0.4, λ2 = 0.1, d2 = 0.2, β21 = 0.3, δ21 = 1, β22 = 0.3, δ22 = 1, d21 = 0.3,
d22 = 0.3, Es = 0.3, E1 = 0.2, E2 = 0.2, μs = 0.2, μ1 = 0.1, μ2 = 0.1, μ = 0.1, l = 0.8, τ = 1; (a) time-series of s(t);
(b) time-series of x1(t); (c) time-series of x2(t); (d) the phase portrait of the permanence of system (2.1)
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Figure 4 Globally asymptotically stable phytoplankton-extinction periodic solution of system (2.1) with
s(0) = 0.3, x1(0) = 0.3, x2(0) = 0.3, λ1 = 0.5, d1 = 0.2, β11 = 0.5, δ11 = 1, β12 = 0.5, δ12 = 1, d11 = 0.4, d12 = 0.4,
λ2 = 0.1, d2 = 0.2, β21 = 0.3, δ21 = 1, β22 = 0.3, δ22 = 1, d21 = 0.3, d22 = 0.3, Es = 0.3, E1 = 0.2, E2 = 0.2, μs = 0.28,
μ1 = 0.1, μ2 = 0.1, μ = 0.1, l = 0.6, τ = 1, (a) time-series of s(t); (b) time-series of x1(t); (c) time-series of x1(t);
(d) the phase portrait of the globally asymptotically stable phytoplankton-extinction periodic solution of
system (2.1)

duce the nutrients indraughting lake-ecosystem during nontransient impulsive dredg-
ing.

The parameter values s(0) = 0.3, x1(0) = 0.3, x2(0) = 0.3, λ1 = 0.5, d1 = 0.2, β11 = 0.5,
δ11 = 1, β12 = 0.5, δ12 = 1, d11 = 0.4, d12 = 0.4, λ2 = 0.1, d2 = 0.2, β21 = 0.3, δ21 = 1, β22 = 0.3,
δ22 = 1, d21 = 0.3, d22 = 0.3, Es = 0.3, E1 = 0.2, E2 = 0.2, μs = 0.28, μ1 = 0.1, μ2 = 0.1, μ = 0.1,
l = 0.6, τ = 1 satisfy Theorem 4.1. Then the phytoplankton-extinction periodic solution
(s̃(t), 0, 0) of system (2.1) is globally asymptotically stable (see Fig. 4). From Theorems 4.1
and 4.2 and from the simulation experiments of Figs. 3 and 4 we can easily deduce that
there exists a threshold l∗. If l > l∗, then system (2.1) is permanent. If l < l∗, then the
phytoplankton-extinction periodic solution (s̃(t), 0, 0) of system (2.1) is globally asymp-
totically stable. That is to say, a too long nontransient impulsive period will confuse the
lake-ecosystem. Then appropriate extending the nontransient impulsive period will be
beneficial to water resource management. A similar discussion may do with thresholds of
the parameters λ1, μs, μ1, μ2, and so on. Therefore the method of dredging sediment en-
gineering should be combined with implementing ecological engineering to restore and
rebuild healthy and stable aquatic ecosystem, which should be an effective way to con-
trol eutrophic lakes. Our results also provide reliable tactic basis for the practical water
resource management.
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