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Abstract
In this paper, we mainly investigate the existence, continuous dependence, and the
optimal control for nonlocal fractional differential evolution equations of order (1,2) in
Banach spaces. We define a competent definition of a mild solution. On this basis, we
verify the well-posedness of the mild solution. Meanwhile, with a construction of
Lagrange problem, we elaborate the existence of optimal pairs of the fractional
evolution systems. The main tools are the fractional calculus, cosine family,
multivalued analysis, measure of noncompactness method, and fixed point theorem.
Finally, an example is propounded to illustrate the validity of our main results.
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1 Introduction
Fractional differential equations are a branch of concentration in the field of applied math-
ematics. In last decades, fractional calculus has been more and more popular and has a
significant development in the theory and applications of ordinary differential equations
(ODEs), partial differential equations (PDEs), evolution equations and inclusions, owing
to its memory character. It is a generalization of classical calculus and can characterize
many phenomena in various branches of science and engineering that the latter cannot
depict; see the monographs of Podlubny [1], Kilbas et al. [2], Zhou [3, 4] and papers [5–
13] and the references therein.

The Cauchy problem for fractional differential and integro-differential equations of or-
der α ∈ (1, 2) has been paid more and more attention in recent years. By using the con-
cept of fractional resolvent family Kexue Li et al. [14] established two fractional evolution
problems in the Riemann–Liouville sense. Shu and Wang [15] derived the existence and
uniqueness of mild solutions for a class of nonlocal fractional differential equations via
the constructed concept of sectorial operator. Yaning Li [16] dealt with the regularity of
mild solutions for fractional abstract Cauchy problem of order α ∈ (1, 2) based on some
properties of solution operators and analytic solution operators. Moreover, using eigen-
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function expansions, Kian and Yamamoto [17] showed the well-posedness of solutions for
semilinear fractional wave equations. Based on some properties of an introduced opera-
tor, Li et al. [18] explored the existence, uniqueness, and regularity of the mild solution of
fractional abstract Cauchy problems of order α ∈ (1, 2).

The control systems have occupied a significant place and played an important role
in manufacturing, vehicles, computers, and regulated environment. Among the classical
control issues, the controllability, exact controllability, approximate controllability, and
optimal control are an essential characteristic to a control framework, namely adjustment
of unsteady frameworks by input control. With the application of fractional calculus to
multifarious fields of science and engineering, the optimal control problem has been re-
ducing into a fractional-order one, especially for fractional differential evolution systems.
The authors of [19] considered the optimality and relaxation of multiple control problems
for nonlinear fractional differential equations with nonlocal control conditions in Banach
spaces. The authors of [20] proved a Noether-like theorem in the more general context
of the fractional optimal control by means of a new Noether theorem, the Lagrange mul-
tiplier method, and the fractional Euler–Lagrange equations. In cylindrical coordinates,
the fractional optimal control (FOC) of a distributed system was investigated in [21]. By
means of singular version Gronwall inequality and Leray–Schauder fixed point theorem,
Wang and Zhou [22] presented the existence and uniqueness of α-mild solutions and the
optimal control of a class of fractional evolution equations. Wang et al. [23] also investi-
gated fractional evolution systems with finite-time delay and obtained the well-posedness
of mild solutions by means of a new Gronwall inequality and derived the optimal control
through introducing the fractional Lagrange problem. Looking at the existing literature,
the fractional order among the most ones belongs to (0, 1). Based on this, some researchers
work on the fractional evolution systems of order (1, 2). They contributed their works to
extend the order by (1, 2). For instance, by using the Sadovskii fixed point theorem and
vector-valued operator theory, the paper [24] established sufficient conditions for con-
trollability of fractional differential systems of order α ∈ (1, 2] with nonlocal conditions in
infinite-dimensional Banach spaces. Via fractional resolvent operator family and approx-
imating minimizing sequences of suitable functions twice, the authors of [25] proposed
the existence and optimal control of a class of Sobolev-type time fractional differential
equations in the Caputo and Riemann–Liouville sense, respectively. The authors of [26]
derived some results about the mild solutions and optimal controls for a class of Sobolev-
type fractional stochastic evolution equations of order [1,2] via some compactness results
of the corresponding fractional operators. Yan and Jia [27] studied optimal control for
fractional stochastic functional differential equations of order (1, 2) in a Hilbert space via
the fixed point theorem, approximation technique, and properties of the solution opera-
tor.

Motivated by the above discussion, this paper is devoted to analyzing the existence and
optimal controls for the following nonlocal fractional evolution system:

⎧
⎨

⎩

c
0Dγ

t Ex(t) = Gx(t) + J(t, x(t)) + K(t)u(t), t ∈ � := [0, S],

x(0) = x0 + g(x), x′(0) = x1,
(1.1)

where c
0Dγ

t denotes the fractional derivative in the Caputo sense of order γ ∈ (1, 2),
GE–1 : D(GE–1) → X is the infinitesimal generator of continuous cosine family {C(t)}t≥0
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on a separable reflexive Banach space X, the state x(·) takes values in X as well as x0, x1 ∈ X,
the control function u(·) is given in another separable reflexive Banach space U of admis-
sible control functions, the nonlinear function J : � × Xα → X, where Xα = D(Gα

b E–1) is
a Banach space with ‖x‖α = ‖Gα

b x‖, the fractional power operator Gα
b has a dense domain

D(Gα
b ) [28], K is a linear operator and maps U into X, g : C(�; X) → X, G : D(G) ⊂ X → X

is a closed linear operator with, which is the infinitesimal generator of strongly continu-
ous cosine family {C(t)}t≥0 in X, and E : D(E) ⊂ D(G) → X is a bijective linear operator
such that E–1 : X → D(E) ⊂ X is compact. From the above hypotheses we obtain that E–1

is bounded, closed, and injective, which yields that E is also closed and that the linear
operator GE–1 is bounded.

The remainder of our paper is arranged as follows. Section 2 collects some notations
and useful concepts for fractional calculus and cosine family. In Sect. 3, based on changed
hypothesis, we present the mild solution for system (1.1), which is correlated to probability
density function and cosine families. Unlike the operators in some previously mentioned
papers, we propose a linear bounded operator. In Sect. 4, we elaborate the well-posedness
of the system. Furthermore, in Sect. 4, we prove that the system is mildly solvable and a
mild solution is unique and continuously depends of the solution. In Sect. 5, we derive
the FOC for the Lagrange problem. Finally, in Sect. 6, an illustrative example proves the
validity of our results.

Notations: Let X and U be Banach spaces equipped with norms ‖ · ‖ and ‖ · ‖U , re-
spectively. L(X, U) denotes the space of all bounded linear operators from X to U with
norm ‖ · ‖L(X,U). In particular, when X = U , we have L(X, U) = L(X) and ‖ · ‖L(X,U) =
‖ · ‖L(X). We denote by Cα the Banach space C(�, Xα) endowed with the sup-norm
‖x‖α

� = supt∈� ‖x(t)‖α . Additionally, the resolvent set of G is defined by ρ(G), and the re-
solvent of G by R(μ, G) = (μI – GE–1)–1 ∈ L(X).

2 Preliminaries
In this section, we first introduce some definitions and results of fractional calculus.

Definition 2.1 ([2]) The right-hand side fractional integral of order q ∈R+ with the lower
limit zero for a function g ∈ C[a, b] is given by

0D–q
t g(t) = (kq ∗ g)(t) =

1
�(q)

∫ t

0
(t – ξ )q–1g(ξ ) dξ ,

where Re(q) > 0, and � is the classical gamma function, and, as usual, the symbol ∗ denotes
convolution, and

kq(t) =

⎧
⎨

⎩

tq–1

�(q) if t > 0,

0 if t ≤ 0.

Moreover, limq→0 kq(t) = δ(t) with the delta Dirac function δ, and the Dirac measure is
concentrated at the origin.
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Definition 2.2 ([2]) The Caputo fractional derivative of order q ∈R+ of a function g(t) ∈
Cn[a, b] is represented by

c
0Dq

t g(t) =

⎧
⎨

⎩

1
�(n–q)

∫ t
0 (t – ξ )n–q–1g(n)(ξ ) dξ if q /∈N,

g(n)(t) if q = n ∈N,

where g(n)(t) = dn

dtn g(t), Re(q) ≥ 0, n = [Re(q)] + 1, and N = {0, 1, . . .}.

Lemma 2.3 ([29]) Suppose that x ∈ Cα satisfies the inequality:

∥
∥x(t)

∥
∥

α
≤ c + d

∫ t

0
(t – θ )z–1∥∥x(θ )

∥
∥

α
dθ , t ∈ �,

with constants c, d ≥ 0, z > 0. Then there exists a constant M > 0, independent of c, such
that

∥
∥x(t)

∥
∥

α
≤ M(c) for all t ∈ �.

Definition 2.4 ([30]) A function f ∈ Lp(�, U) with 1 ≤ p < +∞ is said to be globally con-
tinuous if for every ε > 0, there exists δ = δ(ε) > 0 such that

(∫
∣
∣f (t + z) – f (t)

∣
∣p dt

) 1
p

< ε for all z : |z| < δ(ε),

where the region of integration is the whole space and f (t) = 0 for t /∈ �.

Let us review the following definition and some properties of a cosine family. For more
detail, we refer to [31–33].

Definition 2.5 ([31]) A one-parameter family {C(t)}t∈R of bounded linear operators map-
ping the Banach space U into itself is called a strongly continuous cosine family if

(i) C(0) = I ;
(ii) C(s + t) + C(s – t) = 2C(s)C(t) for all s, t ∈R;

(iii) C(t)x is continuous in t on R for each fixed point x ∈ U .

With the cosine family {C(t)}t∈R, the strongly continuous sine family {S(t)}t∈R is defined
by

S(t)x =
∫ t

0
C(s)x ds, x ∈ U , t ∈ R.

3 Existence and uniqueness
For simplicity, throughout this paper, we set z = γ /2 with γ ∈ (1, 2) and suppose that the
linear operators {C(t)}t≥0 are uniformly bounded, that is, there exists a constant M ≥ 1
such that ‖C(t)‖L(U) ≤ M for t ≥ 0. Before proving the existence and uniqueness of system
(1.1), we pose the following hypotheses:

(H1) J : � × Xα → X satisfies
(i) for all x ∈ Xα , t → J(t, x(t)) is measurable;
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(ii) for all x1, x2 ∈ Xα satisfying ‖x1‖α ,‖x2‖α ≤ σ , there exists a constant LJ (σ ) > 0
such that

∥
∥J(t, x1) – J(t, x2)

∥
∥ ≤ LJ (σ )‖x1 – x2‖α , ∀t ∈ �.

In particular,

∥
∥J(t, x)

∥
∥ ≤ CJ

(
1 + ‖x‖α

)
, ∀x ∈ Xα , t ∈ �,

where CJ is a positive constant.
(H2) g : C(�, X) → X , and for all x1, x2 ∈ C(�, X) satisfying ‖x1‖,‖x2‖ ≤ σ , there exists

a constant Lg(σ ) > 0 such that

∥
∥g(x1) – g(x2)

∥
∥ ≤ Lg(σ )‖x1 – x2‖.

In particular,

∥
∥g(x)

∥
∥ ≤ Cg1‖x‖ + Cg2, ∀x ∈ C(�, X),

where Cg1 and Cg2 are positive constants.
Suppose that U is another separable reflexive Banach space from which the controls u

take the values. We denote the class of nonempty closed convex subsets of U by Wf (U).
The multifunction ω : � → Wf (U) is measurable, and ω(·) ⊂ F where F is a bounded set
of U , and the admissible control set Uad = Sp

ω = {u ∈ Lp(F)|u(t) ∈ ω(t) a.e.}, 1 < p < ∞.
(H3) The operator K ∈ L∞(�,L(U , Xα)), and ‖K‖∞ stands for the norm of operator K

on the Banach space L∞(�,L(U , Xα)).
Obviously, Ku ∈ Lp(�, Xα) for all u ∈ Uad .
By the method of [2] we can find that equation (1.1) has the representation

Ex(t) = E
(
x0 + g(x)

)
+ Ex1t

+
1

�(γ )

∫ t

0
(t – s)γ –1[Gx(θ ) + J

(
s, x(s)

)
+ K(s)u(s)

]
ds, t ∈ �,

(3.1)

provided that the right-hand side of the above equation holds.
We will use the probability density function ϑz(θ ) defined on (0,∞) as

ϑz(θ ) =
1

zθ (1+1/z) �z
(
θ–1/z) ≥ 0, z ∈ (0, 1),

�z(θ ) =
1
π

∞∑

n=1

(–1)n–1(θ )–zn–1 �(nz + 1)
n!

sin(nπz). (3.2)

Lemma 3.1 ([34]) If formula (3.1) holds, then for t ∈ � and z = γ /2,

x(t) = SE(t)E
(
x0 + g(x)

)
+ χE(t)Ex1 +

∫ t

0
(t – s)z–1PE(t – s)J

(
s, x(s)

)
ds (3.3)

+
∫ t

0
(t – s)z–1PE(t – s)K(s)u(s) ds,
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where

SE(t) =
∫ ∞

0
E–1ϑz(s)C

(
tzs

)
ds, χE(t) =

∫ t

0
SE(ξ ) dξ ,

PE(t) = z
∫ ∞

0
E–1sϑz(s)S

(
tzs

)
ds.

Proof For μ > 0, applying the Laplace transform to Eq. (3.1), we get

El(μ) =
1
μ

E
(
x0 + g(x)

)
+

1
μ2 Ex1 +

1
μγ

Gl(μ) +
1

μγ
m(μ) +

1
μγ

n(μ), (3.4)

where

l(μ) =
∫ ∞

0
e–μsx(s) ds, m(μ) =

∫ ∞

0
e–μsJ

(
s, x(s)

)
ds,

n(μ) =
∫ ∞

0
e–μsK(s)u(s) ds,

which implies

E
(
μγ I – GE–1)l(μ) = μγ –1E

(
x0 + g(x)

)
+ μγ –2Ex1 + m(μ) + n(μ). (3.5)

Therefore, by the relationship between the resolvent and cosine function, that is, for
Re(μ) > 0,

μR
(
μ2; G

)
x =

∫ ∞

0
e–μsC(s)x ds, R

(
μ2; A

)
x =

∫ ∞

0
e–μsS(s)x ds for x ∈ U ,

we first have

El(μ) = μγ –1(μγ I – GE–1)–1E
(
x0 + g(x)

)
+ μγ –2(μγ I – GE–1)–1Ex1

+
(
μγ I – GE–1)–1m(μ) +

(
μγ I – GE–1)–1n(μ) (3.6)

= μ
γ
2 –1

∫ ∞

0
E–1e–μ

γ
2 sC(s)E

(
x0 + g(x)

)
ds + μ–1μ

γ
2 –1

∫ ∞

0
E–1e–μ

γ
2 sC(s)Ex1 ds

+
∫ ∞

0
E–1e–μ

γ
2 sS(s)m(μ) ds +

∫ ∞

0
E–1e–μ

γ
2 sS(s)n(μ) ds.

With z = γ /2 ∈ (1/2, 1), we have

l(μ) = μz–1
∫ ∞

0
E–1e–μzsC(s)E

(
x0 + g(x)

)
ds + μ–1μz–1

∫ ∞

0
E–1e–μzsC(s)x1 ds

+
∫ ∞

0
E–1e–μzsS(s)m(μ) ds +

∫ ∞

0
E–1e–μzsS(s)n(μ) ds. (3.7)

Considering the Laplace transform for the one-sided probability density function
Eq. (3.2),

∫ ∞

0
e–μs�z(s) ds = e–μz , z ∈ (0, 1), (3.8)
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and combining Eqs. (3.7) and (3.8), we obtain

μz–1
∫ ∞

0
E–1e–μzsC(s)E

(
x0 + g(x)

)
ds

=
∫ ∞

0
μz–1E–1e–(μη)zC

(
ηz)zηz–1E

(
x0 + g(x)

)
dη

=
∫ ∞

0
z(μη)z–1E–1e–(μη)zC

(
ηz)E

(
x0 + g(x)

)
dη

=
∫ ∞

0

–1
μ

d
dη

(
e–(μη)z)

E–1C
(
ηz)E

(
x0 + g(x)

)
dη

=
∫ ∞

0

∫ ∞

0

–1
μ

d
dη

(
e–μηξ�z(ξ )

)
E–1C

(
ηz)E

(
x0 + g(x)

)
dξ dη

=
∫ ∞

0
e–μη

∫ ∞

0
E–1�z(ξ )C

(
ηz

ξ z

)

E
(
x0 + g(x)

)
dξ dη (3.9)

=
∫ ∞

0
e–μη

∫ ∞

0
E–1 1

zξ (1+1/z) �z
(
ξ–1/z)C

(
ηzξ

)
E
(
x0 + g(x)

)
dξ dη

=
∫ ∞

0
e–μη

∫ ∞

0
E–1ϑz(ξ )C

(
ηzξ

)
E
(
x0 + g(x)

)
dξ dη

=
∫ ∞

0
e–μη

[
SE(η)E

(
x0 + g(x)

)]
dη

= L
[
SE(η)E

(
x0 + g(x)

)]
(μ),

where L denotes the Laplace transform. Additionally, denoting L[g1(t)](μ) = μ–1, we have

μ–1μz–1
∫ ∞

0
E–1e–μzsC(s)Ex1 ds = L

[
g1(x)

]
(μ) ·L[

SE(t)Ex1
]
(μ) (3.10)

= L
[
(g1 ∗ SE)(t)Ex1

]
(μ).

Similarly,

∫ ∞

0
E–1e–μzsS(s)m(μ) ds

=
∫ ∞

0
e–μη

[

z
∫ η

0

∫ ∞

0
E–1�z(ξ )S

(
(η – s)z

ξ z

)

J
(
s, x(s)

) (η – s)z–1

ξ z dξ ds
]

dη

= L

[

z
∫ η

0
(η – s)z–1

∫ ∞

0
E–1�z(ξ )S

(
(η – s)z

ξ z

)

J
(
s, x(s)

) 1
ξ z dξ ds

]

(μ) (3.11)

= L

[∫ η

0
(η – s)z–1PE(η – s)J

(
s, x(s)

)
ds

]

(μ),

and

∫ ∞

0
E–1e–μzyS(y)n(μ) dy = L

[∫ t

0
(t – y)z–1PE(t – y)K(y)v(y) dy

]

(μ). (3.12)

Combining (3.9), (3.10), (3.11), and (3.12), we complete the proof. �
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Definition 3.2 ([22]) For any u ∈ Lp(�, U) (1 ≤ p ≤ ∞), system (1.1) is said to be mildly
solvable with respect to (w.r.t.) u on [0, S] if there exists x ∈ C(�, Xα) such that for t ∈ �,

x(t) = SE(t)E
(
x0 + g(x)

)
+ χE(t)Ex1 +

∫ t

0
(t – s)z–1PE(t – s)J

(
s, x(s)

)
ds

+
∫ t

0
(t – s)z–1PE(t – s)K(s)u(s) ds. (3.13)

Lemma 3.3 ([22]) The operators SE(·), χE(·), and PE(·) have the following properties:
(i) For any fixed t ≥ 0, the operators SE(t), χE(t) and PE(t) are linear and bounded,

that is, for any x ∈ X ,

∥
∥SE(t)x

∥
∥ ≤ M

∥
∥E–1∥∥‖x‖,

∥
∥χE(t)x

∥
∥ ≤ Mt

∥
∥E–1∥∥‖x‖,

∥
∥PE(t)x

∥
∥ ≤ M‖E–1‖

�(2z)
tz‖x‖;

(ii) The operators {SE(t)}t≥0, {χE(t)}t≥0, and {PE(t)}t≥0 are strongly continuous;
(iii) For every t > 0, the operators SE(t), χE(t), and PE(t) are compact.

Proof (i) For any fixed t ≥ 0, the operators SE(t), χE(t), and PE(t) are also linear because
E–1 and C(t) are linear. By [34], for any fixed t ≥ 0 and any x ∈ X,

∥
∥SE(t)x

∥
∥ ≤

∫ ∞

0
ϑz(ξ )

∥
∥E–1∥∥

∥
∥C

(
tzξ

)
x
∥
∥dξ ≤ M

∥
∥E–1∥∥‖x‖, (3.14)

which yields

∥
∥χE(t)x

∥
∥ ≤ Mt

∥
∥E–1∥∥‖w‖ (3.15)

and

∥
∥PE(t)x

∥
∥ ≤

∫ ∞

0
zξϑz(ξ )

∥
∥E–1∥∥

∥
∥S

(
tzξ

)
w

∥
∥dξ ≤

∫ ∞

0
zξϑz(ξ )

∫ tzξ

0

∥
∥C(η)x

∥
∥dη dξ

≤ Mz
∥
∥E–1∥∥‖x‖tz

∫ ∞

0
ξ 2ϑz(ξ ) dξ =

M‖E–1‖
�(2z)

‖x‖tz. (3.16)

(ii) From Definition 2.5 (iii) we know that {C(t)}t∈R is strongly continuous for every x ∈
U , that is, for any ε > 0 and t1, t2 ∈ R, there exists δ > 0 such that ‖C(t2)x – C(t1)x‖ < ε if
|t2 – t1| < δ. As for the operators {SE(t)}t≥0, {χE(t)}t≥0, and {PE(t)}t≥0, we check them as
follows. For any t1, t2 ≥ 0 such that |t2 – t1| < δ,

∥
∥SE(t2)x – SE(t1)x

∥
∥ ≤

∫ ∞

0

∥
∥E–1∥∥ϑz(ξ )

∥
∥
(
C
(
tz
2ξ

)
– C

(
tz
1ξ

))
x
∥
∥dξ < ε, (3.17)

which yields ‖SE(t2)x – SE(t1)x‖ → 0 as δ → 0. Simultaneously,

∥
∥χE(t2)x – χE(t1)x

∥
∥ =

∫ t2

t1

∥
∥SE(ξ )x

∥
∥dξ ≤ M‖x‖∥∥E–1∥∥|t2 – t1| → 0 as δ → 0, (3.18)
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and also

∥
∥PE(t2)x – PE(t1)x

∥
∥ ≤

∫ ∞

0
qξ

∥
∥E–1∥∥ϑz(ξ )

∥
∥
(
S

(
tz
2ξ

)
– S

(
tz
1ξ

))
x
∥
∥dξ

≤ M
�(2z)

‖x‖∥∥E–1∥∥
∣
∣tz

2 – tz
1
∣
∣ → 0 as δ → 0. (3.19)

(iii) Referring to paper [22], SE(t) and PE(t) are obviously compact. Now we check the
compactness of the operator χE(t). For each positive constant k, set {x ∈ U : ‖x‖ ≤ k}. Then
Uk is clearly a bounded subset in U . We prove that U(t) := {∫ t

0
∫ ∞

0 E–1ϑz(ξ )C(szξ )x dξ ds,
x ∈ Uk} is relatively compact in U for any positive constant k and t ≥ 0. From (i) we know
that χ1(t) : U → U is also linear and bounded mapping Uk into a bounded subset of U .
Then U(t) = E–1χ1(t)(Uk) is relatively compact in U for any k > 0 and t ≥ 0 due to the
compactness of E–1 : U → X. This completes the proof. �

Lemma 3.4 Assume that system (1.1) is mildly solvable on � := [0, S] w.r.t. u. Then there
exists a constant M∗ = M∗(u) > 0 such that

∥
∥x(t)

∥
∥

α
≤ M∗, ∀t ∈ �. (3.20)

Proof If x is a mild solution of system (1.1) w.r.t. u on �, then x satisfies Eq. (3.13). Com-
bining (H1), (H2), Lemma 3.3, and Hölder’s inequality, we have

∥
∥x(t)

∥
∥

α
≤ ∥

∥SE(t)E
(
x0 + g(x)

)∥
∥ +

∥
∥χE(t)Ex1

∥
∥ +

∫ t

0
(t – s)z–1∥∥PE(t – s)J

(
s, w(s)

)∥
∥ds

+
∫ t

0
(t – s)z–1∥∥PE(t – s)K(s)u(s)

∥
∥ds

≤ M‖x0‖α + MCg1‖x‖α + MCg2 + MS‖x1‖α +
CJ M‖E–1‖S2z

�(2z + 1)

+
‖K‖∞M‖E–1‖

�(2z)
S2z– 1

p ‖u‖U +
CJ M‖E–1‖

�(2z)

∫ t

0
(t – s)2z–1∥∥x(s)

∥
∥

α
ds. (3.21)

Denoting

c = M‖x0‖α + MCg1‖x‖α + MCg2 + MS‖x1‖α

+
CJ M‖E–1‖S2z

�(2z + 1)
+

‖K‖∞M‖E–1‖
�(2z)

S2z– 1
p ‖u‖U ,

according to Lemma 2.3, there exists a positive constant M∗ such that ‖x(t)‖α ≤ M∗(c) for
t ∈ �. Let M∗ = M∗(c) > 0. Then ‖x(t)‖α ≤ M∗ for t ∈ �. �

Theorem 3.5 Assume that (H1)–(H3) hold. Then for each u ∈ Pad , system (1.1) is mildly
solvable on � := [0, S] w.r.t. u, and the mild solution is unique.

Proof Let S1 ≤ S, �1 := [0, S1], and C0,S1 := C(�1, Xα) equipped with the usual sup-norm,
and let

B(1, S1) =
{

h ∈ C0,S1 : max
t∈[0,S1]

∥
∥h(t) –

(
x0 + g(x)

)
– tx1

∥
∥

α
≤ 1

}
. (3.22)
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By definition B(1, S1) ⊆ C0,S1 is a closed convex subset of C0,S1 . According to (H1), we can
deduce that J(t, h(t)) is a measurable function on �1 := [0, S1]. For any h ∈ B(1, S1), there
exists a constant λ := ‖x0 + g(x)‖α + ‖x1‖αS1 + 1 satisfying the inequality

‖h‖0,S1 ≤ λ. (3.23)

Applying (H1), for t ∈ �1, we can deduce

∥
∥J

(
t, h(t)

)∥
∥

α
≤ CJ

(
1 +

∥
∥h(t)

∥
∥

α

) ≤ CJ (1 + λ). (3.24)

Combining Lemma 3.3, Hölder’s inequality, and (H1), we can obtain

∫ t

0
(t – s)z–1∥∥PE(t – s)J

(
s, h(s)

)∥
∥

α
ds ≤ M‖E–1‖CJ (1 + λ)

�(2z + 1)
S1

2z. (3.25)

Thus (t – s)z–1PE(t – s)J(s, h(s)) is Bochner integrable w.r.t. s ∈ [0, t] for all t ∈ �1.
In addition, applying Lemma 3.3 and Hölder’s inequality, we can deduce the following

inequality:

∫ t

0
(t – s)z–1∥∥PE(t – s)K(s)u(s)

∥
∥

α
ds

≤ ‖K‖∞M‖E–1‖
�(2z)

∫ t

0
(t – s)2z–1∥∥u(s)

∥
∥

U ds

≤ ‖K‖∞M‖E–1‖
�(2z)

(∫ t

0
(t – s)

p
p–1 (2z–1) ds

) p–1
p

(∫ t

0

∥
∥u(s)

∥
∥p

U ds
) 1

p

≤ ‖K‖∞M‖E–1‖
�(2z)

S
2z– 1

p
1 ‖u‖U . (3.26)

Also, (t – s)z–1PE(t – s)K(s)u(s) is also Bochner integrable.
For t ∈ �1, let us define F : B(1, S1) → C0,S1 by

(Fh)(t) = SE(t)E
(
x0 + g(x)

)
+ χE(t)Ex1 +

∫ t

0
(t – s)z–1PE(t – s)J

(
s, h(s)

)
ds

+
∫ t

0
(t – s)z–1PE(t – s)K(s)u(s) ds. (3.27)

With the properties of the operatorsSE(·), χE(·),PE(·) and the hypotheses (H1) and (H2), it
is not difficult to verify that F is a contraction map on B(1, S1) with suitably chosen S1 > 0.
In fact, for t ∈ �1, it comes from the inequalities

∥
∥(Fh)(t) –

(
x0 + g(x)

)
– tx1

∥
∥

α

≤ ∥
∥SE(t)E

(
x0 + g(x)

)
–

(
x0 + g(x)

)∥
∥

α
+

∥
∥χE(t)Ex1 – tx1

∥
∥

α

+
∫ t

0
(t – s)z–1∥∥PE(t – s)J

(
s, h(s)

)∥
∥

α
ds +

∫ t

0
(t – s)z–1∥∥PE(t – s)K(s)u(s)

∥
∥

α
ds

≤ ∥
∥SE(t)E

(
x0 + g(x)

)
–

(
x0 + g(x)

)∥
∥

α
+

∥
∥χE(t)Ex1 – tx1

∥
∥

α

+
M‖E–1‖CJ (1 + λ)

�(2z + 1)
t2z +

‖K‖∞M‖E–1‖
�(2z)

‖u‖U t2z– 1
p . (3.28)
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Because the operators {SE(t)}t≥0 and {χE(t)}t≥0 are strongly continuous in X, we can
choose S1 small enough and ε = 1

3 such that

∥
∥SE(t)E

(
x0 + g(x)

)
–

(
x0 + g(x)

)∥
∥ ≤ 1

3
and

∥
∥χE(t)Ex1 – tx1

∥
∥ ≤ 1

3
. (3.29)

Denote

S11 = min

{
1
3

,
(

�(2z + 1)

3M‖E–1‖(CJ (1 + λ)S
1
p
1 + 2z‖K‖∞‖u‖U )

) p
2zp–1

}

. (3.30)

Furthermore, combining Eqs. (3.28) and (3.29), for all t ∈ [0, S11], we have

∥
∥(Fh)(t) –

(
x0 + g(x)

)
– tx1

∥
∥ ≤ 1. (3.31)

Therefore

B
(
B(1, S1)

) ⊆ B(1, S1). (3.32)

For any h1, h2 ∈ B(1, S1) with ‖h1‖α
�1

,‖h2‖α
�1

≤ λ, applying Lemma 3.3 and (H1), we can
obtain, for t ∈ �1 := [0, S1],

∥
∥(Fh1)(t) – (Fh2)(t)

∥
∥

α
≤

∫ t

0
(t – s)z–1∥∥PE(t – s)

(
J
(
s, h1(s)

)
– J

(
s, h2(s)

))∥
∥

α
ds (3.33)

≤ MLJ (λ)‖E–1‖
�(2z)

∫ t

0
(t – s)2z–1∥∥h1(s) – h2(s)

∥
∥

α
ds, (3.34)

which yields

∥
∥(Fh1)(t) – (Fh2)(t)

∥
∥ ≤ MLJ (λ)‖E–1‖

�(2z + 1)
t2z‖h1 – h2‖α

�1 . (3.35)

Moreover,

‖Fh1 – Fh2‖α
�1 ≤ MLJ (λ)‖E–1‖

�(2z + 1)
S2z

1 ‖h1 – h2‖α
�1 . (3.36)

Denote S12 = 1
2 ( �(2z+1)

MLJ (λ)‖E–1‖ )
1
z and S1 = min{S11, S12}. Thus F is a contraction map on

B(1, S1). According to the contraction mapping principle, F has a unique fixed point
h ∈ B(1, S1). Consequently, on the interval �1, h is a mild solution of system (1.1) w.r.t.
u, and it is unique. Finally, denoting

S21 = S1 + S11, S22 = S1 + S12, �S = min{S21 – S1, S12} > 0 (3.37)

and applying the method of above arguments, we can verify that system (1.1) has a unique
mild solution on the interval [0,�S]. For every interval [�S, 2�S], [2�S, 3�S], . . . , re-
peating the above procedures, we immediately obtain the unique mild solution for system
(1.1). �
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Remark 3.6 Let X and U be two separable reflexive Banach spaces. If we replace (H1) by
the condition that J : �× X → X is Hölder’s continuous w.r.t. t, that is, for any σ > 0, there
exists a constant LJ (σ ) > 0 such that

∥
∥J(t, ζ1) – J(y, ζ2)

∥
∥ ≤ LJ (σ )

(|t – y|β + |ζ1 – ζ2|
)
, (3.38)

where β ∈ (0, 1], provided that |ζ1|, |ζ2| ≤ σ ; condition (H2) by

J ∈L
(
Lp(�, U), Lp(�, X)

)
; (3.39)

and condition (H3) by

Uad = Lp(�, U), (3.40)

then we can use the same approach to derive the existence of mild solutions.

4 Continuous dependence
In this section, we study continuous dependence for the mild solution of system (1.1).

Theorem 4.1 Assume that x1
0, x2

0 ∈ ℵ where ℵ is a bounded set. Let

x1(t, x1
0 + g

(
x1), x1

1, u
)

= SE(t)E
(
x1

0 + g
(
x1)) + χE(t)Ex1

1

+
∫ t

0
(t – s)z–1PE(t – s)J

(
s, w1(s)

)
ds

+
∫ t

0
(t – s)z–1PE(t – s)K(s)u(s) ds, t ∈ �, (4.1)

and

x2(t, x2
0 + g

(
x2), x2

1, v
)

= SE(t)E
(
x2

0 + g
(
x2)) + χE(t)Ex2

1

+
∫ t

0
(t – s)z–1PE(t – s)J

(
s, w2(s)

)
ds

+
∫ t

0
(t – s)z–1PE(t – s)K(s)v(s) ds, t ∈ �. (4.2)

Then there exists a constant M∗∗ such that

∥
∥x1(t, x1

0 + g
(
x1), x1

1, u
)

– x2(t, x2
0 + g

(
x2), x2

1, v
)∥
∥

≤ M∗∗(∥∥x1
0 – x2

0
∥
∥ +

∥
∥x1 – x2∥∥ +

∥
∥x1

1 – x2
1
∥
∥ + ‖u – v‖U

)
, t ∈ �, (4.3)

where M∗∗ = max{MMS, MS, M, MLg(σ ), M‖K‖∞‖E–1‖
�(2z) S2z– 1

p } > 0.
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Proof Since x1
0, x2

0 ∈ ℵ, where ℵ is a bounded set in X, by Lemma 3.4 there exists a constant
σ > 0 such that |x1|, |x2| ≤ σ . By using Lemma 3.3, hypotheses (H1), (H2), and Hölder’s
inequality, for t ∈ �, we have the following inequalities:

∥
∥x1(t, x1

0 + g
(
x1), x1

1, u
)

– x2(t, x2
0 + g

(
x2), x2

1, v
)∥
∥

α

≤ ∥
∥SE(t)E

((
x1

0 + g
(
x1)) –

(
x2

0 + g
(
x2)))∥∥

α

+
∥
∥χE(t)E

(
x1

1 – x2
1
)∥
∥

α
+

∫ t

0
(t – s)z–1∥∥PE(t – s)

(
J
(
s, x1(s)

)
– J

(
s, x2(s)

))∥
∥

α
ds

+
∫ t

0
(t – s)z–1∥∥PE(t – s)

(
K(s)u(s) – K(s)v(s)

)∥
∥

α
ds (4.4)

≤ M
∥
∥E–1∥∥‖E‖∥∥x1

0 – x2
0
∥
∥ + M

∥
∥E–1∥∥‖E‖∥∥g

(
x1) – g

(
x2)∥∥ + MS

∥
∥E–1∥∥‖E‖∥∥x1

1 – x2
1
∥
∥

+
LJ (σ )M‖E–1‖

�(2z)

∫ t

0
(t – s)2z–1∥∥x1(s) – x2(s)

∥
∥ds

+
‖K‖∞M‖E–1‖

�(2z)

∫ t

0
(t – s)2z–1∥∥u(s) – v(s)

∥
∥

U ds (4.5)

≤ M
∥
∥x1

0 – x2
0
∥
∥ + MLg(σ )

∥
∥x1 – x2∥∥ + MS

∥
∥x1

1 – x2
1
∥
∥

+
‖K‖∞M‖E–1‖

�(2z)
t2z– 1

p

(∫ t

0

∥
∥u(s) – v(s)

∥
∥p

U ds
) 1

p

+
LJ (σ )M‖E–1‖

�(2z)

∫ t

0
(t – s)2z–1∥∥x1(s) – x2(s)

∥
∥ds (4.6)

≤ M
∣
∣x1

0 – x2
0
∣
∣ + MLg(σ )

∣
∣x1 – x2∣∣

C + MS
∥
∥x1

1 – x2
1
∥
∥ +

‖K‖∞M‖E–1‖
�(2z)

S2z– 1
p ‖u – v‖U

+
LJ (σ )M‖E–1‖

�(2z)

∫ t

0
(t – s)2z–1∥∥x1(s) – x2(s)

∥
∥ds. (4.7)

Using Lemma 2.3 again, we obtain

∥
∥x1(t, x1

0 + g
(
x1), x1

1, u
)

– x2(t, x2
0 + g

(
x2), x2

1, v
)∥
∥

≤ M∗∗(∥∥x1
0 – x2

0
∥
∥ +

∥
∥x1 – x2∥∥ +

∥
∥x1

1 – x2
1
∥
∥ + ‖u – v‖U

)
, t ∈ �. (4.8)

This completes the proof. �

5 Optimal control
In this section, we study the existence of optimal pairs for fractional control system (1.1).
Firstly, we consider the following Lagrange problem:

(P) Find a control u◦ ∈ Uad such that

J
(
u◦) ≤ J (u), ∀u ∈ Uad, (5.1)

where

J (u) =
∫ S

0
I
(
t, xu(t), u(t)

)
dt, (5.2)

and xu denotes the mild solution of system (1.1) corresponding to the control u ∈ Uad .
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For the existence of solution for problem (P), we introduce the following hypotheses:
(H4) (i) the functional I : � × X × U → R ∪ {∞} is Borel measurable;

(ii) I(t, ·, ·) is sequentially lower semicontinuous on X × U for almost all t ∈ �;
(iii) I(t, x, ·) is convex on ζ for each x ∈ Xα and almost all t ∈ �;
(iv) there exist constants e ≥ 0, j > 0, and nonnegative φ ∈ L1(�,R) such that

I(t, x, u) ≥ φ(t) + e‖x‖α
� + j‖u‖p

U .

Now we can give the following result on the existence of fractional optimal controls for
problem (P).

Theorem 5.1 Under the assumptions in Theorem 3.5 and (H4), suppose that K is a strongly
continuous operator. Then the optimal control problem (P) admits at least one optimal pair,
that is, there exists an admissible control u◦ ∈ Uad such that

J
(
u◦) =

∫ S

0
I
(
t, x◦(t), u◦(t)

)
dt ≤ J (u) for u ∈ Uad. (5.3)

Proof If inf{J (u) : u ∈ Uad} = +∞, then there is nothing to prove. Assume that

inf
{
J (u) : u ∈ Uad

}
= ε < +∞. (5.4)

Using assumption (H4), we have ε > –∞. By the definition of infimum there exists a min-
imizing sequence of feasible pairs

{(
xr , ur)}

⊂ Aad

:=
{

(x, u) | x is a mild solution of system (1.1) corresponding to u ∈ Uad
}

, (5.5)

such that J (xr , ur) → ε as r → +∞. Since {ur} ⊆ Uad , r = 1, 2, . . . , {ur} is bounded in
Lp(�, U), and there exists a subsequence such that

ur → u◦ in Lp(�, U). (5.6)

Since Uad is closed and convex, by the Marzur lemma we have u◦ ∈ Uad .
Let xr ∈ C0,S denote the corresponding sequence of solutions of the integral equations

xr(t) = SE(t)E
(
x0 + g

(
xr)) + χE(t)Ex1 +

∫ t

0
(t – s)z–1PE(t – s)J

(
s, xr(s)

)
ds

+
∫ t

0
(t – s)z–1PE(t – s)K(s)ur(s) ds, t ∈ �. (5.7)

By Lemmas 2.3 and 3.4 we can verify that there exists σ > 0 such that

∥
∥xr∥∥α

�
≤ σ for r = 0, 1, 2, . . . .
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Suppose xr (x◦) is the mild solution corresponding to ur (u◦), and xr and (x◦) satisfy the
following integral equation:

x◦(t) = SE(t)E
(
x0 + g

(
x◦)) + χE(t)Ex1 +

∫ t

0
(t – s)z–1PE(t – s)J

(
s, x◦(s)

)
ds

+
∫ t

0
(t – s)z–1PE(t – s)K(s)u◦(s) ds, t ∈ �. (5.8)

For t ∈ �, applying hypothesis (H1), Lemma 3.3, and Hölder’s inequality, we obtain

∥
∥xr(t) – x◦(t)

∥
∥

α

≤ ∥
∥SE(t)E(

(
g
(
xr) – g

(
x◦))∥∥

α

+
∫ t

0
(t – s)z–1∥∥PE(t – s)

(
J
(
s, xr(s)

)
– J

(
s, x◦(s)

))∥
∥

α
ds

+
∫ t

0
(t – s)z–1∥∥PE(t – s)

(
K(s)ur(s) – K(s)u◦(s)

)∥
∥

α
ds (5.9)

≤ M
∥
∥E–1∥∥‖E‖Lg(σ )

∥
∥xr – x◦∥∥ +

LJ (σ )M‖E–1‖
�(2z)

∫ t

0
(t – s)2z–1∥∥xr(s) – x◦(s)

∥
∥

α
ds

+
M‖E–1‖
�(2z)

∫ t

0
(t – s)2z–1∥∥K(s)ur(s) – K(s)u◦(s)

∥
∥ds (5.10)

≤ MLg(σ )
∥
∥xr – x◦∥∥ +

LJ (σ )M‖E–1‖
�(2z)

∫ t

0
(t – s)2z–1∥∥xr(s) – x◦(s)

∥
∥

α
ds

+
M‖E–1‖
�(2z)

S2z– 1
p

(∫ S

0

∥
∥K(s)ur(y) – K(s)u◦(s)

∥
∥p ds

) 1
p

(5.11)

:= η(1)
r + η(2)

r + η(3)
r . (5.12)

Since K is strongly continuous, ‖Kur – Ku◦‖ → 0 as r → ∞, and by Lemma 2.4 we have

∫ S

0

∥
∥K(s)ur(s) – K(s)u◦(s)

∥
∥p ds → 0 as r → ∞,

which implies that η
(3)
r → 0 as r → ∞. Moreover, we have

∥
∥xr(t) – x◦(t)

∥
∥

α
≤ ∥

∥η(3)
r

∥
∥ + MLg(σ )

∥
∥xr – x◦∥∥

+
LJ (σ )M|E–1|

�(2z)

∫ t

0
(t – s)2z–1∥∥xr(s) – x◦(s)

∥
∥

α
ds. (5.13)

By Grönwall’s inequality again, there exists a positive constant N∗ such that

∥
∥xr(t) – x◦(t)

∥
∥

α
≤ N∗∥∥η(2)

r
∥
∥

α
, (5.14)

which yields that

xr → x◦ in C0,S as r → ∞. (5.15)
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Note that assumption (H4) implies the Balder assumption. Hence by Balder’s theorem we
can conclude that

(x, u) →
∫ S

0
I
(
t, x(t), u(t)

)
dt (5.16)

is sequentially lower semicontinuous in the weak topology of Lp(�, U) ⊂ L1(�, U) and the
strong topology of L1(�, X). Hence � is weakly lower semicontinuous on Lp(�, U), and
since by (H5)(iv) � > –∞, � attains its infimum at u◦ ∈ Uad , that is,

ε = lim
r→∞

∫ S

0
I
(
t, xr(t), ur(t)

)
dt ≥

∫ S

0
I
(
t, x◦(t), u◦(t)

)
dt = J

(
x◦, u◦) ≥ ε. (5.17)

The proof is completed. �

6 An illustrative example
In this section, we present an example illustrating the main results.

Example 6.1 Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0D

3
2
t Ex(t, w) = �x(t, w) + J1(t, x(t, w)) +

∫ t
0 h(t – s)J2(s, x(s, w)) ds

+
∫

�
L(w, ζ )u(ζ , t) dζ , w ∈ �, t ∈ �,

x(t, w) = 0, w ∈ ∂�, t ∈ �,

x(0, w) –
∑n

i=1
∫

�
m(ξ , w)x(ti, ξ ) dξ = 0, x′(0, w) = 0, w ∈ �,

(6.1)

where � ⊂ R
3 is a bounded domain, ∂� ∈ C3, � is the Laplace operator, u ∈ L2(� ×

�,R), h ∈ L1([0, S],R), K : �̄ × �̄ → R is continuous, and m(ξ , w) : � × � → X is an
L2-Lebesgue-integrable function.

Assume that J1 : �×R →R is continuous and there exist constants α1,β1 ≥ 0 such that

∥
∥J1(t,η)

∥
∥ ≤ α1

(
1 + |η|),

‖J1(t,η) – J1(t, η̄‖ ≤ β1|η – η̄|.

Assume that J2 : [0, S] × R → R is continuous and there exist constants α2,β2 ≥ 0 such
that

∥
∥J2(t,η)

∥
∥ ≤ α2

(
1 + |η|),

‖J2(t,η) – J2(t, η̄‖ ≤ β2|η – η̄|.

Define

X = U = L2(� × �,R), D(G) = H2(�) ∩ H1
0 (�), Gx = –

(
∂2x
∂w2

1
+

∂2x
∂w2

2
+

∂2x
∂w2

3

)

for x ∈ D(GE–1). Then GE–1 can generate a strongly continuous cosine family {C(t)}t≥0

on X. The controls functions u : Cx(�) →R are such that u ∈ L2(Cx(�),R). We claim that
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t → u(·, t) going from � into U is measurable. We set

U(t) =
{

u ∈ U : ‖u‖U ≤ χ
}

,

where χ ∈ L2(�,R+). We restrict the admissible controls Uad to all u ∈ L2(Cx(�),R) such
that ‖u(·, t)‖L2Cx(�) ≤ χ almost everywhere.

Define x(t)(w) = x(t, w),

K(t)u(t)(w) =
∫

�

L(w, ζ )u(ζ , t) dζ ,

and

J
(
t, x(t)

)
(w) = F1(t, x)(w) +

(∫ t

0
h(t – s)F2

(
s, x(s)

)
ds

)

(w),

where F1(t, x)(w) = J1(t, x(t, w)) and F2(t, x)(w) = J2(t, x(t, w)).
Taking γ = 3

2 , we have z = 3
4 . Let g : C(�, X) → X be given by g(x)(w) =

∑n
i=0 Lgx(ti)(w)

with Lgu(w) =
∫

�
m(ξ , w)u(ξ ) dξ for u ∈ X, w ∈ � (noting that Lg : X → X is completely

continuous). Thus assumption (H4) holds.
Thus problem (6.1) can be rewritten as follows:

⎧
⎨

⎩

c
0Dγ

t Ex(t) = Gx(t) + J(t, x(t)) + K(t)u(t), t ∈ � = [0, S],

x(0) = x0 + g(x), x′(0) = x1.
(6.2)

Consider the following cost function:

J (u) =
∫ S

0
I
(
t, xu(t), u(t)

)
dt,

where I : � × C1,0(� × �̄,R) × L2(� × �,R) → R ∪ {+∞} for x ∈ C1,0([0, S] × �̄,R),
u ∈ L2(� × �,R). Then

I
(
t, xu(t), u(t)

)
(w) =

∫

�

∣
∣xu(t, w)

∣
∣2 dw +

∫

�

∣
∣u(w, t)

∣
∣2 dw.

It is easy to verify that all the assumptions of Theorem 5.1 hold. Thus problem (6.1) admits
at least one optimal pair.

7 Conclusions
In this paper, we mainly investigated the nonlocal fractional differential evolution equa-
tions of order (1,2) in Banach spaces. Applying the main tools from the fractional calculus,
cosine family, measure of noncompactness method, fixed point theorem, Hölder’s inequal-
ity, and Grönwall’s inequality, we propose the definition of α-mild solutions and obtain the
existence, uniqueness, and continuous dependence of the solution. Furthermore, we con-
struct the Lagrange problem to analyze the optimal control of the systems. Finally, we
provided an example to demonstrate the validity of our main results. For future research,
it will be interesting and challenging to discuss similar problems for fractional evolution
equations in the framework of Atangana–Baleanu derivatives.
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